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Abstract

Building an effective adversarial attacker and

elaborating on countermeasures for adversar-

ial attacks for natural language processing

(NLP) have attracted a lot of research in re-

cent years. However, most of the existing ap-

proaches focus on classification problems. In

this paper, we investigate attacks and defenses

for structured prediction tasks in NLP. Besides

the difficulty of perturbing discrete words and

the sentence fluency problem faced by attack-

ers in any NLP tasks, there is a specific chal-

lenge to attackers of structured prediction mod-

els: the structured output of structured pre-

diction models is sensitive to small perturba-

tions in the input. To address these prob-

lems, we propose a novel and unified frame-

work that learns to attack a structured pre-

diction model using a sequence-to-sequence

model with feedbacks from multiple reference

models of the same structured prediction task.

Based on the proposed attack, we further rein-

force the victim model with adversarial train-

ing, making its prediction more robust and ac-

curate. We evaluate the proposed framework

in dependency parsing and part-of-speech tag-

ging. Automatic and human evaluations show

that our proposed framework succeeds in both

attacking state-of-the-art structured prediction

models and boosting them with adversarial

training.

1 Introduction

Adversarial examples, which contain perturbations

to the input of a model that elicit large changes

in the output, have been shown to be an effective

way of assessing the robustness of models in nat-

ural language processing (NLP) (Jia and Liang,

2017; Belinkov and Bisk, 2018; Hosseini et al.,

2017; Samanta and Mehta, 2017; Alzantot et al.,

∗Equal contributions.
†Corresponding author.
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Figure 1: An example showing the challenges in attack-

ing a dependency parser using gradient-based methods.

A small perturbation to the sentence x changes one

word from “am” to “fires”. This change makes the per-

turbed example I fires a writer ungrammatical. Even

if the perturbed example is “I fire a writer” that meets

the rules of grammar, the true output structure is still

different from the input sentence “I am a writer”. More

importantly, this true parse is unknown to the attacker,

which hinders the next update step.

2018; Ebrahimi et al., 2018; Michel et al., 2019;

Wang et al., 2019). Adversarial training, in which

models are trained on adversarial examples, has

also been shown to improve the accuracy and ro-

bustness of NLP models (Goodfellow et al., 2015;

Tramèr et al., 2017; Yasunaga et al., 2018). So

far, most existing methods of generating adversar-

ial examples only work for classification tasks (Jia

and Liang, 2017; Wang et al., 2019) and are not

designed for structured prediction tasks. However,

since many structured prediction tasks such as part-

of-speech (POS) tagging and dependency parsing

are essential building blocks of many AI systems,

it is important to study adversarial attack (generat-

ing adversarial examples) and defense (adversarial

training) of structured prediction models.

There are multiple challenges that have to be

addressed in building an efficient and effective

attacker for structured prediction models in NLP.

Zhang et al. (2019a) pointed out two major prob-
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lems encountered by attackers of NLP tasks. First,

since words are discrete, making small disturbances

to words in the gradient direction is difficult. Sec-

ondly, there is no guarantee that the generated ad-

versarial examples are fluent. In addition to these

two problems, there is a unique challenge faced

by attackers of structured prediction tasks. While

small perturbations to images or even texts typi-

cally do not change their classification labels, small

perturbations to sentences in structured prediction

may very likely change the true output structures.

In other words, many structured prediction tasks

are very sensitive to small perturbations in the in-

put sentence. Consequently, almost all the existing

attacking methods are not directly applicable to

structured prediction. To illustrate this challenge,

we take adversarial attack of dependency parsing

as an example (Figure 1). We use the fast gradient

sign method (FGSM) (Goodfellow et al., 2015) as

the attack method, which is a classic gradient-based

attacker that perturbs the input by minimizing the

likelihood of the true output. When applied to NLP

tasks (Miyato et al., 2017), FGSM perturbs the em-

beddings of the words in the input sentence and

then replaces individual words based on the new

embeddings. However, there is no guarantee that

the new sentence has the same parse tree as the

original sentence. Once the true output parse tree

becomes unknown, subsequent updates become im-

possible in FGSM, resulting in perturbation that

might be insufficiently adversarial. In Figure 1,

after just one step of perturbation, the sentence in-

deed has a different parse tree that is unknown to

the attacker.

