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Abstract

Large-scale training datasets lie at the core of
the recent success of neural machine transla-
tion (NMT) models. However, the complex
patterns and potential noises in the large-scale
data make training NMT models difficult. In
this work, we explore to identify the inactive
training examples which contribute less to the
model performance, and show that the exis-
tence of inactive examples depends on the data
distribution. We further introduce data rejuve-
nation to improve the training of NMT mod-
els on large-scale datasets by exploiting inac-
tive examples. The proposed framework con-
sists of three phases. First, we train an iden-
tification model on the original training data,
and use it to distinguish inactive examples and
active examples by their sentence-level output
probabilities. Then, we train a rejuvenation
model on the active examples, which is used
to re-label the inactive examples with forward-
translation. Finally, the rejuvenated examples
and the active examples are combined to train
the final NMT model. Experimental results on
WMT14 English-German and English-French
datasets show that the proposed data rejuve-
nation consistently and significantly improves
performance for several strong NMT models.
Extensive analyses reveal that our approach
stabilizes and accelerates the training process
of NMT models, resulting in final models with
better generalization capability. 1

1 Introduction

Neural machine translation (NMT) is a data-hungry
approach, which requires a large amount of data
to train a well-performing NMT model (Koehn
and Knowles, 2017). However, the complex pat-
terns and potential noises in the large-scale data

∗Work was mainly done when Wenxiang Jiao and Shilin
He were interning at Tencent AI Lab.

1The source code is available at https://github.
com/wxjiao/Data-Rejuvenation

make training NMT models difficult. To relieve
this problem, several approaches have been pro-
posed to better exploit the training data, such as
curriculum learning (Platanios et al., 2019), data
diversification (Nguyen et al., 2019), and data de-
noising (Wang et al., 2018).

In this paper, we explore an interesting alterna-
tive which is to reactivate the inactive examples in
the training data for NMT models. By definition, in-
active examples are the training examples that only
marginally contribute to or even inversely harm
the performance of NMT models. Concretely, we
use sentence-level output probability (Kumar and
Sarawagi, 2019) assigned by a trained NMT model
to measure the activeness level of training exam-
ples, and regard the examples with the least proba-
bilities as inactive examples (§3.1). Experimental
results show that removing 10% most inactive ex-
amples can marginally improve translation perfor-
mance. In addition, we observe a high overlapping
ratio (e.g., around 80%) of the most inactive and
active examples across random seeds, model capac-
ity, and model architectures (§4.2). These results
provide empirical support for our hypothesis of
the existence of inactive examples in large-scale
datasets, which is invariant to specific NMT models
and depends on the data distribution itself.

We further propose data rejuvenation to rejuve-
nate the inactive examples to improve the perfor-
mance of NMT models. Specifically, we train an
NMT model on the active examples as the reju-
venation model to re-label the inactive examples,
resulting in the rejuvenated examples (§3.2). The
final NMT model is trained on the combination
of the active examples and rejuvenated examples.
Experimental results show that the data rejuvena-
tion approach consistently and significantly im-
proves performance on SOTA NMT models (e.g.,
LSTM (Domhan, 2018), TRANSFORMER (Vaswani
et al., 2017), and DYNAMICCONV (Wu et al.,

https://github.com/wxjiao/Data-Rejuvenation
https://github.com/wxjiao/Data-Rejuvenation
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2019)) on the benchmark WMT14 English-German
and English-French datasets (§4.4). Encourag-
ingly, our approach is also complementary to ex-
isting data manipulation methods (e.g., data diver-
sification (Nguyen et al., 2019) and data denois-
ing (Wang et al., 2018)), and combining them can
further improve performance.

Finally, we conduct extensive analyses to better
understand the inactive examples and the proposed
data rejuvenation approach. Quantitative analyses
reveal that the inactive examples are more diffi-
cult to learn than active ones, and rejuvenation can
reduce the learning difficulty (§5.1). The rejuve-
nated examples stabilize and accelerate the training
process of NMT models (§5.2), resulting in final
models with better generalization capability (§5.3).

Our contributions of this work are as follows:

• Our study demonstrates the existence of in-
active examples in large-scale translation
datasets, which mainly depends on the data
distribution.

• We propose a general framework to rejuvenate
the inactive examples to improve the training
of NMT models.

2 Related Work

Data Manipulation. Our work is closely related
to previous studies on manipulating training data
for NMT models, which focuses on exploiting the
original training data without augmenting addi-
tional data. For example, the data denoising ap-
proach (Wang et al., 2018) aims to identify and
clean the noise training examples. Data diversifica-
tion (Nguyen et al., 2019) tries to diversify the train-
ing data by applying forward-translation (Zhang
and Zong, 2016) to the source side of the parallel
data, or back-translation (Sennrich et al., 2016a) to
the target side of parallel data in a reverse transla-
tion direction. Our approach is complementary to
theirs, and using them together can further improve
translation performance (Table 4). Another dis-
tantly related direction is to simplify the source sen-
tences so that a black-box machine translation sys-
tem can better translate them (Mehta et al., 2020),
which is out of scope in this work.

