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Abstract

The recent emergence of multilingual pre-
training language model (mPLM) has enabled
breakthroughs on various downstream cross-
lingual transfer (CLT) tasks. However, mPLM-
based methods usually involve two problems:
(1) simply fine-tuning may not adapt general-
purpose multilingual representations to be
task-aware on low-resource languages; (2) ig-
nore how cross-lingual adaptation happens for
downstream tasks. To address the issues, we
propose a meta graph learning (MGL) method.
Unlike prior works that transfer from scratch,
MGL can learn to cross-lingual transfer by ex-
tracting meta-knowledge from historical CLT
experiences (tasks), making mPLM insensi-
tive to low-resource languages. Besides, for
each CLT task, MGL formulates its transfer
process as information propagation over a dy-
namic graph, where the geometric structure
can automatically capture intrinsic language
relationships to guide cross-lingual transfer ex-
plicitly. Empirically, extensive experiments
on both public and real-world datasets demon-
strate the effectiveness of the MGL method.

1 Introduction

The diversity of human languages is a critical chal-
lenge for natural language processing. To alleviate
the cost in annotating data for each task in each
language, cross-lingual transfer (CLT) (Yarowsky
et al., 2001), aiming to leverage knowledge from
source languages that are sufficiently labeled to im-
prove the learning in a target language with little
supervision, has become a promising direction.

To bridge the gaps between languages, numer-
ous CLT algorithms have emerged, ranging from
early translation-based methods (Prettenhofer and
Stein, 2010), cross-lingual word representation
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Figure 1: The meta learning process of the MGL.

learning (Conneau et al., 2018a), to powerful
mPLM (Devlin et al., 2019; Lample and Conneau,
2019), from which the versatile multilingual rep-
resentations derived suffice it to become a main-
stream approach for various downstream CLT tasks.
However, existing mPLM-based methods focus on
designing costly model pre-training while ignor-
ing equally crucial downstream adaptation. With
simply fine-tuning on the downstream labeled data
for CLT tasks, mPLM often underperforms on low-
resource target languages, especially for the lan-
guages distant from the source ones since the gen-
eralization ability of mPLM highly relies on lexical
overlap across languages (Huang et al., 2019). On
the other hand, existing adaptation approaches for
mPLM behave as a black box without explicitly
identifying intrinsic language relations.

To address the issues, we propose meta graph
learning (MGL), a meta learning framework to
learn how to cross-lingual transfer for mPLM.
Specifically, MGL models each CLT process as
heterogeneous information propagation over a dy-
namic graph, which captures latent language corre-
lations and makes the downstream CLT adaptation
more interpretable. However, solely learning the
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dynamic graph structures may be insufficient since
the graph-based metric space usually favors high-
resource languages over low-resource ones.

Meta learning, a.k.a learning to learn, (Finn
et al., 2017; Snell et al., 2017), addresses the
few-shot problems, by extracting common meta-
knowledge from previous tasks (Meta-train) that
can be rapidly adapted to new tasks with a few
examples (Meta-test). Inspired by it, MGL takes
advantage of historical CLT experiences to quickly
adapt the dynamic graphs to our target CLT task.
This enables MGL to meta-learn a graph-based
cross-lingual metric space that is invariant across
languages. For example, suppose we transfer from
English (EN), French (FR) and German (DE) to
Japanese (JA), i.e.,{EN, FR, DE}→JA. We con-
struct previous CLT experiences by leave-one-out
among source languages: for each source CLT
task, we leave one out of source languages as
a pseudo-target language in turn and use the re-
maining ones as the pseudo-source languages. As
such, we expect the MGL can borrow knowledge
from source CLT pairs: {FR, DE}→EN, {EN,
DE}→FR, {EN, FR}→DE to improve the trans-
fer effectiveness in the target CLT pair {EN, FR,
DE}→JA, which is illustrated in Figure 1.

Recently, some efforts have been initiated on
meta learning for low-resource NLP tasks that
straightforwardly views each dataset with its objec-
tive as a task (Dou et al., 2019). However, this strat-
egy can only make meta-leaner learn knowledge
from each language separately. And meanwhile,
most existing meta-learners lack the ability to han-
dle tasks lying in different distributions, especially
tasks for heterogeneous languages. On the contrary,
MGL resorts to learning how to adapt across lan-
guages from each CLT task. Empirically, extensive
experiments on both the public multilingual Ama-
zon review dataset (Prettenhofer and Stein, 2010)
and the real-world industrial multilingual search
relevance dataset (Ahuja et al., 2020) demonstrate
the effectiveness of the MGL method.