To address the aforementioned problems, we pro-

pose to attack structured prediction models with

sequence-to-sequence (seq2seq) sentence genera-

tors. Before attack, the seq2seq generator is trained

by reinforcement learning based on a novelty de-

signed reward function that evaluates the output

of the victim structured prediction model against

an ensemble of multiple reference models of the

same structured prediction task. During attack,

the seq2seq generator is simply applied to input

sentences to produce adversarial examples. Our

framework has the following features.

• Our proposed attacker is a black-box attacker

that does not need to know the internal de-

tails of the target model (such as the model

structure, the hyper-parameters, the training

strategy, the training dataset, and gradients

over each layer). This ensures that our frame-

work (including attack and defense) can be

applied to almost any structured prediction

models.

• In contrast to previous black-box attackers,

our attacker is an online attacker. Once the

seq2seq sentence generator is trained, it can

generate adversarial examples directly from

original sentences during attacks without any

optimization procedure and also without the

need to access the victim model. This signifi-

cantly increases the efficiency of the attack.

• Most existing methods perform word or char-

acter level manipulations and hence cannot

change the sentence length. We use a seq2seq

generator to modify the whole sentence with-

out this limitation.

• Our generator can utilize some recent pre-

trained language models (e.g., BERT (Devlin

et al., 2019), GPT-2 (Radford et al., 2019)) to

improve quality of adversarial examples.

We evaluate our framework on the dependency

parsing task and the POS tagging task. Both

automatic and human evaluations show that our

method outperforms previous approaches in attack-

ing state-of-the-art structured prediction models

as well as boosting these models with adversarial

training for better accuracy and robustness. The

code and the trained model can be found at https:

//github.com/WinnieHAN/structure_adv.

2 Background

2.1 Structured Prediction

Structured prediction in NLP aims to predict out-

put variables that are mutually dependent or con-

strained given an input sentence. We represent the

training data with N samples as D = {x(j),y(j) :
j = 1, ..., N}, where x(j) is the j-th sentence and

y(j) is the corresponding structure. The set of all

x(j) is X . For each x with length n, it can be writ-

ten as a sequence of tokens {xi : i = 1, ..., n}. We

also define v to represent the concatenation of all

the word vectors in sentence x.

A structured prediction model predicts the output

y given an input sentence x by maximizing the log

conditional probability:

argmax
y∈T

logP (y|x; Θ)
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where T is the set of all possible outputs and Θ is

the set of parameters.

We train the model by minimizing the following

loss:

L(Θ) = −
1

N

∑

(x(j),y(j))∈D

logP (y(j)|x(j); Θ)

2.2 Word-level Adversarial Attack

Goodfellow et al. (2015) proposed the fast gradient

sign method (FGSM) in the image processing field,

which uses the direction of the gradient to update

image pixels and generate adversarial examples.

Then Miyato et al. (2017) applied this approach

to add perturbations in the word embedding space,

though their approach cannot generate adversar-

ial text examples. In order to solve the mapping

problem from a modified word vector to a word,

word level manipulation is used to replace origi-

nal words (Papernot et al., 2016). In addition to

the replacement manipulation, Samanta and Mehta

(2017) introduced two new modification strategies:

removal and addition.

2.3 Word-level Adversarial Attack for

Structured Prediction

The gradient of the negative log likelihood with

respect to the input in a structured prediction model

can be leveraged to find adversarial examples. The

original input sentence x is manipulated by adding

or subtracting a small adversarial perturbation r

to the vector v. Adding r in the direction of the

gradient means that the sentence is modified to

decrease the log likelihood so that the model is less

likely to predict the correct output. We use x̂ to

represent x with perturbation.

The following formula describes the adversarial

example:

x̂ = search(x, r) = search(v, r)

where we use v to represent the concatenation of

all the word vectors in sentence x. search is a

searching approach to find an adversarial exam-

ple x̂ according to perturbed vector v + r and r

is calculated by maximizing the loss function as

follows.

r = arg max
r,||r||≤ǫ

{− logP (y|x+ r; Θ)}

where ǫ is a hyper-parameter to control the scale of

the perturbation.

I   am    a  writer

I   write  a  story

Parser A

x̂3x̂2x̂1

x̂4x̂3x̂2x̂1

x1 x2 x3

Parser B ParserC

x̂4x̂3x̂2x̂1x̂4x̂3x̂2x̂1

Evaluation Criterion

Policy 
Grad

Sentence 
Generator

x4

I   write  a  

x̂4x̂3x̂2x̂1

Figure 2: Our framework illustrated on the dependency

parsing task. It consists of three parts: a seq2seq gen-

erator, an evaluation module (including the reference

Parser B, the reference Parser C and the evaluation cri-

teria), and the victim model A.

