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Abstract

Conditional random fields (CRF) for label
decoding has become ubiquitous in sequence
labeling tasks. However, the local label
dependencies and inefficient Viterbi decoding
have always been a problem to be solved. In
this work, we introduce a novel two-stage
label decoding framework to model long-term
label dependencies, while being much more
computationally efficient. A base model first
predicts draft labels, and then a novel two-
stream self-attention model makes refinements
on these draft predictions based on long-
range label dependencies, which can achieve
parallel decoding for a faster prediction. In
addition, in order to mitigate the side effects
of incorrect draft labels, Bayesian neural net-
works are used to indicate the labels with a
high probability of being wrong, which can
greatly assist in preventing error propagation.
The experimental results on three sequence
labeling benchmarks demonstrated that the
proposed method not only outperformed the
CRF-based methods but also greatly acceler-
ated the inference process.

1 Introduction

Linguistic sequence labeling is one of the funda-
mental tasks in natural language processing. It has
the goal of predicting a linguistic label for each
word, including part-of-speech (POS) tagging, text
chunking, and named entity recognition (NER).
Benefiting from representation learning, neural
network-based approaches can achieve state-of-
the-art performance without massive handcrafted
feature engineering (Ma and Hovy, 2016; Lample
et al., 2016; Strubell et al., 2017; Peters et al., 2018;
Devlin et al., 2019).

Although the use of representation learning to
obtain better text representation is very successful,
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Figure 1: Schematic of label refinement framework
(Cui and Zhang, 2019). The goal is refining the label
of “Arab” using contextual labels and words, while the
refinement of other correct labels may be negatively
impacted by incorrect draft labels.

creating better models for label dependencies
has always been the focus of sequence labeling
tasks (Collobert et al., 2011; Ye and Ling, 2018;
Zhang et al., 2018). Among them, the CRF layer
integrated with neural encoders to capture label
transition patterns (Zhou and Xu, 2015; Ma and
Hovy, 2016) has become ubiquitous in sequence
labeling tasks. However, CRF only captures the
neighboring label dependencies and must rely on
inefficient Viterbi decoding. Many of the recent
methods try to introduce label embeddings to
manage longer ranges of dependencies, such as
two-stage label refinement (Krishnan and Manning,
2006; Cui and Zhang, 2019) and seq2seq (Vaswani
et al., 2016; Zhang et al., 2018) frameworks. In
particular, Cui and Zhang (2019) introduced a
hierarchically-refined representation of marginal
label distributions, which predicts a sequence of
draft labels in advance and then uses the word-label
interactions to refine them.

Although these methods can model longer
label dependencies, they are vulnerable to error
propagation: if a label is mistakenly predicted
during inference, the error will be propagated and
the other labels conditioned on this one will be
impacted (Bengio et al., 2015). As shown in Figure
1, the label attention network (LAN) (Cui and
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Draft Uncertainty Refinement #Tokens
4 0.018 4 Ù 8 39
8 0.524 8 Ù 4 54

Table 1: Results of LAN with uncertainty estimation
evaluated on CoNLL2003 test dataset. 4 refers to the
correct prediction, and 8 refers to the wrong prediction.
We use Bayesian neural networks (Kendall and Gal,
2017) to estimate the uncertainty. We can see that
the uncertainty value of incorrect prediction is 29
times larger than that of correct predictions, which can
effectively indicate the incorrect predictions.

Zhang, 2019) would negatively impact the correct
predictions in the refinement stage. There are 39
correct tokens that have been incorrectly modified
(Table 1). Hence, the model should selectively
correct the labels with high probabilities of being
incorrect, not all of them. Fortunately, we find that
uncertainty values estimated by Bayesian neural
networks (Kendall and Gal, 2017) can effectively
indicate the labels that have a high probability of
being incorrect. As shown in Table 11, the average
uncertainty value of incorrect prediction is 29 times
larger than that of correct predictions for the draft
labels. Hence, we can easily set an uncertainty
threshold to only refine the potentially incorrect
labels and prevent side effects on the correct labels.