Distinguishing Training Examples. Our work
is also related to previous work on distinguish-
ing training examples in machine learning. One
stream is to re-weight training examples with differ-
ent choices of preferred examples during the train-

ing stage. For example, self-paced learning (Ku-
mar et al., 2010) prefers easy examples, hard ex-
ample mining (Shrivastava et al., 2016) exploits
hard examples, and active learning (Chang et al.,
2017) emphasizes high variance examples. An-
other stream is to schedule the order of training
examples according to their difficulty, e.g., curricu-
lum learning which has been applied to the training
of NMT models successfully (Kocmi and Bojar,
2017; Zhang et al., 2018; Platanios et al., 2019;
Wang et al., 2019; Liu et al., 2020b). In contrast,
we explore strategies to simplify the difficult (i.e.,
inactive) examples without changing the model ar-
chitecture and model training strategy.

Inactive Examples in Computer Vision Dataset.
Birodkar et al. (2019) reveals that data redundancy
exists in large-scale image recognition datasets,
e.g., CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet (Deng et al., 2009) datasets. They find that
a subset can generalize on par with the full dataset
and that at least 10% of training data are redundant
in these large-scale image classification datasets.
Our results confirm these findings on the large-
scale NLP datasets. In addition, we propose to
rejuvenate the inactive examples to further improve
the model performance.

3 Methodology

Figure 1 shows the framework of the data rejuvena-
tion approach, in which we introduce two models:
an identification model and a rejuvenation model.
The identification model distinguishes the inactive
examples from the active ones. The rejuvenation
model, which is trained on the active examples, re-
juvenates the inactive examples. The rejuvenated
examples and the active examples are combined to
train the final NMT model.

There are many possible ways to implement the
general idea of data rejuvenation. The aim of this
paper is not to explore this whole space but simply
to show that one fairly straightforward implemen-
tation works well and that data rejuvenation helps.

3.1 Identification Model

We describe a simple heuristic to implement the
identification model by leveraging the output prob-
abilities of NMT models. The training objective of
the NMT model is to maximize the log-likelihood
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Figure 1: The framework of data rejuvenation. The inactive examples from the original training data are identified
by the identification model, then rejuvenated by the rejuvenation model. The rejuvenated examples along with the
active examples are used together to train the NMT model. Best view in color.

of the training data{[xn,yn]}Nn=1:

L(θ) =
N∑

n=1

logP (yn|xn). (1)

The trained NMT model assigns a sentence-level
probability P (y|x) to each sentence pair (x,y),
indicating the confidence of the model to generate
the target sentence y from the source one x (Kumar
and Sarawagi, 2019; Wang et al., 2020). Intuitively,
if a training example has a low sentence-level prob-
ability, it is less likely to provide useful information
for improving model performance, and thus is re-
garded as an inactive example.

Therefore, we adopt sentence-level probability
P (y|x) as the metric to measure the activeness
level of each training example:

I(y|x) =
T∏
t=1

p(yt|x,y<t), (2)

where T is the number of target words in the train-
ing example. I(y|x) is normalized by the length
of target sentence y to avoid length bias. We train
an NMT model on the original training data and
use it to score each training example. We treat a
certain percent of training examples with the least
sentence-level probabilities as inactive examples.

3.2 Rejuvenation Model
Inspired by recent successes on data augmenta-
tion for NMT, we adopt the widely-used back-
translation (Sennrich et al., 2016a) and forward-
translation (Zhang and Zong, 2016) approaches
to implement the rejuvenation model. After the
active examples are distinguished from the train-
ing data, we use them to train an NMT model in

forward direction for forward-translation or/and re-
verse direction for back-translation. The trained
model rejuvenates each inactive example by pro-
ducing a synthetic-parallel example based on their
source (for forward-translation) or target (for back-
translation) side. Benefiting from the knowledge
distillation based on active examples, the rejuve-
nated examples consist of simpler patterns than the
original examples (Edunov et al., 2019), thus are
more likely to be learned by NMT models.

4 Experiment

4.1 Experimental Setup
Data. We conducted experiments on the widely
used WMT14 English⇒German (En⇒De) and
English⇒French (En⇒Fr) datasets, which consist
of about 4.5M and 35.5M sentence pairs, respec-
tively. We applied BPE (Sennrich et al., 2016b)
with 32K merge operations for both language pairs.
The experimental results were reported in case-
sensitive BLEU score (Papineni et al., 2002).