It is intractable to exactly solve the problem, so

an approximate approach is proposed to compute r

as follows:

r =
ǫg

||g||

g =sign(∇v logP (y|v; Θ))

To generate natural and legible adversarial sen-

tences, we search in the word embedding space

and replace the original word with a word that is

closest to the perturbed word vector. However,

as discussed in section 1, this approach can only

generate perturbed examples using one perturba-

tion step for structured prediction. Moreover, this

model cannot guarantee quality (e.g., fluency) of

the generating sentences.

3 Sentence-level Adversarial Attack and

Defense

We aim to mislead a structured prediction model by

generating adversarial examples x̂ from the orig-

inal examples x using a seq2seq generator. We

train the generator using reinforcement learning

following Williams (1992). The reward function

for reinforcement learning evaluates whether the

generated sentence could induce an incorrect out-

put from the victim model, and the evaluation is

facilitated by two reference models. In addition,

the reward function also evaluates the quality of the

generated sentence. Figure 2 illustrates the overall

architecture of our proposed model, which mainly

consists of three parts: a generator, an evaluation

module, and the victim model. We use dependency

parsing as our example structured prediction task

and name the victim parser as parser A and the

reference parsers as Parsers B and C.
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In contrast to the word-level attackers described

in section 2.3, our proposed method aims to do

sentence-level attacks that are capable of generat-

ing a sentence of a different length and structure

instead of merely making local word changes.

3.1 Evaluation Criterion for Structured

Outputs

Since the structured output is very sensitive to per-

turbation of the input, the parse of the original sen-

tence x cannot be treated as the ground truth of the

generated adversarial sentence x̂. Without know-

ing the new ground truth, we would not know if the

adversarial sentence can indeed mislead parser A

to produce an incorrect prediction. Thus we make

use of two reference parsers B and C to evaluate

the prediction of parser A and help guide the gener-

ation of truly adversarial examples. Intuitively, if B

and C produce the same parse tree, then it is more

likely to be correct and can be used as ground-truth

to evaluate parser A.

Given a generated sentence x̂, if the predicted

parse tree yA
x̂

from parser A is greatly different

from the predicted trees yB
x̂

and yC
x̂

from parsers

B and C, while yB
x̂

and yC
x̂

agree with each other,

then we think x̂ is a good adversarial example of

parser A. The criterion is defined as follows:

sp(x̂) = −f(yA
x̂ ,y

B
x̂ )− f(yA

x̂ ,y
C
x̂ ) + f(yB

x̂ ,y
C
x̂ )

(1)

where f(y,y∗) is a symmetric function that evalu-

ates the difference between two parse trees y and

y∗. A higher value of sp(x̂) means x̂ is more ad-

versarial.

The primary criterion for selecting parsers B

and C is their parsing accuracy. As we defined

in Equation 1, the consensus prediction of parsers

B and C is regarded as ground truth, no matter

whether the prediction is actually right or wrong.

Thus parsers B and C should have high accuracy

and also different inductive biases so that they are

unlikely to make the same mistake. In addition, B

and C should not be too similar to parser A, because

otherwise the first two terms in Equation 1 would

become hard to optimize.

3.2 Evaluation Criteria for Sentence Quality

We consider two aspects of the sentence quality as

follows:

• Fluency: Inspired by Holtzman et al. (2018);

Xu et al. (2018); Pang et al. (2020), we use

perplexity on GPT-2 (Radford et al., 2019),

a large Transformer language model trained

on massive texts, to evaluate the fluency of

the generated sentences. We use the negative

perplexity as a reward in the learning process.

sf (x̂) = −PPL(x̂)

• Meaning Preservation: Adversarial examples

that differ too much from the original sen-

tences are less effective in attacks because

humans can easily identify them. We use

BERTScore (Zhang et al., 2019b) as another

reward in learning to evaluate the similarity

between two sentences at the meaning level.

We choose to use BERTScore because it cor-

relates better with human judgments than tra-

ditional measures such as BLEU (Papineni

et al., 2002).

sm(x, x̂) = BERTScore(x, x̂)

By maximizing these criteria, we hope to make

the adversarial examples look more like human

generated sentences and not differ too much from

the original sentences in meaning.