In this work, we propose a novel two-stage
Uncertainty-Aware label refinement Network
(UANet). At the first stage, the Bayesian neural
networks take a sentence as input and yield all
of the draft labels together with corresponding
uncertainties. At the second stage, a two-stream
self-attention model performs attention over
label embeddings to explicitly model the label
dependencies, as well as context vectors to model
the context representations. All of these features
are fused to refine the potentially incorrect draft
labels. The above label refinement operations can
be processed in parallel, which can avoid the use of
Viterbi decoding of the CRF for a faster prediction.
Experimental results on three sequence labeling
benchmarks demonstrated that the proposed
method not only outperformed the CRF-based
methods but also significantly accelerated the
inference process.

The main contributions of this paper can be
summarized as follows: 1) we propose the
use of Bayesian neural networks to estimate

1We slightly modified the code using Bayesian neural
networks.

the uncertainty of predictions and indicate the
potentially incorrect labels that should be refined;
2) we propose a novel two-stream self-attention
refining framework to better model different ranges
of label dependencies and word-label interactions;
3) the proposed parallel decoding process can
greatly speed up the inference process; and 4)
the experimental results across three sequence
labeling datasets indicate that the proposed method
outperforms the other label decoding methods.

2 Related Work and Background

2.1 Sequence Labeling

Traditional sequence labeling models use statisti-
cal approaches such as Hidden Markov Models
(HMM) and Conditional Random Fields (CRF)
(Passos et al., 2014; Cuong et al., 2014; Luo et al.,
2015) with handcrafted features and task-specific
resources. With advances in deep learning, neural
models could achieve competitive performances
without massive handcrafted feature engineering
(Chiu and Nichols, 2016; Santos and Zadrozny,
2014). In recent years, modeling label dependen-
cies has been the other focus of sequence labeling
tasks, such as using a CRF layer integrated with
neural encoders to capture label transition patterns
(Zhou and Xu, 2015; Ma and Hovy, 2016), and
introducing label embeddings to manage longer
ranges of dependencies (Vaswani et al., 2016;
Zhang et al., 2018; Cui and Zhang, 2019). Our
work is an extension of label embedding methods,
which applies label dependencies and word-label
interactions to only refine the labels with high
probabilities of being incorrect. The probability
of making a mistake is estimated using Bayesian
neural networks, which will be described in the
next subsection.

2.2 Bayesian Neural Networks

The predictive probabilities obtained by the soft-
max output are often erroneously interpreted as
model confidence. However, a model can be
uncertain in its predictions even with a high
softmax output (Gal and Ghahramani, 2016a). Gal
and Ghahramani (2016a) gives results showing that
simply using predictive probabilities to estimate
the uncertainty results in extrapolations with
unjustified high confidence for points far from
the training data. They verified that modeling a
distribution over the parameters through Bayesian
NNs can effectively reflect the uncertainty, and



2318

Bernoulli Dropout is exactly one example of
a regularization technique corresponding to an
approximate variational distribution. Some typ-
ical examples of using Bernoulli distribution to
estimate uncertainty are Bayesian CNN (Gal and
Ghahramani, 2015) and variational RNN (Gal and
Ghahramani, 2016b).

Given the dataset D with training inputs X =
{x1, . . . ,xn} and their corresponding outputs Y =
{y1, . . . ,yn}, Bayesian inference looks for the
posterior distribution of the parameters given the
dataset p(W|D). This makes it possible to predict
an output for a new input point x∗ by marginalizing
over all of the possible parameters, as follows:

p(y∗|x∗,D) =

∫
p(y∗|W,x∗)p(W|D)dW.