Model. We validated our approach on a couple
of representative NMT architectures:

• LSTM (Domhan, 2018) that is implemented
in the TRANSFORMER framework.

• TRANSFORMER (Vaswani et al., 2017) that is
based solely on attention mechanisms.

• DYNAMICCONV (Wu et al., 2019) that is im-
plemented with lightweight and dynamic con-
volutions, which can perform competitively to
the best reported TRANSFORMER results.

We adopted the open-source toolkit Fairseq (Ott
et al., 2019) to implement the above NMT models.
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Figure 2: Probability diagram on (a) En⇒De and (b)
En⇒Fr datasets. Training examples in smaller bins
(e.g., 1, 2) are regarded as inactive examples due to
their lower probabilities.

We followed the settings in the original works to
train the models. In brief, we trained the LSTM

model for 100K steps with 32K (4096× 8) tokens
per batch. For TRANSFORMER, we trained 100K
and 300K steps with 32K tokens per batch for the
BASE and BIG models respectively. We trained the
DYNAMICCONV model for 30K steps with 459K
(3584 × 128) tokens per batch. We selected the
model with the best perplexity on the validation set
as the final model.

We first conducted ablation studies on the iden-
tification model (§4.2) and rejuvenation model
(§4.3) on the WMT14 En⇒De dataset with
TRANSFORMER-BASE. Then we reported the
translation performance on different model archi-
tectures and language pairs, as well as the compari-
son with previous studies (§4.4).

4.2 Identification of Inactive Examples

In this section, we investigated the reasonableness
and consistency of the identified inactive examples.

Identified Inactive Examples. As aforemen-
tioned, we ranked the training examples accord-
ing to the sentence-level output probability (i.e.,
confidence) assigned by a trained NMT model. We
followed Wang et al. (2020) to partition the training
examples into 10 equal bins (i.e., each bin contains
10% of training examples) according to the rank-
ing of their probabilities and reported the averaged
probability of each bin, as depicted in Figure 2. As
seen, the examples in the 1st data bin have much
lower probabilities than the other ones, which we
regard as inactive examples.
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Figure 3: Translation performance of the NMT model
trained on the training data with the most inactive ex-
amples removed. For comparison, results of the most
active examples and randomly sampled examples are
also presented.

Reasonableness of Identified Inactive Exam-
ples. In this experiment, we evaluated the rea-
sonableness of the identified inactive examples by
measuring their contribution to the translation per-
formance. Intuitively, a reasonable set of inactive
examples can be removed from the training data
without harming the translation performance, since
they cannot provide useful information to the NMT
models. Starting from this intuition, we removed a
certain percentage of examples with the least prob-
abilities (e.g., most inactive examples) from the
training data, and evaluated the performance of the
NMT model that is trained on the remaining data.

Figure 3 shows the contribution of the most in-
active examples to translation performance. Gen-
erally, the performance drop grows up with the
increased portion of examples being removed from
the training data. The declining trend of the in-
active examples is more gentle than the randomly
selected examples, and that of the active exam-
ples is steepest. These results demonstrate the rea-
sonableness of the identified examples. Encourag-
ingly, the translation performance does not degrade
when removing 10% of the most inactive examples,
which is consistent with the finding of Birodkar
et al. (2019) on the CV datasets.

Consistency of Identified Inactive Examples.
Since our identification of inactive examples re-
lies on a pre-trained NMT model, one doubt nat-
urally arises: are the identified inactive examples
model-specific? For example, different NMT mod-
els treat different portions of the training data as
the inactive examples. To dispel the doubt, we
identified some factors that can significantly af-
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Figure 4: Ratio of examples that are shared by differ-
ent model variants: random seed (a), model capacity
(b), model architecture on En⇒De (c) and En⇒Fr (d)
datasets. A high overlapping ratio for most inactive ex-
amples (i.e., 1st data bin) demonstrates that the identi-
fied inactive examples are not model-specific.

fect the performance of NMT models: 1) random
seeds for TRANSFORMER-BASE: “1”, “12”, “123”,
“1234”, and “12345”; 2) model capacity for TRANS-
FORMER: TINY (3 × 256), BASE (6 × 512), and
BIG (6 × 1024); and 3) model architectures: the
aforementioned architectures in Section 4.1. For
each data bin, we calculated the ratio of examples
that are shared by different model variants (e.g.,
different random seeds). Generally, a high over-
lapping ratio denotes the identified examples are
more agreed by different models, which suggests
the examples are not model-specific.