3.3 Sentence Generator

We propose to use a seq2seq model (Wang et al.,

2016) as the adversarial sentence generator, which

has been widely used in machine translation, dia-

logue and many other areas. The seq2seq model

specifies P (x̂|x; Θ), the conditional probability of

generating an adversarial sentence x̂ given an in-

put sentence x. We train the model by reinforce-

ment learning guided by our aforementioned crite-

ria. The objective function is the expected reward

based on the sentences from the training corpus X ,

J(Θ) =
∑

x∈X

Ex̂∼P (x̂|x;Θ)s(x, x̂)

The reward s(x, x̂) is composed of three parts.

s(x, x̂) = αsp(x̂) + βsf (x̂) + γsm(x, x̂) (2)

where α, β, γ are tunable hyper-parameters that

control the balance between the three parts. We op-

timize the objective function with the REINFORCE

algorithm (Williams, 1992).

To further encourage meaning preservation be-

tween x and x̂, we also pretrain the seq2seq model
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as a denoising auto-encoder before reinforcement

learning. Specifically, during pretraining we add

noise to the hidden states of encoder and train the

decoder to recover the input sentence. We employ

the masking noise method that masks each word of

the input sentence by a fixed probability and trains

the denoising autoencoder to fill in these “blanks”

(Vincent et al., 2008).

3.4 Defense against Adversarial Attack

Following Goodfellow et al. (2015), we use adver-

sarial training to withstand attacks. More specif-

ically, we enhance the victim model by injecting

adversarial examples into the training data and re-

training the model with the mixed data.

4 Experiments on Dependency Parsing

We first perform experiments on dependency pars-

ing, a well-known structured prediction task.

4.1 Data

Our model does not need labeled data for train-

ing but we need a victim parser and two reference

parsers in our experiments. We learn these parsers

on an English dataset: Penn Treebank 3.0 (PTB,

Marcus et al. (1994)). We also use the same data

for training and evaluating our model.

4.2 Parser Selection

We choose the Deep Biaffine parser (Dozat and

Manning (2017)), one of the state-of-the-art graph-

based parsers, as the victim parser A. For the ref-

erence parsers, we choose two other well-known

dependency parsers:

- Parser B: StackPTR from Ma et al. (2018)

- Parser C: BiST from Kiperwasser and Gold-

berg (2016)

The three parsers are trained with PTB. All the

hyper-parameters of these parsers are the same as

reported in their papers.

4.3 Evaluation Metrics

Our goal is to generate fluent sentences that are mis-

predicted by the victim model. Thus, we evaluate

the adversarial examples produced by our model

from 2 aspects: generation fluency and attacking

efficiency (6 metrics).

Generation Fluency We use the perplexity on

GPT-2 to evaluate the fluency of the generated sen-

tences.

Attacking efficiency We evaluate the attacking

success rates at the token level and sentence level.

The token level attacking success rate is the per-

centage of words in the generated adversarial ex-

amples that are assigned the wrong head without

considering the labels of the dependence type. It is

also known as unlabeled attachment score (UAS).

Sentence-level attacking success rate is the per-

centage of mispredicted sentences in the generated

adversarial examples. Due the lack of golden parse

trees of generated sentences, here we leverage the

parses predicted by Parsers B and C as ground

truth. The token level and sentence level each has

three metrics: predictions of B as ground truth,

predictions of C as ground truth, and consensus

predictions of B and C as ground truth (discarding

the sentences on which they disagree).

Human evaluation We conduct human evalua-

tion of the fluency and attacking efficiency. All the

volunteers have a background of linguistic study

and are proficient in English. We further train the

volunteers with the annotated English PTB tree-

bank. From the adversarial examples generated

by our method, we randomly sample 50 examples.

During labeling, we ask two of them to label the

sentences and the third skilled volunteers to double-

check the evaluation results. For fluency, we ask

them to rate the fluency of a sentence by an integer

from 1 to 5. 5 indicates a sentence is fluent and

has no grammatical errors. 1 indicates a sentence

is full of grammatical errors and meaningless. For

attacking efficiency, we ask them to manually an-

notate erroneous dependency edges and calculate

the error rate in the same way as in automatic eval-

uation. The predictions of the Parsers B and C are

given for reference.

