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Abstract

We present a scalable, low-bias, and low-cost
method for building a commonsense infer-
ence dataset that combines automatic extrac-
tion from a corpus and crowdsourcing. Each
problem is a multiple-choice question that asks
contingency between basic events. We ap-
plied the proposed method to a Japanese cor-
pus and acquired 104k problems. While hu-
mans can solve the resulting problems with
high accuracy (88.9%), the accuracy of a high-
performance transfer learning model is reason-
ably low (76.0%). We also confirmed through
dataset analysis that the resulting dataset con-
tains low bias. We released the datatset to fa-
cilitate language understanding research.1

1 Introduction

Along with the progress of deep learning, there
have been many studies that consider task settings
and build their datasets for training/evaluating lan-
guage understanding ability by computers (Wang
et al., 2019b,a).

Language understanding by computers requires
two types of knowledge: knowledge of language
(meaning of words, syntax, and so forth) and knowl-
edge of our world and society beyond language.

The former problem of acquiring linguistic
knowledge has been solved to a large extent by
general-purpose language models, such as BERT
(Devlin et al., 2019), which are pre-trained using
a large corpus. It is now possible to represent the
meaning of a word as a vector according to its con-
text. Fine-tuning based on these vectors has made
natural language inference, paraphrase recognition,
and question answering without requiring deep in-
ference as accurate as humans.

On the other hand, there are still many problems
with acquiring knowledge beyond language. Actu-

∗Current affiliation is Waseda University.
1http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JCID

ally it is open-ended, and we had better start with
fundamental knowledge, i.e., commonsense. Still,
it is not easy to focus on commonsense, guarantee-
ing some generality as commonsense.

There have been some approaches to guarantee
such generality. SWAG (Zellers et al., 2018), for
example, focuses on knowledge about daily events
that can be visually perceived. This method greatly
limits the range of commonsense that can be ac-
quired. CommonsenseQA (Talmor et al., 2019) is
based on the basic vocabulary that is covered by
ConceptNet (Speer et al., 2017), which is one of the
largest commonsense knowledge bases. This pre-
vents the scalability, generating only 12k problems
from the whole data of ConceptNet.

Another important point is that biases in build-
ing datasets must be reduced as much as possi-
ble. In the above two approaches, question or dis-
tractor sentences were created automatically or by
crowdsourcing. This causes generation biases of
language models or produces certain patterns (an-
notation artifacts) by crowdsourced writing (Guru-
rangan et al., 2018).

We use a text corpus to solve these problems.
We propose a method to build a commonsense in-
ference dataset by extracting contingent pairs of ba-
sic event expressions (hereafter, contingent basic
event pairs) from a corpus and verifying them by
crowdsourcing. Basic event expressions (hereafter,
basic events) are defined as expressions composed
of high-frequency predicate-argument structures
that are extracted from a corpus and aggregated
by clustering according to their usages. Contin-
gent basic event pairs are extracted by identifying
contingency relations between basic events using
discourse parsing.

For instance, the following contingent basic
event pairs are acquired.
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I am hungry, so
a. I drink coffee.
b. I have a meal.
c. I sweat.
d. I get sleepy.

Table 1: A sample problem. The correct choice is
bolded.

(1) a. I am hungry, so I have a meal.
b. If I have a meal, I get sleepy.
c. Since I am sleepy, I drink coffee.
d. If I exercise hard, I sweat.

Based on these contingent pairs, we can generate a
commonsense inference problem by adopting lat-
ter events of other pairs as distractors, as shown in
Table 1. Since the problem is based on basic events,
it guarantees some generality as commonsense.

Since our method is based on automatic extrac-
tion from a corpus, it is scalable and the domain
is not limited. In addition, there is no bias caused
by crowdsourcing because we ask crowdworkers
to just verify a sentence. Although the key idea of
our proposed method is language-independent, we
build a Japanese commonsense inference dataset in
this study by exploiting existing resources.

The contributions of this paper are summarized
as follows.

• We propose a scalable, low-bias, and low-cost
method for building a commonsense inference
dataset that combines automatic extraction
from a corpus and crowdsourcing.

• We built a Japanese commonsense inference
dataset from a web corpus of 715m sentences
that consists of 104k multiple-choice ques-
tions.