Figure 4 depicts the results. As expected, there is
always a high overlapping ratio (over 80%) for the
most inactive examples (i.e., 1st data bin) across
model variants and language pairs. The high consis-
tency of identified inactive examples demonstrates
that the proposed identification is invariant to spe-
cific models, and depends on the data distribution
itself. Another interesting finding is that the most
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Figure 5: Effect of the ratio of examples labelled as
inactive examples. We used forward-translation as the
rejuvenation strategy and trained the final NMT model
on the combination of rejuvenated examples and active
examples from scratch.

Rejuvenation BLEU 4
n/a 27.5 –

Forward Translation 28.3 +0.8
Back-Translation 27.5 +0.0

Both 27.8 +0.3

Table 1: Effect of different rejuvenation strategies.

active examples (i.e., 10th data bin) also holds a
high agreement by model variants. The overlapping
ratios of all model variants (i.e., seeds, capacities,
and architectures, 9 models in total) on the En⇒De
dataset are 70.9%, and 62.5% for the most inactive
and (most) active examples, respectively. This indi-
cates that deep learning methods share a common
ability to learn from the training examples.

4.3 Rejuvenation of Inactive Examples

In this section, we evaluated the impact of different
components on the rejuvenation model.

Ratio of Examples Labelled as Inactive. After
all examples were assigned a sentence-level proba-
bility by the identification model, we labelled R%
of examples with the least probabilities as the in-
active examples. We investigated the effect of dif-
ferent R on translation performance, as shown in
Figure 5. Clearly, rejuvenating the inactive exam-
ples consistently outperforms its non-rejuvenated
counterpart, demonstrating the necessity of the data
rejuvenation. Concerning the rejuvenation model,
the BLEU score decreases with the increase of
R. This is intuitive, since examples with relative
higher probabilities (e.g., beyond the 10% most
inactive examples) can provide useful information
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System Architecture WMT14 En⇒De WMT14 En⇒Fr
BLEU 4 BLEU 4

Existing NMT Systems

Vaswani et al. (2017)
TRANSFORMER-BASE 27.3 – 38.1 –
TRANSFORMER-BIG 28.4 – 41.0 –

Ott et al. (2018) SCALE TRANSFORMER 29.3 – 43.2 –
Wu et al. (2019) DYNAMICCONV 29.7 – 43.2 –

Our NMT Systems

This work

LSTM 26.5 – 40.6 –
+ Data Rejuvenation 27.0↑ +0.5 41.1↑ +0.5

TRANSFORMER-BASE 27.5 – 40.2 –
+ Data Rejuvenation 28.3⇑ +0.8 41.0⇑ +0.8

TRANSFORMER-BIG 28.4 – 42.4 –
+ Data Rejuvenation 29.2⇑ +0.8 43.0↑ +0.6
+ Large Batch 29.6 – 43.5 –

+ Data Rejuvenation 30.3⇑ +0.7 44.0↑ +0.5
DYNAMICCONV 29.7 – 43.3 –

+ Data Rejuvenation 30.2↑ +0.5 43.9↑ +0.6

Table 3: Evaluation of translation performance across model architectures and language pairs. “↑ / ⇑”: indicate
statistically significant improvement over the corresponding baseline p < 0.05/0.01 respectively.

Training Data BLEU 4
Raw Data 27.5 –
- 10% Inactive Examples 27.8 +0.3

+ Rejuvenated Examples 28.3 +0.8
- 10% Random Examples 27.4 -0.1

+ Rejuvenated Examples 27.3 -0.2

Table 2: Comparing data rejuvenation on identified in-
active examples and forward translation on randomly
sampling examples.

for NMT models, and rejuvenating them would
inversely harm the translation performance. In
the following experiments, we treat 10% examples
with the least probabilities as inactive examples.

Effect of Rejuvenation Strategy. Table 1 lists
the results of different rejuvenation strategies. Sur-
prisingly, the back-translation strategy does not
improve performance. One possible reason is that
the inactive examples are identified by a forward-
translation model (§3.1), indicating that these inac-
tive examples are more difficult for NMT models
to generate from the source side to the target side,
rather than in the reverse direction. We conjecture
that forward translation strategy may alleviate this
problem by constructing a synthetic example, in
which each source side is associated with a sim-
pler target side. Combining both strategies cannot
further improve translation performance. In the

following experiments, we use forward translation
as the default rejuvenation strategy.

Benefiting from Forward Translation or Data
Rejuvenation? Some researchers may doubt:
does the improvement indeed come from data re-
juvenation, or just from forward translation? To
dispel the doubt, we conducted the comparison
experiment by randomly selecting 10% training
examples as inactive examples and applying data
rejuvenation with forward translation strategy. As
shown in Table 2, removing 10% random examples
inversely harms the translation performance, and
rejuvenating them leads to a further decrease of
performance. In contrast, the proposed data rejuve-
nation improves performance as expected. These
results provide empirical support for our claim that
the improvement comes from the proposed data
rejuvenation rather than forward translation.