(1)
Bayesian inference is intractable for many

models because of the complex nonlinear structures
and high dimension of the model parameters.
Recent advances in variational inference introduced
new techniques into the field. Among these, Monte
Carlo Dropout (Gal and Ghahramani, 2016a)
requires minimum modification to the original
model. It is possible to use the variational inference
approach to find an approximation q∗θ(W) to
the true posterior p(W|D) parameterized by a
different set of weights θ, where the Kullback-
Leibler (KL) divergence of the two distributions is
minimized. The integral can be approximated as
follows:

p(y∗|x∗,D) ≈
T∑
j=1

p(y∗|Wj ,x
∗)q∗θ(Wj). (2)

In contrast to non-Bayesian networks, at test time,
Dropouts are also activated. As a result, model
uncertainty can be approximately evaluated by
summarizing the variance of the model outputs
from multiple forward passes.

3 Uncertainty-Aware Label Refinement

In this work, we propose a novel sequence labeling
framework, which incorporates Bayesian neural
networks to estimate the epistemic uncertainty of
the draft labels. The uncertain labels that have a
high probability of being wrong can be refined by
a two-stream self-attention model using long-term
label dependencies and word-label interactions.
The proposed model is shown in Figure 2.

3.1 Variational LSTM for Uncertainty
Estimation

Long short-term memory (LSTM) stands at the
forefront of many recent developments in sequence
labeling tasks. To facilitate comparison with
LSTM-based models, variational LSTMs (Gal
and Ghahramani, 2016b) as special Bayesian
neural networks are used to encode sentences
and determine the labels with a high probability
of being wrong. Obviously, the uncertainty
estimation methods can also be easily applied to
other sequence labeling models, like the CNN and
Transformer.

Word Representation Following Santos and
Zadrozny (2014) and Lample et al. (2016), we
use character information to enhance the word
representation. Given a word sequence S =
{w1, w2, . . . , wn}, the product of the one-hot
encoded vector with an embedding matrix then
gives a word embedding: wi = ew(wi), where ew

denotes a word embedding lookup table. Each
word is made up of a sequence of characters
c1, c2, . . . , cl. We adopt CNNs for character
encoding and xci denotes the output of character-
level encoding. Then a word is represented
by concatenating its word embedding and its
character-level encoding: xi = [wi;x

c
i ]. All

the word representations make up an embedding
matrix E ∈ RV×D, where D is the embedding
dimensionality of x and V is the number of words
in the vocabulary.

Variational LSTM A common practice of
Dropout technique on LSTM is that the technique
should be used with the inputs and outputs of
the LSTM alone. In contrast, the variational
LSTM additionally applies Dropout on recurrent
connections by repeating the same mask at each
time step. Hence, the variational LSTM can model
the uncertainty more accurately.

As shown in Figure 2, we use the same Dropout
vectors zx and zh on four gates: “input”, “forget”,
“output”, and “input modulation” as follows:

gi
ii
fi
oi

 =



Wg

Wi

Wf

Wo

 • [ x′i � zx
hi−1 � zh

]
+


bg

bi

bf

bo




ci = φ(gi)� σ(ii) + ci−1 � σ(fi)

hi = σ(oi)� φ (ci) ,
(3)
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Figure 2: Graphical illustration of architecture and inference process for the proposed UANet. The variational
LSTM outputs draft labels and model uncertainties simultaneously. The refinement only works on draft labels
with threshold greater than 0.35.

where φ denotes the tanh function, and σ is
the sigmoid function. � and • represent the
Hadamard product and matrix product, respectively.
We assume that t is one of {g, i, f, o}. Then,
θ = {E,Wt} and the Dropout rate r are the
parameters of the variational LSTM.

Draft Labels and Uncertainty Estimation As-
suming that we have completed the training and
obtained the optimized approximated posterior
q∗θ(W) (the optimizing method is shown in § 3.3),
at inference time, we can predict an output for
a new input point by performing Monte Carlo
integration in Eq.2 as follows:

pi(y = c|S,D) ≈ 1

M

M∑
j=1

Softmax(hi|Wj) (4)

with M sampled masked model weights Wj ∼
q∗θ(W), where q∗θ(W) is the Dropout distribution.
In order to make the model with multiple sampling
the same speed as the standard LSTM, we repeat
the same input M times to form a batch and
run in parallel on the GPU. Hence, M samples
can be done concurrently in the forward passes,
resulting in constant running time identical to that
of standard Dropout (Gal and Ghahramani, 2016a),
which is verified in Table 6.