• While humans can solve the resulting prob-
lems with high accuracy (88.9%), the accu-
racy of a high-performance transfer learning
model is low (76.0%), which shows that there
is a reasonable gap in commonsense inference
ability. We also confirm that the resulting
dataset contains low bias.

2 Related Work

Language resources for commonsense inference
that have been built so far can be classified into
knowledge bases and QA datasets.

Commonsense knowledge bases have been con-
structed by experts, crowdsourcing, and games
with a purpose. Cyc (Lenat, 1995) and Open Mind
Common Sense projects (Speer et al., 2017) col-
lected various relations between entities and events.
They include causal relations between events, but
the number of these relations is not high. ATOMIC
(Sap et al., 2019) is a knowledge base that is com-
prised of 877k if-then pairs of basic events. They
collected these pairs using crowdsourcing based
on frequent basic events extracted from several
corpora. These fully manual or crowdsourcing ap-
proaches are costly and have a problem of scalabil-
ity. Also, methods for incorporating such knowl-
edge bases into an NLP model have been studied
but have not been established yet.

Many QA datasets for commonsense inference
have been built. They include COPA (Choice of
Plausible Alternatives) (Roemmele et al., 2011),
SWAG (Zellers et al., 2018), HellaSWAG (Zellers
et al., 2019), and CommonsenseQA (Talmor et al.,
2019). These datasets can be solved to some extent
by machine comprehension models (Devlin et al.,
2019) that have been rapidly improved. There have
been also some approaches that transfer knowl-
edge in such a dataset to downstream tasks using
multi-task learning (Liu et al., 2019). We briefly
introduce these datasets below.

COPA consists of 1,000 two-choice questions
that ask a causal relation between two sentences.
Each question provides a premise sentence and
requires to choose its cause or ending sentence
from two alternatives. This dataset was manually
created for the purpose of evaluation and is too
small to learn commonsense by computers.

SWAG is a commonsense inference dataset con-
sisting of 113k multiple-choice questions that ask
the most appropriate verb phrase following a given
context. To guarantee generality as commonsense,
questions were created from video captions, and
thus the domain of the dataset is limited to the
physical world. For each question, two consecutive
sentences were extracted from a video caption, the
first sentence and the subject of the second sen-
tence compose a context, and the rest was regarded
as a correct choice. Distractors were generated
from a language model. To obtain high-quality
distractors, SWAG removed those that are easily
discriminated by an answer model. SWAG was
solved by BERT with a similar accuracy to humans.
This was attributed to biases that were embedded in
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distractor sentences by an LSTM-based language
model and detected by BERT (Zellers et al., 2019).
They newly built HellaSwag using a better lan-
guage model to make biases undetectable by BERT.
However, the accuracy for solving HellaSwag is
also approaching to human performance (Liu et al.,
2020). The bias problem has not been solved yet.

CommonsenseQA is a commonsense inference
dataset consisting of 12k multiple-choice questions
based on the commonsense knowledge base, Con-
ceptNet. A question is created by crowdsourcing
based on a subgraph consisting of a source concept
and three target concepts connected with the same
relationship. A crowdworker creates a question
sentence which includes the source concept and
whose answer is only one of the target concepts.
This method uses an existing resource and lacks
scalability. In addition, because the load of creating
question sentences is large for crowdworkers, they
tend to use the same words and styles repeatedly,
leading bias in question sentences.

3 A Method for Generating
Commonsense Inference Problems

A commonsense inference problem consists of a
context (question) and four choices. The question
asks to choose the most appropriate choice follow-
ing the context, as shown in Table 1.

These problems should be based on basic events
to guarantee generality as commonsense. In addi-
tion, to guarantee scalability and reduce biases, we
combine automatic extraction from a corpus and
verification by crowdsourcing. Our method to gen-
erate commonsense inference problems consists of
the following procedure (Figure 1).

1. Acquire basic events from high-frequency
predicate-argument structures.

2. Apply discourse parsing to a corpus and ex-
tract event pairs that are recognized as having
a contingency relation and composed of basic
events.

3. Verify whether the extracted event pairs have
a contingency relation by crowdsourcing and
obtain contingent basic event pairs.

4. Generate commonsense inference problems
by taking a correct choice from a contingent
pair and selecting distractors from other event
pairs.