4.4 Main Results
Table 3 lists the results across model architectures
and language pairs. Our TRANSFORMER mod-
els achieve better results than that reported in pre-
vious work (Vaswani et al., 2017), especially on
the large-scale En⇒Fr dataset (e.g., more than 1.0
BLEU points). Ott et al. (2018) showed that mod-
els of larger capacity benefit from training with
large batches. Analogous to DYNAMICCONV, we
trained another TRANSFORMER-BIG model with
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Model BLEU 4
TRANSFORMER-BASE 27.5 –

+ Data Rejuvenation 28.3 +0.8
+ Data Diversification-BT 26.9 -0.6

+ Data Rejuvenation 27.9 +0.4
+ Data Diversification-FT 28.1 +0.6

+ Data Rejuvenation 28.5 +1.0
+ Data Denoising 28.1 +0.6

+ Data Rejuvenation 28.6 +1.1

Table 4: Comparison with other data manipulation ap-
proaches. Results are reported on the En⇒De test set.

459K tokens per batch (“+ Large Batch” in Table 3)
as a strong baseline. We tested statistical signifi-
cance with paired bootstrap resampling (Koehn,
2004) using compare-mt2 (Neubig et al., 2019).

Clearly, our data rejuvenation consistently and
significantly improves translation performance in
all cases, demonstrating the effectiveness and
universality of the proposed data rejuvenation
approach. It’s worth noting that our approach
achieves significant improvements without intro-
ducing any additional data and model modification.
It makes the approach robustly applicable to most
existing NMT systems.

Comparison with Previous Work. The pro-
posed data rejuvenation approach belongs to the
family of data manipulation. Accordingly, we
compare it with several widely-used manipula-
tion strategies: data diversification (Nguyen et al.,
2019), and data denoising (Wang et al., 2018).

For data diversification, we used both forward-
translation (FT, Zhang and Zong, 2016) and back-
translation (BT, Sennrich et al., 2016a) strategies on
the original training data, and no monolingual data
is introduced. The final NMT model was trained on
the combination of the original and the synthetic
parallel data. Our approach is similar to “Data
Diversification-FT” except that we only forward-
translate the identified inactive examples (10% of
the training data), while they forward-translate all
the training examples.

For data denoising, we ranked the training data
according to a noise metric, which requires a set
of trusted examples. Following Wang et al. (2018),
we used WMT newstest 2010-2011 as the trusted
data, which consists of 5492 examples. The trained
NMT model on the raw data was regarded as the
noisy model, which was then fine-tuned on the
trusted data to obtain the denoised model. For each

2https://github.com/neulab/compare-mt
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Figure 6: Linguistic properties of different training ex-
amples: frequency rank (↑ more difficult), coverage (↓
more difficult), and uncertainty (↑ more difficult).

sentence pair, a noise score is computed based on
the noisy and denoised models, which is used for
instance sampling during training.

Table 4 shows the comparison results on the
WMT14 En⇒De test set. All approaches improve
translation performance individually except for
data diversification with back-translation. Our ap-
proach can obtain further improvement on top of
these manipulation approaches, indicating that data
rejuvenation is complementary to them.

In addition, we computed the overlapping ratio
between the noisiest and most inactive examples
(10% of the training data) identified by data denois-
ing and data rejuvenation approaches, respectively.
We found that there are only 32% of examples
that are shared by the two approaches, indicating
that the inactive examples are not necessarily noisy
examples. In order to better understand the char-
acteristics of inactive examples, we will give more
detailed analyses on linguistic properties of the in-
active examples in Section 5.1.

5 Analysis and Discussion

In this section, we performed an extensive study to
understand inactive examples and data rejuvenation
in terms of linguistic properties (§5.1), learning
stability (§5.2) and generalization capacity (§5.3).
We also investigated the strategy to speed up the
pipeline of data rejuvenation (§5.4). Unless other-
wise stated, all experiments were conducted on the
En⇒De dataset with TRANSFORMER-BASE.

5.1 Linguistics Properties

In this section, we investigated the linguistic prop-
erties of the identified inactive examples. We ex-
plored the following 3 types of properties: fre-
quency rank, coverage, and uncertainty. Frequency
rank measures the rarity of words, which is calcu-

https://github.com/neulab/compare-mt


2262

3

4

5

6

7

8

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

19

21

23

25

27

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

25.9

25.3

Camera ready [2020-09-22]

3

4

5

6

7

8

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

19

21

23

25

27

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

25.9

25.3

(a) Training Loss

3

4

5

6

7

8

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

19

21

23

25

27

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

25.9

25.3

Camera ready [2020-09-22]

3

4

5

6

7

8

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

19

21

23

25

27

Training Step (K)

0 20 40 60 80 100

Baseline
+ Rejuvenation

25.9

25.3

(b) Validation BLEU

Figure 7: Learning curves on the En⇒De dataset.