Overall, our contributions can be summarized as
follows: (1) A novel MGL method is proposed to
learn to cross-lingual transfer (L2CLT) for task-
aware adaptation of mPLM by leveraging previ-
ous CLT experiences; (2) The MGL automatically
captures intrinsic correlations between languages,
which improves the interpretability of the down-
stream adaptation process; (3) Extensive experi-
ments verify the effectiveness of the MGL.

Multi-source CLT

L2CLT

Training Testing

Multi-task Learning Lang 1 Lang N,

Single-source CLT Lang 1 Lang 2

Lang 1 Lang N,

Lang N+1Lang 1 Lang N,

Lang group 1

Lang 1
,

Lang group N

Lang N

Lang group N+1

Lang N+1

Figure 2: Differences between our work and other ex-
isting methods. “Lang” refers to the language.

2 Related Work

2.1 Cross-lingual Transfer

Most CLT studies focus on transferring from a sin-
gle source language (Wan, 2009; Prettenhofer and
Stein, 2010; Zhou et al., 2016b,a; Xu and Yang,
2017; Chen et al., 2018). However, single-source
CLT methods would incur the risk of negative trans-
fer when there exists a large language shift. Alter-
nately, multi-source CLT (McDonald et al., 2011;
Xu and Wan, 2017; Chen et al., 2019), transferring
from multiple source languages, has been proved
to increase the stability of the transfer. Another
research efforts made on cross-lingual word repre-
sentation learning (Zou et al., 2013; Mikolov et al.,
2013; Conneau et al., 2018a; Chen and Cardie,
2018; Artetxe et al., 2018) and mPLM (Devlin
et al., 2019; Lample and Conneau, 2019; Yang
et al., 2019; Eisenschlos et al., 2019; Chidambaram
et al., 2019), which exploit unsupervised learning
on large-scale multilingual corpus to learn versatile
multilingual contextualized embeddings.

2.2 Meta Learning

There are mainly three categories of meta learning:
(1) Black-box amortized methods (Andrychowicz
et al., 2016; Ravi and Larochelle, 2017; Mishra
et al., 2017) design neural meta-learners (black-
box) to infer the parameters of the base learner; (2)
Gradient-based methods (Finn et al., 2017; Nichol
et al., 2018; Yao et al., 2019, 2020) learn a good
initialization of parameters, which can be adapted
to new tasks by a few steps of gradient descent; (3)
Metric-based methods (Vinyals et al., 2016; Snell
et al., 2017; Garcia and Bruna, 2018; Ying et al.,
2018; Sung et al., 2018; Oreshkin et al., 2018; Liu
et al., 2019b) learn a task-invariant distance met-
ric. Our work is built upon the third category to
learn a cross-lingual metric space rapidly adapted
to the low-resource language. Recently, some ef-
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forts have been initiated on meta learning for low-
resource NLP applications, such as few-shot text
classification classification (Sun et al., 2019; Gao
et al., 2019; Geng et al., 2019; Bao et al., 2020), nat-
ural language understanding (Dou et al., 2019), and
medical prediction (Zhang et al., 2019). Very few
works have explored meta learning for CLT prob-
lems like machine translation (Gu et al., 2018) and
cross-lingual named entity recognition (Wu et al.,
2019). However, these methods simply combine
the MAML (Finn et al., 2017) or its variants for
gradient optimization without considering latent re-
lations between languages. Overall, the differences
between our MGL paradigm and existing methods
are illustrated in Figure 2.

3 Problem Definition

Cross-lingual Transfer Suppose that there are T
high-resource (Source) languages {`si}

T
i=1. Each

source language `si has sufficient labeled data
D`si

= {xj`si , y
j
`si
}|`

s
i |

j=1, where |`si | is the number of
labeled data for the i-th source language `si . Be-
sides, only a few labeled data D`t = {xj`t , y

j
`t}
|`t|
j=1

are available in a low-resource (Target) language
`t, i.e., |`t|�|`si |,∀i ∈ [1, T ]. All languages share
the same label space, i.e., the label set Y . Our goal
aims to leverage knowledge from high-resource
languages {`si}

T
i=1 to help the learning in the low-

resource language `t, i.e., {`si}
T
i=1→`

t.

4 Methodology

Our framework is a language-agnostic task-aware
model for CLT. On the one hand, we use the mPLM
as the base encoder to calculate language-agnostic
representations. On the other hand, we propose
a meta graph learning (MGL) method to further
guide the versatile multilingual representations to
be task-aware for downstream CLT tasks.