Case frame CS Case fillers
kowasu (1)

(injure)

ga 1756 I 83, person 65, ...
wo 70135 stomach 25643, body 17242, ...
de 3941 stress 297, eating 174, ...

kowasu (2)
(destroy)

ga 502 person 42, Japan 42, ...
no 10147 place 873, room 851, ...
wo 18274 atmosphere 8140, image 3774, ...

...

Table 2: Examples of Japanese case frames. CS de-
notes case slots, where ga, wo, de, and no mean nom-
inative, accusative, instrumental, and genitive, respec-
tively. The number following case or a case filler rep-
resents its frequency. Examples are expressed only in
English for space limitation.

We describe the details of each step in the following
subsections.

3.1 Acquisition of Basic Events

Basic events are defined as expressions composed
of high-frequency predicate-argument structures
that are extracted from a corpus and aggregated by
clustering according to their usages. As a source
of basic events, we employ case frames (Kawahara
et al., 2014) that are automatically constructed by
clustering predicate-argument structures.

In the case frame data, each predicate has mul-
tiple case frames distinguished according to their
usages. Each case frame consists of multiple case
slots, and each case slot contains possible case
fillers. Table 2 shows some examples of Japanese
case frames.

In this study, we extract high-frequency
predicate-argument structures from case frames as
basic events. First, from the case frame data, the
top α predicates in active voice are obtained. For
each predicate, frequent case frames, case slots, and
case fillers are selected until the cumulative sum
of frequencies reaches β%, γ%, and δ%, respec-
tively. For example, case frames are selected until
covering β% of the frequency of a target predicate.
These thresholds are empirically set according to a
target language.

Table 3 shows some examples of basic events ac-
quired from Japanese case frames. The parameters
for Japanese basic events are described in Section
4.

3.2 Automatic Extraction of Contingent
Basic Event Pairs

We apply dependency and discourse parsing to a
text corpus and extract event pairs connected with
both dependency and contingency relations.
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Figure 1: The overview of our proposed method.

Case frame CS Case fillers
kowasu (1) (injure) wo stomach, body
kowasu (2)
(destroy)

no place, room, ...
wo atmosphere, image

torikaeru (replace) wo door, glass, ...
hatudou (activate) ga effect

Table 3: Examples of Japanese basic events.

The contingency relation between events should
be expressed by an explicit discourse marker and
be a causal or conditional relation, correspond-
ing to “CONTINGENCY:Cause” or “CONTIN-
GENCY:Condition” in the Penn Discourse Tree-
bank (Prasad et al., 2008).

To select highly reliable parts from analysis re-
sults and to extract only general event pairs as com-
monsense, we keep event pairs satisfying the fol-
lowing conditions. Here, we call the first event that
represents a cause or reason former event and the
second event latter event.

Reliable The former and latter events are unam-
biguously connected.

In the case that only two clauses exist in a
sentence, there is no ambiguity. In the case
that more than two clauses exist in a sentence,
we extract a reliable part based on language-
dependent criteria.

Basic Both the former and latter events are com-
posed of a basic event.

This condition can be applied in a straightfor-
ward way, but we need to take care of the case
that an argument in the latter event is pronom-
inalized or omitted. If the latter event does not
have an explicit argument, we recover it with
any of the arguments in the former event and
examine whether the recovered latter event is
composed of a basic event.

For example, consider the event pair “the glass
breaks on impact→ I replace it”. In this case,
we generate recovered latter events “I replace
the glass” and “I replace impact” by substitut-
ing an argument in the former event for “it”.
Then, we examine whether either of them is
composed of a basic event and extract this
event pair because “replace glass” is a basic
event as shown in Table 3.

Finally, the following post-processes are per-
formed so that crowdworkers in the next step can
accurately judge event pairs.

• To exclude event pairs that are less eventful or
contain web-specific functional expressions,
the frequency of basic events included in the
obtained event pairs is counted, and event
pairs that contain one of high-frequency basic
events are excluded. For example, “問題が
ない (have no problem)” and “情報が満載
(have much information)” are detected as high-
frequency meaningless events in Japanese.
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• Event pairs that contain demonstratives or un-
known words are excluded.