4.4 Experimental Setup

We take the word-level approach in section 2.3 as

our baseline, which uses a one-step update. Intu-

itively, this approach maintains the length of sen-

tences and perturbs sentences by word-level re-

placement.

For our seq2seq generator, we use an attention-

based three layers of BiLSTM with hidden vector

dimension 1024. First, we pretrain the seq2seq gen-

erator for 3 epochs with unlabeled sentences from

the PTB training set. The objective function for

pretraining is negative conditional log likelihood.

Then we train the seq2seq generator using rein-

forcement learning with hyper-parameter α = 1,
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Generation Fluency Token level Attacking Success Rate Sentence level Attacking Success Rate

(Perplexity ↓) Parser B Parser C Parsers B&C Parser B Parser C Parsers B&C

Origin 156.02 3.2 3.6 4.6 34.2 35.3 40.7

Baseline 217.02 3.8 4.2 6.5 55.6 57.5 71.7

Ours 174.16 13.9 19.2 24.1 87.4 86.5 89.0

Table 1: Experimental results on dependency parsing based on automatic evaluation. “Origin” shows the results of

original sentences in the PTB test set. Lower perplexity is better.

Generation Attacking Success Rate

Fluency ↑ Token Sentence

Baseline 3.21 10.8 64

Ours 3.84 18.3 72

Table 2: Experimental results on dependency parsing

based on human evaluation. Higher is better.

ROOT But investors say they ’re interested

ROOT But investors say they ’re interested

Prediction

Ground Truth

But fund managers say they ’re ready .
Source Sentence

Figure 3: Case study of an adversarial example for de-

pendency parsing task. The mispredicted dependencies

of victim parser A are highlighted by dotted lines.

β = 0.001, γ = 100. Adam (Kingma and Ba,

2014) is used to optimize the parameters with the

learning rate is 2e-5. The minibatch size during

reinforcement learning is 16. A detailed descrip-

tion of hyper-parameter settings can be found in

Appendix A.

4.5 Experimental Results

Table 1 shows the automatic evaluation results. The

attacking success rate improvement of our method

over the baseline reflects the effectiveness of our

reinforcement learning strategy. Particularly, our

method improves the token level and sentence level

attacking success rate 17.5% and 17.3% on Parsers

B&C, respectively. It can also be seen that our pro-

posed method maintains good fluency while mak-

ing successful attacks. Human evaluation shown

in Table 2 is consistent with automatic evaluation:

our proposed method is significantly better than

the baseline model at both generation fluency and

attacking success rate. For better comparison, we

ask volunteers to label the fluency score of the orig-

inal sentences in PTB and obtain 4.64. We show

an adversarial example in Figure 3.

UAS

W/O Adv Train 95.42

Adv Train

Baseline 95.54

BLLIP-BC 95.51

BLLIP-ABC 95.46

Ours 95.63

Table 3: Adversarial Training on different datasets for

dependency parsing. Adv Train: adversarial training.

95.52 95.518

95.6

95.46

95.48

95.5

95.52

95.54

95.56

95.58

95.6

95.62

BLLIP-BC BLLIP-ABC Ours

Figure 4: Average results of five time retrain using dif-

ferent datasets.

4.6 Adversarial Training

We then conduct experiments on adversarial train-

ing and summarize the results in Table 3. We add

2000 adversarial examples to the original training

data and retrain the Biaffine parser1. We use the

predicted parser Tree from Parsers B and C as the

ground truth for these adversarial examples. If

the parse trees from Parsers B and C are not the

same, we drop the sentence. In addition to W/O Adv

Train (result without adversarial training) and Base-

line (retraining with adversarial examples produced

by the word-level approach), we also experiment

with the following two baseline methods of collect-

ing 2000 additional training samples the BLLIP

1The candidate sentences are generated by the seq2seq
generator using sentences in the training dataset as input. Then
we drop the sentences that do not meet the criterion: reference
parsers B and C predict the same parse trees that are different
from the predictions of parser A (namely, the victim parser).
Finally, we select the first 2000 sentences from the remaining
2044 sentences as the adversarial examples.
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Generation Fluency Token level Attacking Success Rate Sentence level Attacking Success Rate

(Perplexity ↓) Tagger B Tagger C Tagger B&C Tagger B Tagger C Tagger B&C

Origin 156.02 1.9 2.1 3.2 30.6 35.5 45.7

Baseline 354.24 3.8 4.2 6.5 55.6 57.5 71.6

Ours 142.59 9.2 7.3 14.5 78.1 73.3 89.0

Table 4: Experimental results on POS tagging based on automatic evaluation. “Origin” shows the results of the

original sentences. Lower perplexity is better.