Model Margin GSNR
TRANSFORMER-BASE 0.68 5.2e-3

+ Data Rejuvenation 0.71 8.5e-3

Table 5: Results of generalization capability on the
En⇒De dataset. Larger Margin/GSNR values denote
better generalization capability.

lated for the target words since the proposed data
rejuvenation method modifies the target side of the
training examples. Coverage measures the ratio of
source words being aligned by any target words.
Uncertainty measures the level of multi-modality
of a parallel corpus (Zhou et al., 2019). These prop-
erties reflect the difficulty of training examples to
be learned by NMT models.

Figure 6 depicts the results. As seen, the lin-
guistic properties consistently suggest that inactive
examples are more difficult than those active ones.
By rejuvenation, the inactive examples are trans-
formed into much simpler patterns such that NMT
models are able to learn from them.

5.2 Learning Stability

In this section, we studied how data rejuvenation
improved translation performance from the per-
spective of the optimization process, as shown in
Figure 7. Concerning the training loss (Figure 7(a)),
our approach converges faster and presents much
less fluctuation than the baseline model during
the whole training process. Correspondingly, the
BLEU score on the validation set is significantly
boosted (Figure 7(b)). These results suggest that
data rejuvenation is able to accelerate and stabilize
the training process.

Method TRANS.-BIG DYN.CONV
BLEU Time BLEU Time

Standard 29.6 32h 29.7 31h
Rejuvenate 30.3 +65h 30.2 +62h
Rej.–Big 30.2 +33h 30.4 +32h

Table 6: Results of speeding up (“Rej.–Big”) on the
WMT14 En⇒De dataset. “Time” denotes the time of
the whole process using 4 NVIDIA Tesla V100 GPUs.

5.3 Generalization Capability

In this section, we investigated how data rejuve-
nation affected the generalization capability of
NMT models with two measures, namely, Mar-
gin (Bartlett et al., 2017) and Gradient Signal-to-
Noise Ratio (GSNR, Liu et al., 2020a). Table 5
lists the results, in which the GSNR values are at
the same order of magnitude as that reported by Liu
et al. (2020a). As seen, our approach achieves no-
ticeably larger Margin and GSNR values, demon-
strating that data rejuvenation improves the gener-
alization capability of NMT models.

5.4 Speeding Up

The pipeline of data rejuvenation in Figure 1 is
time-consuming: training the identification and
rejuvenation models in sequence as well as the
scoring and rejuvenating procedures make the time
cost of data rejuvenation more than 3X that of the
standard NMT system. To save the time cost, a
promising strategy is to let the identification model
take the responsibility of rejuvenation. Therefore,
we used the TRANSFORMER-BIG model with the
large batch configuration trained on the raw data
to accomplish both identification and rejuvenation.
The resulted data is used to train two final models,
i.e., TRANSFORMER-BIG and DYNAMICCONV.

Figure 6 lists the results. With almost no de-
crease of translation performance, the time cost of
data rejuvenation is reduced by about 33%. This
makes the total time cost comparable with those
data manipulation or augmentation techniques that
require additional NMT systems, such as data
diversification (Nguyen et al., 2019) and back-
translation (Sennrich et al., 2016a). In addition,
the superior performance of DYNAMICCONV (i.e.,
30.4) further demonstrates the high agreement of
inactive examples across architectures.

5.5 Analysis on Inactive Examples

Human Translations from Target to Source as
Inactive Examples? Since forward translation
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(b) Source-Translated Ratio

Figure 8: Probability and ratio of source-translated ex-
amples over the data bins of En⇒De test set.

performs better than back-translation for rejuvena-
tion, one would wonder if the inactive examples
correspond to human translations from target to
source. For simplicity, we name such examples as
source-translated whereas source-natural otherwise.
The information of source-translated/natural exam-
ples is unavailable for training examples, but fortu-
nately is provided for test sets3. We split the test
examples of En⇒De into 10 data bins according to
the sentence-level probability (see Eq. (2)) of the
identification model (i.e., TRANSFORMER-BASE),
and then calculate the ratio of source-translated ex-
amples in each bin. As seen in Figure 8, the ratios
of source-translated examples in 1st and 2nd bins
(i.e., 69% and 59%) significantly exceed that in
the whole test set (i.e., 1500/3003), suggesting that
human translations from target to source are more
likely to be inactive examples.