3.3 Verification of Contingent Basic Event
Pairs through Crowdsourcing

We select contingent basic event pairs from the
extracted basic event pairs using crowdsourcing.
We ask crowdworkers to select one of the following
two alternatives for each event pair.

1. A is a cause or reason of B.

2. Other relation or no relation.

Here, “A” denotes the former event, and “B” de-
notes the latter event.

We ask multiple workers to evaluate each event
pair and adopt the evaluation that half or more of
the workers agree. We finally obtain event pairs
whose aggregated evaluation is “A is a cause or
reason of B” as contingent basic event pairs.

3.4 Generation of Commonsense Inference
Problems

We generate commonsense inference problems
from the obtained contingent basic event pairs. We
regard the former event as a context (question) and
the latter event as a correct choice. Distractors
are automatically selected from the latter events of
other event pairs.

In general, highly similar distractors to the cor-
rect choice are not distinguishable even by humans.
Meanwhile, dissimilar distractors can be easily dis-
tinguished by machines. We select moderately sim-
ilar distractors under the following conditions.

Choice-Similarity The similarity between the cor-
rect choice and a candidate latter event is in a
range, RANGEchoice.

This similarity is calculated using the cosine
similarity between vectors of (latter) events.
This vector is defined as an average vector of
content words contained in an event.

Context-Similarity The similarity between the
context and the former event of a candidate
latter event is in a range, RANGEcontext.

This similarity is calculated in the same way
as the condition Choice-Similarity.

To improve the appearance of problems, we se-
lect latter events whose ratio of the number of

words against the correct choice is in a range,
RANGElength.2

If more than three distractors are obtained, we
randomly select three out of them. If less than
three distractors are obtained, we do not generate a
problem from the contingent basic event pair.

4 Building a Japanese Commonsense
Inference Dataset

We built a Japanese commonsense inference dataset
using the method described in Section 3.

Acquisition of basic events
We extracted Japanese basic events from the Ky-
oto University case frames3, which had been con-
structed from 10 billion web sentences. We set the
thresholds α, β, γ, and δ to 5,000, 75, 50, and 50,
respectively. As a result, we obtained 28,642 basic
events. Examples of the obtained basic events are
shown in Table 3.

Automatic extraction of contingent basic event
pairs
We automatically extracted contingent basic event
pairs from a Japanese web corpus consisting of
approximately 715 million sentences. We used the
Japanese parser, KNP4 to extract event pairs from
the corpus. KNP does dependency parsing and also
labels explicit discourse relations between clauses
(events). As a result, approximately 85 million
contingent basic event pairs were extracted.

Next, to extract highly reliable basic event pairs,
the Reliable and Basic conditions were applied.
For the Reliable condition, if there are more than
two clauses in a sentence, we extract only the last
two clauses because in Japanese the dependency
goes from left to right.

Finally, we performed the post-processes to ex-
tract 164,910 contingent basic event pairs. The
detailed statistics are listed in Table 4.

To investigate the effectiveness of the Basic con-
dition, we randomly selected 100 event pairs from
“+Reliable” and “+Reliable+Basic” in Table 4, and
manually evaluated them. For convenience, we
name each set of the selected event pairs “R” and

2As a result of our preliminary experiment, we found that
this condition did not affect the model performance. Hence,
we do not investigate this condition.

3https://www.gsk.or.jp/catalog/
gsk2018-b

4http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?KNP

https://www.gsk.or.jp/catalog/gsk2018-b
https://www.gsk.or.jp/catalog/gsk2018-b
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
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Item Number
sentences 714,605,164
contingent event pairs 85,357,299
+Reliable 51,904,745
+Reliable+Basic 517,321

+post-processing 164,910

Table 4: Detailed statistics about extraction of event
pairs. For example, the number of “+Reliable” shows
the number of contingent event pairs that satisfy the
Reliable condition.

“RB”, respectively. As a result of the manual eval-
uation, 47 event pairs in “R” and 76 event pairs
in “RB” were judged as understandable with com-
monsense. Here is an example in “R” that would
be excluded by the Basic condition: “サイク
ロンを発動すると→破壊できる (activate the
cyclone→we can destroy)”. “Activate the cyclone”
is not a basic event as shown in Table 3, which is a
domain-specific expression especially used in fic-
tion. By the Basic condition, we can remove such
non-general event pairs. Thus, we can see that the
Basic condition is effective in acquiring general
knowledge at the level of commonsense.