4.1 Language-Agnostic Backbone

We employ a multilingual BERT (mBERT) (De-
vlin et al., 2019) as the language-agnostic en-
coder, which harnesses self-supervised learning
with shared word piece tokens as the anchor across
languages to produce weakly aligned multilin-
gual representations. Our framework is quite gen-
eral and can be easily compatible with any other
mPLMs, e.g., XLM (Lample and Conneau, 2019),
mUnicoder (Yang et al., 2019), etc. With the aid
of mBERT as the standard encoder, we can demon-

strate that the primary efforts come from the design
of the task-aware MGL approach.

4.2 Task-aware Adaptation

In this section, we introduce some existing down-
stream adaptation approaches for CLT tasks.
Common approaches With the power of
mPLM, some simple adaptation approaches can
yield superior results for downstream CLT tasks,
including Target-Only: It fine-tunes a mPLM with
only the target low-resource language, which is
usually regarded as a lower bound for reference;
Fine-tune: It first trains a mPLM on the source lan-
guages and then fine-tunes the model on the target
language; Mix (Liu et al., 2018): it ignores lan-
guage characteristics and simply combines the la-
beled data from all languages to fine-tune a mPLM;
Multi-task (Liu et al., 2019a): It consists of a
shared mPLM encoder with language-specific dis-
criminative layers for multi-task learning.
Meta approaches There are some efforts on
gradient-based meta learning with BERT for low-
resource NLU tasks (Dou et al., 2019), including
second-order optimization-based MAML (Finn
et al., 2017) with its first-order variants FOMAML
and Reptile (Nichol et al., 2018). They view each
dataset as one task, which may not be able to han-
dle the language heterogeneity. Here, we compare
with Reptile that is much faster when deployed to
the heavy mPLM and has proved to achieve the
best results as observed in (Dou et al., 2019).

4.3 Meta Graph Learning (MGL)

Here, we introduce the MGL that involves: (1)
learning to CLT from historical CLT experiences;
(2) learning correlations between languages.

4.3.1 Learn to Cross-lingual Transfer
The MGL is optimized over CLT tasks to achieve
the L2CLT paradigm. The mechanism aims to
learn knowledge from various source CLT pairs
(Meta-train) to improve the transfer learning ef-
fectiveness for a target CLT pair (Meta-test).

Meta-train: we simulate the source CLT pairs
by leave-one-out strategy among source languages
{`si}

T
i=1. That is, we leave one language out from

the T source languages in turn as the pseudo-target
language `tst, using the remaining languages as
the pseudo-source languages to constitute a source
CLT pair ps : {`si}

T
i=1\`

tst→`tst. In total, we can
obtain T source CLT pairs {pso}To=1. Meta-test:
we directly use {`si}

T
i=1→`

t as the target CLT pair
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Figure 3: The framework of the proposed Meta Graph Learning (MGL) method.

pt since the ultimate goal is to improve the learning
in the low-resource language `t.

We follow the effective episodic training strat-
egy (Vinyals et al., 2016) for training a meta-
learner. In each episode, we are given a CLT pair
p: {`trni }Mi=1→`tst, where {`trni }Mi=1 denotes M
source languages (M=T−1 for Meta-train and
M=T for Meta-test) and the `tst is the target lan-
guage. We then use the label set Y to randomly
sample a support set S and a query set Q from the
CLT pair p. The support set S includes |Y| differ-
ent classes and each class contains M source lan-
guages, each of which consists ofN randomly sam-
pled instances, i.e., S={xSj , ySj }

|Y|×M×N
j=1 .While

the query set Q={xQj , y
Q
j }Rj=1 includes R differ-

ent examples of the target language from the same
|Y| classes. S in each episode serves as the la-
beled training set on which the model is trained to
minimize the loss of its predictions for Q. In the
following, we introduce how to organize S and Q
into a dynamic meta graph and propagate knowl-
edge over it for CLT as illustrated in Figure 3.

4.3.2 Node Embedding
Given a support set S and a query set Q of a sam-
pled CLT task, we regard each instance as a node
and employ the mPLM, i.e., mBERT, to extract the
feature representation of each instance xj ∈ S ∪Q.
Formally, let hj = fθ(xj ;θ) ∈ Rdimh denote the
output representation, where θ indicates the param-
eters of the encoder. Then we stack all hj to obtain
the node embedding matrix H={hj}|S|+|Q|j=1 .