Case Study. By inspecting the inactive examples,
we find that the target sentences tend to be para-
phrases of the source sentences rather than direct
translations. We provide two cases in Table 7. In
the first case, the target sentence does not translate
“finished the destruction of the first” in the source
sentence directly but rephrases it as “tat dann das
seine und zerstörte den Rest”, meaning “then did
his and destroyed the rest” (that was not destroyed
by The First World War). As for the second case,
“denied by the latter” uses passive voice but its cor-
responding phrase in the target sentence is in active
voice. These observations indicate that the incon-
sistent structure or expression between source and
target sentences could make the examples difficult
for NMT models to learn well.

3https://www.statmt.org/wmt14/
test-full.tgz

Side Sentence

E
n⇒

D
e

X
The Second World War finished the destruction
of the first .

Y

Der zweite Weltkrieg tat dann das seine und
zerstörte den Rest .
=>En: The Second World War then did his and
destroyed the rest .

Y’

Der Zweite Weltkrieg beendete die Zerstörung
des ersten .
=>En: The Second World War ended the
destruction of the first .

E
n⇒

Fr

X
Anything denied by the latter was effectively
confirmed as true .

Y

Tout ce que démentait cette agence se révélait
dans la pratique bien réel .
=>En: Everything that this agency denied
turned out to be very real in practice .

Y’

Toute chose niée par ce dernier a été effective-
ment confirmée comme vraie .
=>En: Anything denied by the latter has actu-
ally been confirmed to be true .

Table 7: Inactive examples from the training sets of
En⇒De and En⇒Fr. X, Y and Y’ represent the source
sentence, target sentence, and the rejuvenated target
sentence, respectively. Y and Y’ are also translated into
English (=>En:) by Google Translate for reference.
For either example, the underlined phrases correspond
to the same content.

6 Conclusion

In this study, we propose data rejuvenation to ex-
ploit the inactive training examples for neural ma-
chine translation on large-scale datasets. The pro-
posed data rejuvenation scheme is a general frame-
work where one can freely define, for instance,
the identification and rejuvenation models. Experi-
mental results on different model architectures and
language pairs demonstrate the effectiveness and
universality of the data rejuvenation approach.

Future directions include exploring advanced
identification and rejuvenation models that can bet-
ter reflect the learning abilities of NMT models,
as well as validating on other NLP tasks such as
dialogue and summarization.
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A Appendix

A.1 Model Implementation
We adopt the default implementation of models in
Fairseq4 (Ott et al., 2019) except for LSTM.

LSTM. We follow Domhan (2018) to implement
LSTM by replacing the self-attention (SAN) lay-
ers in TRANSFORMER-BASE with LSTM layers.
Specifically, we use a bidirectional LSTM for each
layer of the encoder, and a unidirectional LSTM for
each layer of decoder. Each bidirectional LSTM

layer is followed by a fully-connected layer with
ReLU as the activation function.

Note that the training strategies of models with
the proposed data rejuvenation are the same as that
of the corresponding baseline models, without any
modification of hyper-parameters.

A.2 Linguistics Properties
To understand the characteristics of inactive exam-
ples, we compare them with active examples and
rejuvenated examples in terms of 3 linguistics prop-
erties: frequency rank, coverage, and uncertainty.

Frequency Rank. Frequency rank measures the
rarity of words, which is calculated for the target
words since our proposed data rejuvenation method
modifies the target side of the training examples.
In the target vocabulary, words are sorted in the
descending order of their frequencies in the whole
training data, and the frequency rank of a word is
its position in the dictionary. Therefore, the higher
the frequency rank is, the more rare the word is in
the training data. We report the averaged frequency
rank of each of the three subsets. The larger fre-
quency rank of inactive examples indicates that

4https://github.com/pytorch/fairseq

they contain more rare words, which make them
more difficult to be learned by NMT models than
the active examples.

Coverage. Coverage measures the ratio of source
words being aligned by any target words (Tu et al.,
2016). Firstly, we train an alignment model on the
training data by fast-align5 (Dyer et al., 2013), and
force-align the source and target sentences of each
subset. Then, we calculate the coverage of each
source sentence, and report the averaged coverage
of each subset. The lower coverage of inactive ex-
amples indicates that they are not very well aligned
as the active examples, which also make them more
difficult for NMT models to learn.

Uncertainty. Uncertainty measures the level of
multi-modality of a parallel corpus (Zhou et al.,
2019). The uncertainty of a source sentence can
reflect the number of its possible translations in
the target side. We consider the corpus level un-
certainty, which measures the complexity of each
subset. Corpus level uncertainty is simplified as
the sum of entropy of target words conditioned on
the aligned source words denoted H(y|x = xt).
Therefore, an alignment model is also required.
To prevent uncertainty from being dominated by
frequent words, we follow Zhou et al. (2019) to
calculate uncertainty by averaging the entropy of
target words conditioned on a source word denoted
1
|Vx|

∑
x∈Vx H(y|x). The larger uncertainty of in-

active examples indicates that there are more possi-
ble translations for each source sentence of them.
That is to say, inactive examples contain more com-
plex patterns, which are more difficult to be learned
by NMT models.