Generation Attacking Success Rate

Fluency ↑ Token Sentence

Baseline 3.98 1.8 16

Ours 3.88 8.1 52

Table 5: Experimental results on POS tagging based on

human evaluation. Higher means better.

dataset2:

- BLLIP-BC: Sampling sentences on which

Parsers B and C predict the same parse trees.

- BLLIP-ABC: Sampling sentences on which

Parsers B and C predict the same parse trees

that are different from the predictions of

Parser A.

We use the predicted parse trees from Parsers B

and C as the ground truth for these two kinds of

baselines. It can be seen that adversarial training,

with adversarial examples leads to the largest per-

formance gain over the “no adversarial training”

baseline.

Although Table 3 shows that fine-tuning the vic-

tim parser A on our adversarial samples achieves

better performance, the improvement is small. To

investigate whether the improvement is significant

or not, we retrain the parser A for five times with

different random seeds. We also rerun the BLLIP-

BC and BLLIP-ABC baselines (including the sam-

pling step) for five times with different random

seeds. The learning rate is 5e-4. After training for

50 epochs, the average results are shown in Fig-

ure 4. It shows that our method outperforms the

two baselines. We also perform Student’s t-test:

- BLLIP-BC and Ours: t-value is -2.77 and p-

value is 0.024.

- BLLIP-ABC and Ours: t-value is -3.39 and

p-value is 0.010.

2Brown Laboratory for Linguistic Information Processing
(BLLIP) 1987-89 WSJ Corpus Release 1. We choose the
BLLIP corpus because it is collected from the same news
article source as the WSJ corpus.

Both p-values are less than 0.05. That means the

advantage of our method is statistically significant.

We also perform human evaluation on the re-

trained parser. The token level attacking success

rate drops 1.3 points from 18.3 to 17.0, and the sen-

tence level attacking success rate reduces from 72

to 70. We perform significance tests on the attack-

ing success rate. The p-value is calculated by using

the one-tailed sign test with bootstrap resampling

on 50 samples following Chollampatt, Wang, and

Ng (2019). We compare the attacking success rate

with and without retraining. The p-values (5.42e-

20 at the token level and 3.39e-21 at the sentence

level) show that the improvement is significant.

5 Experiments on POS Tagging

5.1 Experimental Setup

In this section, we apply our method to the part-of-

speech tagging task using the tagger from Ma and

Hovy (2016) as the victim model. For the reference

taggers, we choose two state-of-the-art taggers:

Stanford POS tagger from Toutanova et al. (2003)

and Senna tagger from Collobert et al. (2011). All

the hyper-parameters of the three taggers are the

same as reported in their papers. We conduct the

experiments on the PTB dataset.

Similar to dependency parsing, the word level

approach in section 2.3 is the baseline. For the ad-

versarial example generator, we use the same struc-

ture and pretrain strategy as Section 4.4, except

that the dimension of hidden state is set to 512. We

train the sentence generator using reinforcement

learning with hyper-parameter α = 1, β = 0.001,

γ = 30. Adam(Kingma and Ba, 2014) is used to

optimize the parameters with learning rate 5e-4.

The minibatch size during reinforcement learning

is 64. A detailed description of hyper-parameter

settings can be found in Appendix B. We employ

the same set of evaluation metrics as in section 4.3.

5.2 Experimental Results

We perform automatic evaluation over all the sam-

ples generated from the test dataset. As shown in
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Prediction NNP NNS VBD VBG .

Ground Truth CC NNS VBD VBG .

Generated Sentence But stocks went falling .

Original Sentence Stocks kept falling .

Prediction NNP NN VBD .

Ground Truth DT NN VBD .

Generated Sentence The market went .

Original Sentence Market crumbled .

Figure 5: Case study of an adversarial example for POS

tagging task. The mispredicted POS tags of victim tag-

ger A are highlighted with underlines.

Table 4, attacking success rate and fluency of our

proposed method are both above those of the base-

line, which indicates the effectiveness of our pro-

posed method. Particularly, our method improves

the token level and sentence level attacking success

rate 8.0% and 17.3%, respectively.