Similar to classic sequence labeling models, the
model applies y∗i = argmax(pi) to obtain the
draft label. Then the uncertainty of this probability
vector pi can be summarized using the entropy of
the probability vector:

ui = H(pi) = −
C∑
c=1

pc log pc. (5)

In this way, we can obtain the draft labels Y ∗ =
{y∗1, y∗2, . . . , y∗n} coupled with the corresponding
epistemic uncertainties U = {u1, u2, . . . , un} for
each input sentence. We find when the epistemic
uncertainty ui is larger than some threshold value
Γ, then the draft label y∗i has a high probability of
being wrong. Hence, we utilize a novel two-stream
self-attention model to refine those uncertain labels
using long-term label dependencies and word-label
interactions.

3.2 Two-Stream Self-Attention for Label
Refinement

Given the draft labels and corresponding epistemic
uncertainties, we seek the help of label depen-
dencies and word-label interactions to refine the
uncertain labels. In order to refine the draft labels
in parallel, we use the Transformer (Vaswani et al.,
2017) incorporating relative position encoding (Dai
et al., 2019) to model the words and draft labels.

In the standard Transformer, the attention score
incorporating absolute position encoding between
query qi and key vector kj can be decomposed as

Aabs
i,j = E>xiW

>
q WkExj + E>xiW

>
q WkUj

+ U>i W
>
q WkExj + U>i W

>
q WkUj ,

(6)

where U ∈ RLmax×d provides a set of positional
encodings. The ith row Ui corresponds to the
ith absolute position and Lmax prescribes the
maximum possible length to be modeled.

The relative position between labels is very
important for modeling the label dependencies.
Inspired by Dai et al. (2019), we modify the
Eq.6 using the relative position encoding to model
words and corresponding labels simultaneously,
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but offer a different derivation, arriving at a new
form of two-stream relative positional encodings.
We not only provide a word-to-word interactions
but also provide a word-to-label interactions
correspondence to its counterpart. The relative
position encodings are reparameterized as follows:

Ax2x
i,j = E>xiW

>
qxWkxExj + E>xiW

>
qxWkRRi−j

+ u>xWkxExj + v>xWkRRi−j

Ax2l
i,m = E>xiW

>
qlWklEy∗m + E>xiW

>
qlWkRRi−m

+ u>l WklEy∗m + v>l WkRRi−m,
(7)

where Ax2x
i,j and Ax2l

i,m denotes the attention from
the ith word (xi) to the jth word (xj) and the
ith word (xi) to the mth label (y∗m), respectively.
Ri−j is the encoding of relative distance between
position i and j, and R is the sinusoid matrix like
Dai et al. (2019). ϕ = {W, u, and v} are learnable
parameters.

Equipping the transformer with our proposed
relative positional encoding, we finally arrive at
the two-stream self-attention architecture. We
summarize the computational procedure for one
layer with a single attention head here:

Vx = ExWx,ax = Softmax(Ax2x)Vx

Vl = Ey∗Wl,al = Softmax(Ax2l)Vl

ox = LayerNorm(Linear(ax) + Ex)

ol = LayerNorm(Linear(al) + Ey∗)

Hx = FeedForward(ox)

Hl = FeedForward(ol).

(8)

3.3 Training and Decoding
There are two networks to be optimized: one is
variational LSTM for draft labels and uncertainty
estimation, the other is two-stream self-attention
model for label refinement. Our ultimate training
goal is to minimize the total loss function on the
two models: Ltotal = L1(θ, r) + L2(ϕ).