A.3 Generalization Capability

Margin. Margin (Bartlett et al., 2017) is a classic
concept in support vector machine, measuring the
geometric distance between the support vectors and
the decision boundary. To apply margin for NMT
models, we follow Li et al. (2019) to compute word-
wise margin, which is defined as the probability of
the correctly predicted word minus the maximum
probability of other word types. We compute the
word-wise margin over the training set and report
the averaged value.

GSNR. The gradient signal to noise ratio
(GSNR) metric (Liu et al., 2020a) is proposed

5https://github.com/clab/fast_align

https://github.com/pytorch/fairseq
https://github.com/clab/fast_align
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System Architecture WMT14 En⇒De WMT14 En⇒Fr
valid test 4 valid test 4

Our NMT Systems

This work

LSTM 25.3 26.5 – 33.4 40.6 –
+ Data Rejuvenation 26.1 27.0↑ +0.5 33.8 41.1↑ +0.5

TRANSFORMER-BASE 26.3 27.5 – 33.0 40.2 –
+ Data Rejuvenation 26.8 28.3⇑ +0.8 33.2 41.0⇑ +0.8

TRANSFORMER-BIG 26.9 28.4 – 34.5 42.4 –
+ Data Rejuvenation 27.3 29.2⇑ +0.8 34.9 43.0↑ +0.6
+ Large Batch 27.4 29.6 – 35.0 43.5 –

+ Data Rejuvenation 28.0 30.3⇑ +0.7 35.4 44.0↑ +0.5
DYNAMICCONV 27.2 29.7 – 35.0 43.3 –

+ Data Rejuvenation 27.6 30.2↑ +0.5 35.2 43.9↑ +0.6

Table 8: Translation performance of valid and test sets across model architectures and language pairs.

to positively correlate with generalization perfor-
mance. The calculation of a parameter’s GSNR is
defined as the ratio between its gradient’s squared
mean and variance over the data distribution. For
NMT models, we compute GSNR of each param-
eter and report the averaged value over all the pa-
rameters.

Compared with the baseline model trained on
the raw data, the model trained with our data reju-
venation has larger Margin and GSNR, suggesting
that data rejuvenation is able to improve the gener-
alization capability of the final NMT models.

A.4 Validation Performance

In Table 8, we provide details of the main results,
including the translation performance on both the
validation and test sets. Generally, the models with
our data rejuvenation outperform the baseline mod-
els on both validation and test sets.

A.5 More Ablation Studies

Reversed Models for Identification and Rejuve-
nation. Some researchers are curious whether
the back-translation strategy will work if reversed
NMT models are adopted for both identification
and rejuvenation. To study this strategy, we trained
a reversed translation model on the raw data as the
identification model, and another reversed transla-
tion model on the identified active examples as the
rejuvenation model. Finally, we trained a forward
translation model on the rejuvenated training data.
The final model marginally outperforms the base-
line (27.7 v.s. 27.5) but significantly underperforms
the forward translation method (27.7 v.s. 28.3).

Fine-tuning on Inactive Examples. We also
tried a more straightforward strategy to re-use the
inactive examples, i.e., to fine-tune the baseline
NMT models on the inactive examples. We inves-
tigated this strategy on the En⇒De dataset with a
pre-trained TRANSFORMER-BASE model. Experi-
mental results show that the model diverges after
fine-tuning on the inactive examples either individ-
ually or in combination with similar-sized active
examples (the latter diverges slower), suggesting
that fine-tuning on the inactive examples may not
be a promising strategy.

A.6 Doubts on Main Results
Random Seeds. Some researchers may doubt if
the improvement achieved by our approach comes
from lucky random starts. To dispel this doubt,
we conducted experiments on the En⇒De dataset
using the TRANSFORMER-BASE model with three
random seeds (i.e., 1, 12, and 123). Our approach
consistently outperforms the baseline model in all
cases (i.e., 27.5/28.3, 27.4/28.2, and 27.1/27.9),
demonstrating the effectiveness of our approach.

Source Language. Some researchers may have
questions about the language pairs used in the ex-
periments that both language pairs have English
as the source language, which could determine the
rejuvenation strategy. To demonstrate the univer-
sality of our approach across language directions,
we conducted an experiment on the WMT14 De-
En translation task. The TRANSFORMER-BASE

model achieved a BLEU score of 31.2, and the data
rejuvenation approach improves performance by
+0.6 BLEU point.