4.3.3 Meta Graph Construction
To capture intrinsic correlations between languages,
we propose a meta graph construction module to

build their manifold structure. A meta graph G =
{V,E} is dynamically learned using the sampled
S ∪ Q in each episode, where V (|V | = |S| +
|Q|) and E denote the sets of nodes and edges,
respectively. Thus, each meta graph corresponds
to a sampled task’s geometric formulation from
the given CLT pair in meta learning. In the meta
graph G, each instance is regarded as a node. The
weights A∈R|V |×|V | of the edges are based on the
similarity between their node embeddings.

It is critical to build an appropriate neighbor-
hood graph, where the manifold structure affects
the transferability among different languages. In-
spired by manifold learning (Chung and Graham,
1997; Zhou et al., 2004), we choose the com-
monly used Radial Basis Function (RBF) Ajj′ =

exp(−d(xj ,xj′ )

2σ2 ) to compute the similarity, where
d is a distance metric function, i.e., the squared
Euclidean distance, and σ is a length-scale param-
eter. The graph structure behaves differently with
respect to various σ. To avoid carefully tuning
σ, we propose to instance-wisely learn the scale
parameter such that it can be tailored to different
language compositions. Specifically, we feed the
embedding of each instance xj ∈ S ∪ Q into a
fully-connected layer as

σj = sigmoid(Wσfθ(xj) + bσ), (1)

where σj is an instance-wise length-scale param-
eter, Wσ and bσ are the weight matrix and bias.
Then, the adjacency weight matrix A based on the
learnable metric function is calculated as

Ajj′ = exp(−1

2
d(
fθ(xj)

σj
,
fθ(xj′)

σj′
)). (2)
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We only keep the top K values in each row of A
to retain K nearest neighbors, which makes the
episodic training more efficient.

4.3.4 Heterogeneous Information
Propagation

After that, we apply a graph convolutional net-
work (GCN) (Kipf and Welling, 2016) on the
meta graphs to produce more abstract node em-
beddings based on properties of their neighbor-
hoods. Here, we only use the simple GCN to
propagate heterogeneous information from the sup-
port set S (source languages) to the query set Q
(target language). The generality of MGL makes
it be easily adapt to other graph neural networks,
e.g., GAT (Veličković et al., 2017). For GCN, it
can capture first-order information about immedi-
ate neighbors with one-layer of graph convolution.
When multiple GCN layers are stacked, higher-
order neighbor information can be aggregated layer-
wisely. Based on the last n-th layer, the node em-
beddings L(n+1)∈R|V |×dimn+1 at the (n+ 1)-th
layer can be obtained as

L(n+1) = ρ(ÃL(n)W(n)), (3)

where W(n) is the parameter of the layer and ρ
is the LeakyRelu (Maas et al., 2013) activation
function. We use the embedding matrix H as the
initial node representations, i.e., L(0) = H. Ã is
the normalized symmetric adjacency matrix,

Ã = D−
1
2AD−

1
2 , (4)

where D is a diagonal degree matrix withDjj to be
the sum of the j-th row of A. Stacking proper GCN
layers can exploit latent propagation patterns over
heterogeneous languages and meanwhile avoid ex-
tra noises. Empirically, we consider a two-layer
GCN, which can capture the second-order relation-
ships between nodes such that more underlying
knowledge from source languages can be aggre-
gated to help the prediction of the target language
(e.g., `1→`3→`2, where `1 and `2 are distant lan-
guages while `3 similar to both can serve as anchors
for transitive transfer.) A two-layer GCN is as:

L(1) = ρ(ÃHW(0))

z = Softmax(ÃL(1)W(1)),
(5)

where z∈R|V |×|Y| is the probabilistic scores over
the label setY . We let zQ∈R|Q|×|Y| denote the last
|Q| row of the z to be the query set score, where
zQj = p(yQj |x

Q
j ,S) denotes the predicted scores

for j-th query instance xQj .

4.3.5 Episodic Training
We follow the episodic training as described in Sec-
tion 4.3.1 to optimize the MGL meta learner. In
each episode, the training objective is to minimize
the classification loss between the ground-truth la-
bels and the predictions of the query set (target
language) with the aid of the support set (source
languages) for the given CLT pair:

J =

|Q|∑
j=1

L(zQj ,y
Q
j ), (6)

where L is the cross-entropy loss and yQj is the
one-hot label of the j-th query instance. All the
parameters are jointly updated by the gradient de-
scent method in an end-to-end manner during the
episodic training. Through learning to CLT, meta
graphs can learn a cross-lingual metric space in-
variant for downstream languages without suffering
from overfitting to the low-resource one.