The variational LSTM performs approximate
variational inference. We use a simple Bernoulli
distribution (Dropout) q∗θ(W) in a tractable family
to minimize the KL divergence to the true model
posterior p(W|D). The minimization objective is
given by (Jordan et al., 1999):

L1(θ, r) = − 1

N

N∑
i=1

log p(yi|Wj)+
1− r
2N

‖ θ ‖2,

(9)

where N is the number of data points, and r is the
Dropout probability to sample Wj ∼ q∗θ(W).

For the two-stream self-attention model, we
use the concatenation of Hx and Hl for the final
prediction ŷi = f(Hx,Hl|Ex,Ey∗m). In particular,
we can optimize the model using cross entropy loss
as:

L2(ϕ) = −
N∑
i=1

yi log ŷi, (10)

where yi is the one-hot vector of the label corre-
sponding to wi. When training is complete, we can
obtain the draft labels Y ∗ = {y∗1, y∗2, . . . , y∗n} and
corresponding uncertainties U = {u1, u2, . . . , un}
from variational LSTM, and refined labels Ŷ =
{ŷ1, ŷ2, . . . , ŷn} from two-stream self-attention
model. To avoid the correct labels being incorrectly
modified, we set an uncertainty threshold Γ to
distinguish which labels should be used, i.e., we
use refined labels when ui > Γ and vice versa (as
an example, given u1 > Γ, u2 ≤ Γ, and un > Γ,
decoding labels will become {ŷ1, y∗2, . . . , ŷn}).

4 Experimental Setup

In this section, we describe the datasets across
different sequence labeling tasks, including two
English NER datasets and one POS tagging dataset.
We also detail the baseline models for comparison.
Finally, we clarify the hyperparameters configura-
tion of our uncertainty-aware refinement network.

4.1 Datasets
We conduct experiments on three sequence labeling
datasets. The statistics are listed in Table 2.
CoNLL2003. The shared task of CoNLL2003
dataset (Tjong Kim Sang and De Meulder, 2003)
for named entity recognition is collected from
Reuters Corpus. The dataset divide name entities
into four different types: persons, locations,
organizations, and miscellaneous entities. We use
the BIOES tag scheme instead of standard BIO2,
which is the same as Ma and Hovy (2016).
OntoNotes 5.0. English NER dataset OntoNotes
5.0 (Weischedel et al., 2013) is a large corpus con-
sists of various genres, such as newswire, broadcast,
and telephone speech. Named entities are labeled
in eleven types and values are specifically divided
into seven types, like DATE, TIME, ORDINAL.
WSJ. Wall Street Journal portion of Penn Treebank
(Marcus et al., 1993), which contains 45 types
of part-of-speech tags. We adopts standard splits
following previous works (Collins, 2002; Manning,
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Dataset #Train #Dev #Test class

CoNLL2003 204,567 51,578 46,666 17
OntoNotes 1,088,503 147,724 152,728 73
WSJ 912,344 131,768 129,654 45

Table 2: Statistics of CoNLL2003, OntoNotes and WSJ
datasets, where # represents the number of tokens in
datasets. The class number of NER datasets is counted
under BIOES tag scheme.

2011), selecting section 0-18 for training, section
19-21 for validation and section 22-24 for test.

4.2 Compared Methods

In this work, we mainly focus on improving
decoding efficiency and enhancing label dependen-
cies. Thus, we make comparisons with the classic
methods that have different decoding layers, such
as Softmax, CRF, and LAN frameworks. We also
compare some recent competitive methods, such as
Transformer, IntNet (Xin et al., 2018), and BERT
(Devlin et al., 2019).

BiLSTM-Softmax. This baseline uses bidirec-
tional LSTM to reprensent a sequence. The
BiLSTM concatenates the forward hidden state−→
h i and backward hidden state

←−
h i to form an

integral representation hi = [
−→
h i;
←−
h i]. Finally,

sentence representation H = {hi, · · · ,hn} is fed
to softmax layer for predicting.