Similar to the dependency parsing task, Table 5

shows the result of human evaluation of 50 samples.

According to human evaluation, the fluency of sen-

tences generated by the two methods is similar, but

the attacking success rate of our method is signifi-

cantly higher than the baseline. Two example are

shown in Figure 5.

We also conduct experiments on adversarial

training with 1000 additional samples produced

by our method. After retraining, the accuracy of

Tagger A improves 0.13 point from 97.55 to 97.68

on PTB the test set. Similar to dependency pars-

ing, we perform t-test to measure the statistical sig-

nificance of the advantage of our method in POS

tagging. The resulting p-value is 0.027.

6 Analysis

6.1 Selecting Reference Model

We mention in the Section 3.1 that the victim model

and the two reference model should differ from

each other as much as possible. In our previous ex-

periments in Section 4 , we use three different types

of parsers as the victim parser (Deep Biaffine) and

reference parsers (StackPtr and BiST). Here we in-

vestigate the impact of making them similar. First,

we make the two reference parsers similar to the

victim parser, by training two Deep Biaffine parsers

with different random seeds. We call this AllSame.

Second, we make the two reference parsers similar

to each other but different from the victim parser,

by training two StackPtr parsers with different ran-

dom seeds. We call this EvalSame.

Table 7 shows that AllSame tends to generate

fluent sentences but the sentences are less adver-

sarial. This can be explained by the fact that the

similarity between the parsers make the first term

of Equation 2 very small and the reward function

is dominated by the two sentence quality terms.

EvalSame can be seen to produce slightly higher

token level attacking success rate but significantly

lower generation fluency. Compared with AllSame

and EvalSame, our standard method of using two

different parsers as the reference models can reach

a better attacking success rate, while keeping the

sentences relatively fluent.

6.2 Applicability Analysis

We repeat our experiment of dependency parsing

following the setup of Table 1 except for the choice

of the victim parser and reference parsers. We use

StackPTR as the victim model while the Deep Bi-

affine parser and BiST as Parser B and Parser C.

Table 6 shows the automatic evaluation results. The

results show similar trends to those in Table 1, sug-

gesting that our approach is effective to different

choices of the victim parser and reference parsers.

7 Related Work

Attack Design on Un-structured Prediction

Model Following the success in the image pro-

cessing area (Goodfellow et al., 2015), the idea of

adding continuous perturbations to inputs has been

applied to tasks in NLP (Sato et al., 2018; Gong

et al., 2018). In order to solve the mapping prob-

lem from the modified word vector to the word,

Papernot et al. (2016) built a special dictionary to

select words to replace the original words. In ad-

dition to replacement manipulation, Samanta and

Mehta (2017) introduced three modification strate-

gies: removal and addition. Michel et al. (2019)

leveraged atomic character-level operation. Some

attack strategies to generate adversarial examples

have been proposed in the sentence level setting.

Zhao et al. (2018) searched adversarial examples in

the continuous vector space and then used genera-

tive adversarial networks (Goodfellow et al., 2014)

to map the fixed-length vectors to data instances.

However, these attackers are only designed for clas-

sification tasks or generation tasks and can not be

easily applied to structured prediction systems.

Attack Design on Structured Prediction Model

There is also some prior work on attacking struc-

tured prediction models. Cisse et al. (2017) pro-

posed to attack structured prediction models in the
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Generation Fluency Token level Attacking Success Rate Sentence level Attacking Success Rate

(Perplexity ↓) Parser B Parser C Parsers B&C Parser B Parser C Parsers B&C

Baseline 377.36 4.5 15.9 17.5 40.7 74.5 74.90

Ours 244.69 19.6 23.3 26.2 70.8 77.2 80.1

Table 6: Experimental results on dependency parsing based on automatic evaluation with StackPTR as the victim

model while the Deep Biaffine parser and BiST as Parser B and Parser C.

Generation Attacking Success Rate

Fluency ↑ Token Sentence

AllSame 4.19 11.4 64

EvalSame 3.54 13.6 62

Ours 3.84 18.3 72

Table 7: Results of human evaluation on different set-

tings of the reference parsers. Higher is better.

image processing field, such as those for pose es-

timation and semantic segmentation. In a sepa-

rate line of work, Zügner and Günnemann (2019)

proposed to attack graph neural network for node

classification.

8 Conclusion

Building an effective adversarial attacker for struc-

tured prediction models is challenging. The biggest

challenge is the sensitivity of the output to small

perturbations in the input in structured prediction.