5 Experiment

In this section, we present an extensive set of ex-
periments across two datasets. The first experi-
ment is on a public multilingual Amazon review
dataset (Prettenhofer and Stein, 2010). In addition,
we conduct experiments on a real-world industrial
multilingual search relevance dataset (Ahuja et al.,
2020) used for E-commerce product search.

5.1 Cross-lingual Sentiment Classification
Dataset The aim of the task is binary sentiment
classification, where each review document is clas-
sified into positive or negative sentiment. We use
the multilingual Amazon review dataset (Pretten-
hofer and Stein, 2010), which has four languages:
English (EN), German (DE), French (FR) and
Japanese (JA) on three domains: Books, DVD
and Music. For statistics, the sizes of the training,
validation, and testing data are 1600, 400 and 2000,
respectively, for each language of all the domains.

Setting We treat each domain as separate
experiments and consider FR, JA, DE as the target
language (Here, we do not consider EN since it is
usually high-resource) while the remaining three
being source languages, which results in 9 total
cross-lingual experiments. In the low-resource
setting, we only use 10% labeled training data for
the target language, i.e., 160 labeled data. The
evaluation metric is Accuracy. All experiments are
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Model EN+JA+DE→FR EN+FR+DE→JA EN+FR+JA→DE Avg ∆
books dvd music avg books dvd music avg books dvd music avg

methods with cross-lingual parallel data
MT-BOW 80.76 78.83 75.78 78.46 70.22 71.30 72.02 71.18 79.68 77.92 77.22 78.27 75.97 +(5.36)
CL-SCL 78.49 78.80 77.92 78.40 73.09 71.07 75.11 73.09 79.50 76.92 77.79 78.07 76.52 +(4.81)
CL-RL 78.25 74.83 78.71 77.26 71.11 73.12 74.38 72.87 79.85 77.14 77.27 78.10 76.08 +(5.25)

methods w/o cross-lingual parallel data
BWE 77.95 79.25 79.95 79.05 54.78 54.20 51.30 53.43 78.35 77.45 76.70 77.50 69.99 +(11.34)
MAN-MoE 81.10 84.25 80.90 82.08 62.78 69.10 72.60 68.16 78.80 77.15 79.45 79.45 76.56 +(4.77)

Lower bound
mBERT+Target-Only 74.85 72.90 76.80 74.85 69.48 65.75 73.30 69.51 72.50 66.75 73.05 70.77 71.71 +(9.62)

multilingual transfer
mBERT+Mix 83.05 83.15 81.20 82.47 75.09 75.00 75.90 75.33 81.05 78.35 78.15 78.99 78.93 +(2.40)
mBERT+Multi-task 83.80 81.50 82.40 82.57 75.99 73.20 75.65 74.95 78.70 73.45 80.65 77.60 78.37 +(2.96)
mBERT+Fine-tune 83.00 83.40 81.45 82.62 75.04 73.80 76.80 75.21 81.50 79.40 78.65 79.85 79.23 +(2.10)

Meta learning
mBERT+Reptile 84.55 83.50 81.10 83.05 74.89 73.15 77.85 75.30 81.65 78.55 80.20 80.13 79.49 +(1.84)
mBERT+MGL 83.97 85.07† 83.16† 84.07† 77.41† 77.20† 78.59† 77.73† 82.22† 81.30† 83.01† 82.18† 81.33† -

Table 1: Experimental results (%) on the multilingual Amazon review dataset. ∆ refers to the improvements. †

means that the MGL significantly outperforms the best baseline Reptile with paired sample t-test p-value < 0.01.

repeated 5 times, and we report the average results.

Baselines In addition to mBERT-based baselines
mentioned in Section 4.2, we also compare with
the state-of-the-art CLT baselines:

• MT-BOW uses machine translation to translate
the bag of words of a target language into the
source language.

• CL-SCL (Prettenhofer and Stein, 2010) learns
a shared cross-lingual feature space with cross-
lingual structural correspondence learning.

• CL-RL (Xiao and Guo, 2013) learns cross-
lingual representation learning, where part of
the word vector is shared among languages.

• BWE (Upadhyay et al., 2018) bridges the lan-
guage gap with Bilingual Word Embedding
and weight sharing. We use the unsupervised
MUSE (Conneau et al., 2018a) BWE.

• MAN-MoE (Chen et al., 2019) exploits both
language-invariant and language-specific fea-
tures with multinomial adversarial training and
mixture-of-experts, respectively.