BiLSTM-CRF. A CRF layer is used on top of
the hidden vectors H (Ma and Hovy, 2016). The
CRF can model bigram interactions between two
successive labels (Lample et al., 2016) instead of
making independent labeling decisions for each
output. In the decoding time, the Viterbi algorithm
is used to find the highest scored label sequence
over an input word sequence.

BiLSTM-Seq2seq. To model longer label depen-
dencies, Zhang et al. (2018) predicts a sequence of
labels as a sequence to sequence problem.

BiLSTM-LAN. The label attention network
(LAN) (Cui and Zhang, 2019) introduces label
embedding, and uses consecutive attention layers
on the label embeddings to refine the draft labels.
It achieves the state-of-the-art results on several
sequence labeling tasks.

Rel-Transformer. This baseline model adopts
self-attention mechanism with relative position
representations (Vaswani et al., 2017; Dai et al.,
2019).

Models CoNLL2003 OntoNotes WSJ
Chiu and Nichols (2016) 90.91 86.28 -
Strubell et al. (2017) 90.54 86.84 -
Liu et al. (2018) 91.24 - 97.53
Chen et al. (2019) 91.44 87.67 -
BiLSTM-CRF (Ma and Hovy, 2016) 91.21 86.99 97.51
BiLSTM-Softmax (Yang et al., 2018) 90.77 83.76 97.51
BiLSTM-Seq2seq (Zhang et al., 2018) 91.22 - 97.59
Rel-Transformer (Dai et al., 2019) 90.70 87.45 97.49
BiLSTM-LAN (Cui and Zhang, 2019) 90.77∗ 88.16 97.58
BiLSTM-UANet (M = 8) 91.60 88.39 97.62

Table 3: Main results on three sequence labeling
datasets. ∗ indicates the results by running Cui and
Zhang (2019)’s released code5.

4.3 Hyper-parameter Settings

Following (Ma and Hovy, 2016), we use the
same 100-dimensional GloVe embeddings2 as
initialization. We use 1-layer variational LSTM
with a hidden size of 400 to create draft labels.
The vanilla dropout after the embedding layer
and the variational dropout is set to 0.5 and
0.25, respectively. We use 2 layers of multi-
head transformer for WSJ and CoNLL2003 and
3 for OntoNotes dataset to refine the label. The
number of heads is chosen from {5, 7, 9}, and the
dimension of each head is chosen from {80, 120,
160} via grid search. We use SGD as the optimizer
for variational LSTM and Adam (Kingma and Ba,
2014) for transformer. Learning rates are set to
0.015 for SGD on CoNLL2003 and Ontonotes
datasets and 0.2 on WSJ dataset. The learning rates
for Adam are set to 0.0001 for all datasets. F1 score
and accuracy are used for NER and POS tagging,
respectively. All experiments are implemented in
NCRF++ (Yang and Zhang, 2018) and conducted
using a GeForce GTX 1080Ti with 11GB memory.
More details are shown in our codes3.

5 Results and Analysis

In this section, we present the experimental results
of the proposed and baseline models. We show
that the proposed method not only achieves better
performance but also has a significant speed
advantage. Since our contribution is mainly
focused on the label decoding layer, the proposed
model can also be combined with the latest pre-
trained model to further improve performance.

2http://nlp.stanford.edu/projects/glove/
3https://github.com/jiacheng-ye/UANet
4https://github.com/Nealcly/BiLSTM-LAN
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Models CoNLL2003 OntoNotes WSJ
BiLSTM-UANet 91.60 88.39 97.62
- Label information 91.23 87.84 97.57
- Variational LSTM

Rel-Transformer-Softmax 90.70 87.45 97.49
Rel-Transformer-CRF 91.22 87.77 97.56

- Two-stream self-attention
Variational LSTM-Softmax 90.83 87.11 97.46
Variational LSTM-CRF 91.20 87.63 97.55

Table 4: Ablation study of UANet.