Verification of contingent basic event pairs
through crowdsourcing
Next, we selected contingent basic event pairs from
the extracted event pairs using crowdsourcing. We
used the crowdsourcing service, Yahoo! Crowd-
sourcing5. A crowdworker was presented with
17 questions (event pairs) per task, each of which
asked to choose one from the two alternatives. Two
of the 17 event pairs were check questions with
a hidden ground truth, and the answers of crowd-
workers who mistakenly judged these event pairs
were excluded. Each event pair was verified by
four crowdworkers, and we selected the event pairs
two or more of whose evaluations are “A is a cause
or reason of B”.

As a result of crowdsourcing, 104,266 contin-
gent basic event pairs were selected from 164,910
pairs, which means that approximately one-third
of pairs were removed. This ratio roughly corre-
sponds to the result of the above investigation on
the effectiveness of the Basic condition. The to-
tal cost of crowdsourcing was 484,000 JPY (4,495
USD), and the cost per problem was 4.7 JPY (4.5
cents).

5https://crowdsourcing.yahoo.co.jp/

Train Development Test
83,127 10,228 10,291

Table 5: Statistics of the dataset.

Generation of commonsense inference prob-
lems
Finally, we generated commonsense inference
problems from the acquired contingent basic
event pairs. The similarity range, RANGEchoice,
in the condition Choice-Similarity was set to
the range of 0.4 to 0.6, and the similarity
range, RANGEcontext, in the condition Context-
Similarity was set to the range of 0.5 to 0.7. We set
RANGEcontext slightly higher than RANGEchoice
because Context-Similarity controls the similar-
ity to the correct choice more indirectly than
Choice-Similarity. To calculate the similarity be-
tween events, we used word vectors that were in-
duced from 200 million sentences of the Japanese
web corpus using word2vec6. The length range,
RANGElength, was set to the range of 0.5 to 2.0.

As a result, 103,907 problems were generated
from the 104,266 contingent basic event pairs. Ta-
ble 7 shows examples of the obtained problems
with BERT’s predictions (described in Section 5.1).
On this default setting, the mean and median num-
bers of the eligible candidates before finally select-
ing three were 3,459 and 1,355, respectively.

To create a standard split of the ob-
tained problems, we split the problems into
train/development/test sets with the ratio 8:1:1. We
performed the split in the way that both the train
set and the development/test set do not contain the
problems generated from the identical “seed”. The
term “seed” refers to a pair of basic events that
compose former and latter events in a contingent
basic event pair. For example, the seed of the top
left example in Table 7 is a pair of “装置が故障
(a device breaks)” and “装置を交換 (replace a
device)”. In addition, we removed some problems
in the development/test sets so that there are
no duplicate pairs of a context and a distractor
between the train set and the development/test sets.
The statistics of the resulting dataset are listed in
Table 5.

Investigation of human accuracy
To investigate the accuracy of human answers, we
randomly sampled 1,500 problems and collected
answers from five crowdworkers for each problem.

6https://code.google.com/archive/p/
word2vec/

https://crowdsourcing.yahoo.co.jp/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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We prepared three sets of 500 problems and did
crowdsourcing on different dates to be solved by
different sets of crowdworkers. As a result, the
average accuracy of individual crowdworkers was
83.8% and that of the answers aggregated by ma-
jority voting was 88.9%.

5 Experiments
We conducted experiments to investigate the per-
formance of a transfer learning model on the con-
structed commonsense inference dataset.

5.1 Model

We used BERT (Devlin et al., 2019) as a trans-
fer learning model for our experiments. BERT
achieved high performance on various benchmark
tasks including natural language inference and
question answering. For pre-training, the model
solves a masked language modeling task and a next
sentence prediction task simultaneously to obtain
context-aware word representations. To apply this
model to each downstream task, a layer is added
on top of the output, and all the parameters are
fine-tuned on the task.

In our experiments, we input pairs of a context
and a choice separated by special tokens follow-
ing the previous work (Talmor et al., 2019). For
example, the context “お腹 が 空いた ので (I
am hungry, so)” and the choice “ご飯を食べる
(I have a meal)” would become “[CLS] お腹 ...
[SEP]ご飯 ... [SEP]”. The hidden representation
of each [CLS] token is converted to a score through
a linear layer, and the choice with the highest value
is selected as an answer.