Results Based on the results in Table 1, we can
summarize the following observations:

• The MGL achieves the best results on most trans-
fer pairs, significantly outperforming the best
baseline Reptile by 1.84% accuracy on average.
Our model exceeds the translation-based meth-
ods MT-BOW, CL-SCL, and CL-RL by 5.36%,
4.81% and 5.25% accuracy on average, respec-
tively. Without additional translation resources,

the embedding-based method BWE shows signif-
icant performance degradation. Though MAN-
MoE attempts to fully identify both invariant and
specific language features, it can only achieve
competitive results with translation-based meth-
ods. This proves that language correspondences
play a critical role in minimizing language gaps.
However, obtaining general-purpose alignment
usually relies on off-the-shelf translators, e.g.,
Google Translate, making them inflexible and
unscalable to the big data.

• Our method achieves 2.40%, 2.96%, and 2.10%
average accuracy gains over mBERT with com-
mon adaption approaches, i.e., Mix, Multi-task,
and Fine-tune, respectively. These methods ig-
nore task-aware adaptation for low-resource tar-
get languages and perform poorly for the adapta-
tion between distant languages. On the contrary,
our method can effectively alleviate the language
gaps by meta-learning previous CLT knowledge.

• Though combining the strengths of both mBERT
and meta learning, Reptile can only achieve
marginal improvements over common adapta-
tion methods since language heterogeneity hin-
ders the effectiveness of this gradient-based meta
learner to adapt across different languages. Dif-
ferently, our model can alleviate the issue by
learning meta graphs over languages to reduce
the gaps between them.

5.2 Cross-lingual Relevance Classification
Dataset The task aims to determine the binary
relevance label (relevant or irrelevant) of a pair of
user search query and product title. We use a large-
scale multilingual search relevance dataset (Ahuja
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Model ES+IT+EN+DE→FR FR+IT+EN+DE→ES FR+ES+EN+DE→IT FR+ES+IT+EN→DE Avg ∆
P R F1 P R F1 P R F1 P R F1 F1 F1

methods with task-specific cross-lingual parallel data
LAPS 44.06 51.79 47.61 52.35 48.74 50.48 48.10 52.38 50.15 37.15 40.68 38.83 46.77 +(4.61)

Lower bound
mBERT+Target-Only 38.79 40.09 39.43 40.57 49.82 44.72 42.48 57.87 48.99 32.70 35.30 33.95 41.77 +(9.61)

multilingual transfer
mBERT+Mix 39.57 74.42 51.67 39.44 76.2 52.02 36.06 78.88 49.49 32.56 55.45 41.03 48.55 +(2.83)
mBERT+Multi-task 50.21 50.52 50.37 51.04 49.36 50.19 48.89 57.80 52.97 31.35 53.63 39.57 48.28 +(3.10)
mBERT+Fine-tune 47.63 54.61 50.88 47.17 59.35 52.56 44.89 61.52 51.91 30.88 60.91 40.98 49.08 +(2.30)

Meta learning
mBERT+Reptile 44.02 65.88 52.77 43.32 70.51 53.67 49.11 58.01 53.19 34.28 50.05 40.69 50.15 +(1.23)
mBERT+MGL 50.94 59.24 54.78† 45.97 66.06 54.22† 48.13 62.33 54.32† 38.51 46.64 42.19† 51.38† -

Table 2: Experimental results (%) on the multilingual search relevance dataset. ∆ refers to the improvements. †

means that the MGL significantly outperforms the best baseline Reptile with paired sample t-test p-value < 0.01.

Target language FR JA DE Avg ∆

mBERT+MGL (Full model) 84.07 77.73 82.18 81.33 -
mBERT+MGL w/o Meta 83.94 72.86 78.66 78.49 +2.84
mBERT+MGL w/o L2CLT 83.47 75.46 80.69 79.87 +1.46
mBERT+MGL w/o σ 84.14 76.55 80.99 80.56 +0.77
mBERT+MGL (1 GCN layer) 84.34 76.45 81.39 80.73 +0.60
mBERT+MGL (3 GCN layer) 83.31 76.51 81.44 80.42 +0.91
mBERT+MGL (4 GCN layer) 83.43 74.09 80.81 79.44 +1.89

Table 3: Ablation results (%): averaged accuracy for
each target language on the Amazon review dataset.

et al., 2020), which arises from 5 languages:
French (FR), Spanish (ES), Italian (IT), English
(EN) and German (DE). The human-annotated
query-product pairs are sampled from the search
results from each of the above country-specific
services of an E-commerce search engine. The
annotators return a binary label that indicates the
relevance of the product item to the query.