Models F1

IntNet-BiLSTM-Softmax (Xin et al., 2018) 91.43
IntNet-BiLSTM-CRF 91.64
IntNet-UANet 91.80
BERT-Softmax (Devlin et al., 2019) 91.62
BERT-CRF 91.71
BERT-UANet 92.02

Table 5: Results on CoNLL2003 test set. We
implement BERT for NER task without document-
level information. Original result of BERT in (Devlin
et al., 2019) was not achieved with the current version
of the library. See a discussion in (Stanislawek et al.,
2019) and the reported results at (Zhang et al., 2019).

5.1 Main Results

Table 3 reports model performances on
CoNLL2003, OntoNotes, and WSJ dataset,
which shows that the proposed method not only
can achieve state-of-the-art results on NER task
but also is effective on other sequence labeling
tasks, like POS tagging. The previous methods
leverage rich handcrafted features (Huang et al.,
2015; Chiu and Nichols, 2016), CRF decoding
(Strubell et al., 2017), and longer range label
dependencies (Zhang et al., 2018; Cui and Zhang,
2019). Compared with these methods, our UANet
model gives better results. Benefitting from the
strong capability of modeling long-term label
dependencies, the UANet outperforms models
with the CRF inference layer by a large margin.
Moreover, different from the seq2seq and LAN
models that also leverage label dependencies, our
UANet model integrates model uncertainty into the
refinement stage to avoid side effects on correct
draft labels. As a result, it outperforms LAN and
seq2seq models on all of the three datasets.

5.2 Ablation Study

To study the contribution of each component
in BiLSTM-UANet, we conducted ablation ex-
periments on the three datasets and display the
results in Table 4. The results show that the
model’s performance is degraded if the draft

CoNLL2003 OntoNotes WSJ
Average Sentence Length 13 18 24
BiLSTM-Softmax 3,443 2,910 3,767
BiLSTM-CRF 1,433 950 801
BiLSTM-LAN 949 773 943
BiLSTM-Seq2seq 1,084 842 751
BiLSTM-UANet (M = 1) 1,630 1,262 1,192
BiLSTM-UANet (M = 8) 1,474 1,129 1,044
BERT-CRF 254 231 189
BERT-UANet (M = 8) 335 266 214

Table 6: Comparison of inference speed. M represents
for the number of sampling. We show how many
sentences the model can process per second.

UANet 
CRF

2

4

6

ms

Sentence Length
10 15 20 25 30

UANet 
CRF

88

90

92

94
F1

Sentence Length
10 15 20 25 30

Figure 3: Speed and F1 against sentence length.

label information is removed, indicating that label
dependencies are useful in the refinement. We
also find that both the variational LSTM and two-
stream self-attention play an important role in
label refinement. Even though we replace any
component with the CRF layer, the performance
will be seriously hurt.

We also give our model more complex character
representations (IntNet) or use the pretrained model
(BERT) to replace the Glove embeddings. We fine-
tune the BERT for each task. The results are shown
in Table 5. We find that the contribution of our
model and more complex word representations may
be orthogonal, i.e., whether or not the UANet uses
the IntNet and BERT, our methods have similar
improvements, because of better modeling label
dependencies.

5.3 Efficient Advantage

Table 6 shows a comparison of inference speeds.
BiLSTM-UANet processes 1,630, 1,262, and
1,192 sentences per second on the CoNLL2003,
OntoNotes, and WSJ development data, respec-
tively, outperforming BiLSTM-CRF by 13.7%,
32.8% and 48.8%, respectively. We can see that
for the dataset with a longer average length, the
speed of inference will be more advantageous.
Because the model calculates uncertainties through
parallel sampling the same input multiple times, the
inference time of the BiLSTM-UANet (M = 8)
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Text ... striker Viorel Ion of Otelul Galati and defender Liviu Ciobotariu of National Bucharest ... ... University of Yangon ...
BiLSTM-CRF ... O B-PER E-PER O B-PER E-PER O O B-PER E-PER O B-LOC E-LOC ... ... O O S-LOC ...
Draft Label ... O B-PER E-PER O B-PER E-PER O O B-PER E-PER O B-ORG E-ORG ... ... B-ORG I-ORG E-LOC ...
Refinement ... O B-PER E-PER O B-ORG E-ORG O O B-PER E-PER O B-ORG E-ORG ... ... B-LOC I-ORG E-ORG ...
Uncertainty ... 0.001 0.005 0.047 0.004 0.532 0.605 0.000 0.000 0.001 0.014 0.001 0.818 0.927 ... ... 0.302 0.816 0.800 ...
Final Prediction ... O B-PER E-PER O B-ORG E-ORG O O B-PER E-PER O B-ORG E-ORG ... ... B-ORG I-ORG E-ORG ...