We define the objective function as follows.

L = − 1

N

N∑
k=1

log
exp(wT ckj)∑4
i=1 exp(wT cki)

(1)

where N is a batch size, w is the parameters in
a linear layer, j is the index of a correct choice
among 1 · · · 4, and cki is the hidden representation
of each [CLS] token.

We adopted BERTLARGE as a BERT model.
We used the Japanese pre-trained BERTLARGE
WWM model7, which performed pre-training us-
ing 18 million sentences of Japanese Wikipedia
with whole word masking. We fine-tuned the pre-
trained model for 3 epochs. We used the following

7http://nlp.ist.i.kyoto-u.ac.jp/
index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%
9EPretrained%E3%83%A2%E3%83%87%E3%83%AB

Model Accuracy
Chance 0.250
BERTLARGE 0.760

Human
1 worker 0.838
5 workers 0.889

Table 6: Performance of BERTLARGE and humans.

Figure 2: Learning curve of the BERT model on the
development set.

hyper-parameters: a batch size of 88, a learning
rate of 2e-5, and maximum sequence length of 128.

5.2 Experimental Results
We evaluated the model performance with accuracy.
The BERTLARGE model achieved an accuracy of
0.760, as shown in Table 6. We can see that there
is a reasonable gap between the BERT model and
the human performance.

Figure 2 shows the learning curve of the BERT
model on the development set. We can expect by
extrapolation that approximately 1.9 million train-
ing examples are required to achieve human perfor-
mance, which is not practical. It is meaningful to
develop better models to solve this dataset toward
the human accuracy.

5.3 Analysis
We briefly analyze the results of the BERT model.
Table 7 shows some examples that the BERT model
answered correctly and incorrectly. As can be seen
from the top left example, lexical overlap between
a context and a choice is a clue to solve the prob-
lem. There are some noticeable examples that the
BERT model answered incorrectly as a result of
overemphasizing this.

8Each batch corresponds to one problem, that is, consists
of four input sequences.

http://nlp.ist.i.kyoto-u.ac.jp/index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%9EPretrained%E3%83%A2%E3%83%87%E3%83%AB
http://nlp.ist.i.kyoto-u.ac.jp/index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%9EPretrained%E3%83%A2%E3%83%87%E3%83%AB
http://nlp.ist.i.kyoto-u.ac.jp/index.php?BERT%E6%97%A5%E6%9C%AC%E8%AA%9EPretrained%E3%83%A2%E3%83%87%E3%83%AB
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co
rr

ec
t

テープ装置が故障したので 今はなにしろ９時に寝ないといけないので、
(Since a tape device broke,) (Since I have to go to bed at nine anyway,)

a. 黒い方がシャープに見える−14.5 a. 進行をできるだけ抑えるための治療が必要だ−14.4

(the black one looks sharper) (I need treatment to prevent disease progression as much as possible)
b. 購入を決める−4.4 b. わかりやすく教えていただけましたら助かります−14.0

(I decide to buy) (I’d be grateful if you would kindly explain it)
c.テープ装置を交換します13.7テープ装置を交換します13.7テープ装置を交換します13.7 c.敢えて面白そうな番組も見ないようにしています2.4敢えて面白そうな番組も見ないようにしています2.4敢えて面白そうな番組も見ないようにしています2.4

(I replace the tape device) (I try not to watch an interesting TV show)
d. 撮影の幅が大きく広がる−14.5 d. 供給も可能かもしれません−14.6

(you can add variety to your photography) (I may be able to provide it)

in
co

rr
ec

t

仕事辞めたら ウナギよりも脂が少ないので
(If you quit a job, then) (Since it is less fatty than eel,)

a.生活は大変だ−6.4生活は大変だ−6.4生活は大変だ−6.4 a.あっさりとした味が楽しめます4.7あっさりとした味が楽しめます4.7あっさりとした味が楽しめます4.7

(you lead a hard life) (you can enjoy a light taste)
b. 仕事でいっぱいいっぱいだ−6.1 b. 今回は、お塩は使用しませんでした10.6

(you are exhausted from work) (I did not use salt this time)
c. 勉強がはかどるはずだ−9.3 c. フライドポテトみたいな感じで美味しい9.1

(you must make progress in your studies) (it tastes good like french fries)
d. ますます犯罪が増えるだろう−10.1 d. ミネラルや水分の摂取など、食事面の配慮も必要だ−9.4

(the number of crimes will increase) (you need to take care of your nutrition, e.g. minerals and moisture)

Table 7: Examples that the BERT model answered correctly and incorrectly. The correct choice is bolded. If
the BERT model answered incorrectly, its prediction is highlighted in red. The number at the end of each choice
represents an output score.