Setting We use the same setting as described
in Section 5.1. Considering the imbalance of the
dataset, we use Precision (P), Recall (R), and F1
score as the evaluation metrics.

Baselines Additionally, we compare with the
start-of-the-art baseline LAPS (Ahuja et al., 2020),
which relies on external task-specific cross-lingual
parallel data (Ahuja et al., 2020), i.e., product-
to-product and query-to-query correspondences
among all 5 languages.

Results Based on the results in Table 2, we can
summarize the following observations:

• For the imbalanced industrial dataset with more
noises, the MGL method consistently achieves
the best results for all pairs, significantly exceed-
ing the best baseline Reptile by 1.23% F1 score
on average. The efficacy of the LAPS comes
from task-specific parallel data, which is usu-

ally difficult to obtain in practice. Without any
aid of task-specific resources, our MGL method
can still achieve a large gain of 4.61% average
F1 score by adapting general mPLM with task-
aware meta-knowledge for CLT tasks.

• Compared with mBERT-based methods, we
can also obtain consistent observations as on
the Amazon dataset. Even with the power
of mBERT, common adaptation approaches
still cannot handle the low-resource target lan-
guage. Reptile cannot compete against our MGL
method due to its meta-knowledge learned from
each separate language.

5.3 Ablation Study

To verify the efficacy of each component, we
compare MGL with its ablation variants in Table 3.

No Meta v.s. Meta For MGL w/o Meta, we
directly learn the dynamic graphs with GCN for
cross-lingual transfer without any meta process,
i.e., no Meta-train stage. MGL exceeds MGL w/o
Meta by 2.84% accuracy on average. This proves
that simply adding a GCN cannot work well.
Without leveraging historical CLT experiences, the
dynamic graphs cannot learn a robust cross-lingual
metric space that facilitates knowledge propagation
to the target low-resource language.

No L2CLT v.s. L2CLT For MGL w/o L2CLT,
we treat each language as one task like Reptile and
change to sample the support set and query set
from the same language for each task. As such,
this MGL variant solely uses the dynamic graphs
to meta-learn knowledge from each language.
MGL can outperform MGL w/o L2CLT by 1.46%
accuracy on average, especially obtaining more
gains for distant language JA. The reason is that
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(a) EN+JA+DE→FR (b) EN+FR+DE→JA (c) EN+FR+JA→DE

Figure 4: Visualization of meta graphs for different pairs of the Music domain on the multilingual Amazon review
dataset. + and − denote positive and negative classes, respectively. Brighter colors denote higher correlations.

previous CLT experiences can benefit MGL to
transfer across heterogeneous languages in a
new target one. For example, for the hard {EN,
FR, DE}→JA, MGL will learn the transfer skill
from the comparatively distant source CLT pair:
Germanic languages1 {EN, DE} to Romance
languages1 FR for Meta-train, and then leverage
the skill to rapidly adapt the meta graphs to transfer
from {EN, FR, DE} to JA for Meta-test.

No σ v.s. σ For MGL w/o σ, we remove the
scale factor σ in Eq. 2 that controls the learnabil-
ity of the metric function. MGL outperforms
MGL w/o σ by 0.77% average accuracy. This
demonstrates that an learnable metric distance
function can be more adaptive to measure intrinsic
relations among different languages and improve
the transferability of the meta graphs.

The number of GCN layers MGL consists of
a multi-layer GCN to progressively propagate in-
formation across languages over the meta graphs.
Multiple GCN layers are necessary to distill more
latent propagation patterns. As we can see, in-
creasing the number of GCN layers from 1 to 2
(default) shows significant improvements. How-
ever, when further increasing the number of layers
to 3 and 4, the performances will be degraded. A
possible reason is that more layers may bring in
more noises from higher-order neighborhoods in
the meta graphs, causing negative transfer.

5.4 Visualization of Meta Graph
To demonstrate that the MGL can automatically
capture latent correlations among languages, we

1https://simple.wikipedia.org/wiki/
Language_family

perform visualization of the meta graphs on the
Amazon review dataset. We visualize the meta
graph, i.e., the dynamic normalized symmetric ad-
jacency matrix Ã as defined in Eq. 4. For each
pair, we only randomly sample one instance for
each class of each language, which constitutes a
meta graph Ã ∈ R8×8 on the Meta-test stage. And
we set the number of the neighborhoods for the K-
nearest graph to be 2. To be more convincing, we
calculate the averaged meta graph obtained by aver-
aging the accumulated meta graphs over a random
sampling of 100 times.