Table 7: NER cases analysis. Contents with bold red and italic blue styles represent incorrect and correct entities,
respectively. Draft labels with uncertainty greater than 0.35 will be refined.

only slightly increases.
To further investigate the influence of the

different sentence lengths, we analyze the inference
speed of the UANet and CRF on the CoNLL2003
development set, which is split into five parts
according to sentence length. We ruled out the
influence of the text encoder and only counted
the time of label decoding. The left subfigure
in Figure 3 shows the decoding speed on the
different sentence lengths. The results reveal that
as the sentence length increases, the speed of the
UANet is relatively stable, while the speed of the
CRF decreases substantially. Due to the UANet’s
parallelism, when processing the sentence longer
than 30, the UANet is nearly 3 times faster than the
CRF. In addition, we exhibit the F1 score of the
sentences with different lengths in right subfigure.
It is worth noting that the UANet outperforms the
CRF by a large margin when the length of the
sentence is greater than 15, verifying the UANet’s
superiority in long-term label dependencies.
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Figure 4: F1 variation under different uncertainty
thresholds and numbers of sampling in variational
LSTM, respectively. The results are evaluated on the
development sets. ∆F1 represents the F1 scores at
different steps minus the initial results.

5.4 Discussion

Uncertainty Threshold. In order to investigate
the influence of uncertainty threshold Γ, we
evaluate the performance with different uncertainty
thresholds on three datasets, as shown in Figure
4. Γ = 0 represents that the model uses all of
the refined labels as final predictions. As the
threshold gets larger, the performance of UANet

can improve by reducing the negative effects on
correct draft labels. However, when Γ is too
large, the model mainly uses draft labels as final
predictions, resulting in performance degradation,
which verifies our motivation that a reasonable
uncertainty threshold can avoid side effects on
correct draft labels.

Number of Sampling. We also investigate
the influence of the number of sampling in the
variational LSTM as shown in Figure 4. The
results meet our expectation that a larger number
of sampling can lead to better performance because
a larger number of sampling can make the model
better approximate the posterior p(W|D).

Case Study. Table 7 shows two cases from
CoNLL2003 NER dataset. The first case reflects
the necessity of modeling higher-order dependen-
cies in the NER task. UANet can learn the label
consistency of two phrases near the word and.
Moreover, seq2seq decoding model (Zhang et al.,
2018) refines the labels in a left-to-right way
and can’t refine the previous labels in this case.
The second case shows the effectiveness of the
uncertainty threshold in mitigating the side effect
of incorrect refinement. In this case, the refinement
model is affected by the incorrect label of Yangon
(E-LOC) when predicting the word University.
Since the uncertainty value of University is
lower than the threshold, our model can get the
correct results.

6 Conclusions

In this work, we introduce a novel sequence
labeling framework that incorporates Bayesian
neural networks to estimate model uncertainty.
We find that the model uncertainty can effectively
indicate the labels with a high probability of being
wrong. The proposed method can selectively refine
the uncertain labels to avoid the side effects of
the refinement on correct labels. In addition, the
proposed model can capture different ranges of
label dependencies and word-label interactions
in parallel, which can avoid the use of Viterbi
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decoding of the CRF for a faster prediction.
Experimental results across three sequence labeling
datasets demonstrated that the proposed method
significantly outperforms the previous methods.
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