Figure 3: Counts of how many times each latter event
is used as a distractor.

6 Investigation of the Dataset

6.1 Investigation of Biases

Several studies have reported that, due to unin-
tended biases in a dataset, many problems can
be solved by just observing a part of question
sentences (Gururangan et al., 2018; Zellers et al.,
2019). To investigate the existence of bias in our
dataset, we measured model performance when we
input only the choices by omitting their context
during fine-tuning and inference phases. In this
investigation, we used the same model and hyper-
parameters as described in Section 5.1.

As a result, the BERTLARGE model achieved an
accuracy of 41.2%. Compared with the result in

Section 5.2, the performance is significantly low,
which indicates that the constructed dataset con-
tains low bias. To investigate the result that the
performance without the context (41.2%) is a bit
higher than the chance rate (25%), we counted how
many times each latter event is used as a distractor.
Figure 3 shows the result of counting. We speculate
that some latter events are frequently reused and
thus can be easily judged as incorrect by the BERT
model. We will tackle this problem in the future to
further lower the bias.

6.2 Investigation of the Conditions on
Selecting Distractors

We investigated how the conditions on select-
ing distractors affect the quality of the dataset.
Specifically, we built datasets by removing the
upper or lower bounds of each similarity range,
RANGEchoice and RANGEcontext, and evaluated
model and human performances on each dataset.
We evaluated model performance on each develop-
ment set using the same model settings as described
in Section 5.1. We calculated human performance
in the same way as described in Section 4.

Table 8 shows the result of this investigation.
This result indicated the effectiveness of the upper
and lower bounds. Specifically, by removing the
upper bound, some problems contained distractors
that were highly similar to the correct choice, and
thus both the model and humans could not solve
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RANGE BERTLARGE Humanchoice context
(0.4, 0.6) (0.5, 0.7) 0.768 0.889 (0.838)
(0.4, 1.0) (0.5, 0.7) 0.727 0.822 (0.788)
(0.4, 0.6) (0.5, 1.0) 0.730 0.818 (0.777)
(-1.0, 0.6) (0.5, 0.7) 0.767 0.887 (0.839)
(0.4, 0.6) (-1.0, 0.7) 0.846 0.928 (0.888)

Table 8: Results of investigation of the conditions on
selecting distractors. The numbers in parentheses at
the rightmost column represent average accuracies of
individual crowdworkers.

them. By removing the lower bound, the related-
ness between a context and distractors decreased,
and thus the generated problems became easy to
solve especially for the model. Accordingly, it is
important to select moderately similar distractors.

7 Conclusion

In this paper, we proposed a scalable, low-bias, and
low-cost method for building a commonsense in-
ference dataset that combines automatic extraction
from a corpus and crowdsourcing. Each problem
is a multiple-choice question that asks contingency
between basic events. We applied the proposed
method to a Japanese web corpus and acquired
103,907 problems. While the human accuracy was
high (88.9%), the BERTLARGE accuracy was rea-
sonably low (76.0%). We also confirmed that the
dataset contained low bias, and thus it can be used
as a good benchmark for language understanding
research.

In the future, we will make a model learn com-
monsense with the obtained dataset and consider
applying it to semantic tasks, such as anaphora
resolution and discourse parsing.

For commonsense acquisition from text, there
is a problem that every commonsense is not writ-
ten in text because of reporting bias (Gordon and
Van Durme, 2013). To acquire a wider range of
commonsense, it is possible to combine our method
with other methods based on physical world re-
sources, such as video captions used in SWAG.
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A Appendix

A.1 Screenshots of the crowdsourcing tasks

Figure 4: The screenshot of verification of contingent
basic event pairs.

Figure 5: The screenshot of investigation of human ac-
curacy.