First, as shown in Figure 4-(a), we transfer
from {EN, JA, DE} to FR, our model can capture
stronger connections from FR to {EN, DE} than
FR to JA. This is reasonable since {EN, DE, FR}
all belong to Indo-European languages1, which are
very dissimilar to JA. Second, when transferring
from {EN, FR, JA} to DE as shown in Figure 4-
(c), DE behaves more correlative to EN than to FR.
The possible reason may be that EN and DE are
both Germanic languages, while FR belongs to Ro-
mance languages1. Finally, in Figure 4-(b), when
there exists a large gap between the source and
target languages, all source languages {EN, FR,
DE} have weak correlations with JA, and thus the
results on the target language JA (77.73%) are usu-
ally worse than the target language FR (84.07%)
or DE (82.18%) on average. This proves that our
model can automatically exploit language relations
with learnable graph structures to make task-aware
adaptation more interpretable.

5.5 Target Labeled Proportion
We vary the labeled proportion of the target lan-
guage’s training set and compare MGL with Rep-
tile, Mix, Multi-task, and Fine-tune based on

https://simple.wikipedia.org/wiki/Language_family
https://simple.wikipedia.org/wiki/Language_family
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Figure 5: Averaged results w.r.t proportions of the tar-
get training data on the Amazon review dataset.

mBERT. We use averaged accuracy on the mul-
tilingual Amazon review dataset and change the
labeled proportion from 0.1, 0.2, 0.5 to 1.0. As
shown in Figure 5, the gap between the MGL and
common adaptation methods grows as the training
size shrinks, verifying that the MGL is more robust
to the drop in the labeled size for the target lan-
guage. Reptile shows marginal improvements over
common adaptation methods and performs worse
as the training size grows. This demonstrates that
roughly incorporating existing meta learning algo-
rithms into the CLT problem may not work well.

6 Implementation details

Encoder We use the bert-base-multilingual-
cased2 model pre-trained on 104 languages as the
encoder, which has 12 layers, 768-d hidden size,
12 heads and 110M total parameters. The mBERT
is jointly optimized with other parameters during
both the Meta-train and Meta-test stages.

Training & Validation & Testing set For each
cross-lingual transfer experiment, during the Meta-
train stage, its training set is the combination of the
training data of the source languages. Meanwhile,
it employs the combination of validation data of
the source languages as the validation set. As
for the Meta-test stage, the training set is the
combination of the training data of all languages.
The validation data and testing data of the target
language will be used for the validation and final
evaluation, respectively.

Initialization & Training For all the exper-
iments, the model is optimized by the Adam

2https://github.com/huggingface/
transformers

Hyper-parameter Dataset
Amazon Review Search Relevance

dim0, dim1 768, 768 768, 768
#train episodes 75 100
#test episodes 10 20
#eval times 5 5
support size N 5 5
query size R 32 64

neighborhoods K 10 100
learning rate 10−5 10−5

Table 4: Settings of hyper-parameters.

algorithm (Kingma and Ba, 2014) for training.
The weight matrices are initialized with a uniform
distribution U(−0.01, 0.01). Gradients with
the `2 norm larger than 40 are normalized to
be 40. To alleviate overfitting, we apply the
dropout on the node representations of the
first GCN layer with the dropout rate 0.5. We
also perform early stopping on the validation
set during both the Meta-train and Meta-test stages.

Hyperparameter For the multilingual Amazon
review dataset, we use the same hyper-parameters,
which are manually tuned on 10% randomly
held-out training data of the source languages in
EN+FR+DE→JA on the Book domain, for all
cross-lingual transfer experiments. As for the
multilingual search relevance dataset, the hyper-
parameters are manually tuned on 10% randomly
held-out training data of the source languages in
ES+IT+EN+DE→FR and fixed to be used in all
cross-lingual experiments. The detailed hyperpa-
rameters for the two datasets are listed in Table 4.

7 Conclusion and Future Works

In this paper, we propose a novel MGL method for
task-aware CLT adaptation of mPLM by leveraging
historical CLT experiences. Extensive evaluations
on both the public benchmark and large-scale indus-
trial dataset quantitively and qualitatively demon-
strate the effectiveness of the MGL. In the future,
the proposed MGL method can potentially applied
to more cross-lingual natural language understand-
ing (XLU) tasks (Conneau et al., 2018b; Wang
et al., 2019; Lewis et al., 2019; Karthikeyan et al.,
2020), and be generalized to learn to learn for do-
main adaptation (Blitzer et al., 2007), representa-
tion learning (Shen et al., 2018), multi-task learn-
ing (Shen et al., 2019) problems, etc.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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