In this paper, we propose a novel framework to

attack structured prediction models in NLP. Our

framework consists of a structured-output evalu-

ation criterion based on reference models and a

seq2seq sentence generator. We propose to uti-

lize reinforcement learning to train the sentence

generator based on the evaluation criterion. Our at-

tack experiments on dependency parsing and POS

tagging show that our proposed framework can

produce high-quality sentences that can effectively

attack current state-of-the-art models. Our defense

experiments show that adversarial training using

the adversarial samples generated by our model

can be used to improve the original model. We

believe that our framework is general and can be

applied to many other structured prediction tasks in

NLP, such as neural machine translation, semantic

parsing and so on.
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A Dependency Parsing Experiment

Details

During pretraining, the Deep Biaffine parser and

the StackPtr parser is trained by Pytorch 0.4.1, the

BiST parser is trained by Dynet.

Embedding sskip

Embedding dim 100

POS Embedding dim 25

Word Embedding dropout 0.25

BiLSTM size 125

BiLSTM depth 2

MLP size 100

Batch size 32

Window 3

Optimizer Adam

Learning rate 1e-1

Table 10: Hyper-parameters of pretraining the BiST

parser.

Embedding sskip

Embedding dim 100

Embedding dropout 0.33

BiLSTM size 512

BiLSTM depth 3

BiLSTM dropout 0.33

Arc MLP size 512

Arc MLP dropout 0.33

Label MLP size 128

Label MLP dropout 0.33

Batch size 32

Optimizer Adam

Learning rate 1e-3

Table 8: Hyper-parameters of pretraining the Deep Bi-

affine parser. Here sskip is Structured SkipGram (Ling

et al., 2015).

Embedding sskip

Embedding dim 100

Embedding dropout 0.33

BiLSTM size 512

BiLSTM depth 3

BiLSTM dropout 0.33

Arc MLP size 512

Arc MLP dropout 0.33

Label MLP size 128

Label MLP dropout 0.33

Batch size 32

Optimizer Adam

Learning rate 1e-3

Table 9: Hyper-parameters of pretraining the StackPtr

parser.
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Word Embedding sskip

Word Embedding dim 100

BiLSTM depth 3

BiLSTM dim 1024

Hidden state dropout 0.5

Optimizer Adam

Learning rate 1e-3
Epoch 3

Table 11: Hyper-parameters of pretraining our seq2seq

sentence generator for dependency parsing.

α 1

β 0.001

γ 100

UNK weight 500

Optimizer Adam

Learning rate 2e-5
Epoch 3

Table 12: Hyper-parameter of reinforcement training

seq2seq sentence generator. UNK weight is a reward

used to control the rate of UNK token. About 6 hours

per epoch.

Retraining the Deep Biaffine parser We re-

train the parser, all its hyper-parameter is same

as the Table 8 but learning rate is 5e-4.

B POS Tagging Experiment Details

the BiLSTM-CNN-CRF Tagger

Embedding sskip

Embedding dim 100

Embedding dropout 0.33

BiLSTM size 256

BiLSTM depth 1

Label MLP size 256

Label MLP dropout 0.5

Bigram True

Batch size 16

Optimizer Adam

Learning rate 1e-3

Table 13: Hyper-parameters during pretraining the

BiLSTM-CNN-CRF Tagger.

Reference Tagger:

- Stanford POS tagger:

http://nlp.stanford.edu/software/

stanford-postagger-2015-04-20.zip

- Senna tagger:

http://ronan.collobert.com/senna/

senna-v3.0.tgz

During pretraining the seq2seq sentence gener-

ator, all hyper-parameters are same with Table 11

but BiLSTM dim is 512.

α 1

β 0.001

γ 30

UNK weight 0

Optimizer Adam

Learning rate 5e-5
Epoch 3

Table 14: Hyper-parameter of reinforcement training

seq2seq sentence generator. About 22 hours per epoch.

Retraining the BiLSTM-CNN-CRF Tagger

We retrain the parser, all its hyper-parameter is

same as the Table 13 but learning rate is 1e-4.

C Hyper-Parameter Search

The criterion used to select all the hyper-parameters

is the performance on the development data. We

mainly tune the hyper-parameters of the text gener-

ator. For example, we choose the dimension of the

hidden layer from 20 values in the range of 32 to

2048.


