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Abstract

Previous studies have shown that hierarchical
multi-task learning (MTL) can utilize task de-
pendencies by stacking encoders and outper-
form democratic MTL. However, stacking en-
coders only considers the dependencies of fea-
ture representations and ignores the label de-
pendencies in logically dependent tasks. Fur-
thermore, how to properly utilize the labels re-
mains an issue due to the cascading errors be-
tween tasks. In this paper, we view logically
dependent MTL from the perspective of causal
inference and suggest a mediation assumption
instead of the confounding assumption in con-
ventional MTL models. We propose a model
including two key mechanisms: label transfer
(LT) for each task to utilize the labels of all its
lower-level tasks, and Gumbel sampling (GS)
to deal with cascading errors. In the field of
causal inference, GS in our model is essen-
tially a counterfactual reasoning process, try-
ing to estimate the causal effect between tasks
and utilize it to improve MTL. We conduct ex-
periments on two English datasets and one Chi-
nese dataset. Experiment results show that our
model achieves state-of-the-art on six out of
seven subtasks and improves predictions’ con-
sistency.

1 Introduction

Multi-task learning (MTL) has received increas-
ing interest with the knowledge transfer potential
among related tasks (Caruana, 1997; Ruder et al.,
2017; Liu et al., 2019). Recently, hierarchical
MTL models (Hashimoto et al., 2017; Sanh et al.,
2018) were proposed for tasks with dependencies
and achieved better performance than democratic
ones. In their models, the encoders of different
tasks were stacked. And the proposition is that
complex tasks at top layers require deep processes
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Figure 1: Three types of MTL schemes for two tasks
tm and tn: (a) Democratic MTL shares an encoder S
and owns task-specific encoders T i (i = m or n); (b)
Hierarchical MTL stacks those task-specific encoders;
(c) Logically dependent MTL further considers the la-
bel dependencies by re-utilizing low-level tasks’ labels.

to capture semantic richer features, and simple
tasks at bottom layers require shallow processes.

However, many hierarchical MTL models only
consider the dependencies of feature representa-
tions and ignore the label dependencies. A direct
comparison is shown in Figure 1. Let X denote a
given input, and Y m and Y n denote the outputs
of two tasks, respectively. The first two MTL
schemes (Liu et al., 2017; Zheng et al., 2018;
Sanh et al., 2018) substantially model the like-
lihood by P (Y m, Y n|X)=P (Y m|X)P (Y n|X)
while the third MTL scheme (Bekoulis
et al., 2018; Luan et al., 2019) models it by:
P (Y m, Y n|X)=P (Y m|X)P (Y n|X,Y m). From
the causal perspective, the first two schemes
assume that Y m and Y n are conditional indepen-
dent, while the third scheme assumes that Y m has
a causal effect on Y n. In this paper, we suggest
that the causal effect is important for logically
dependent tasks. And we propose a mechanism
referred to label transfer (LT), which lets a task
utilize the labels of all its lower-level tasks.

When utilizing discrete labels, there remains an-
other issue. For example, the strategy in (Bek-
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oulis et al., 2018) used gold labels of low-level
tasks during training and used predicted ones dur-
ing testing. Apparently, there was a train-test dis-
crepancy which leads to cascading errors between
tasks. And it was similar to the exposure bias
problem in the field of text generation (Ranzato
et al., 2016). Recently, two approaches have been
investigated to overcome the problem, which are
Gumbel Sampling (GS) (Kusner and Hernández-
Lobato, 2016; Nie et al., 2019) and Reinforce-
ment Learning (RL) (Yu et al., 2017; Guo et al.,
2018). In this paper, we regard the logically depen-
dent MTL as a task-level label generation problem.
And we incorporate GS because it feeds the opti-
mizer with low-variance gradients, improving sta-
bility and speed of training over RL. Specifically,
our model samples a label from the predicted prob-
ability distribution for each task and feeds it to its
higher-level tasks. And back-propagated gradients
will penalize wrong predictions if the causal ef-
fect exists. From the perspective of causal infer-
ence, the sampling is a counterfactual reasoning
process that can estimate the causal effect between
different tasks’ labels. And we hope a model prop-
erly cooperating causality will be more robust and
transferable, as argued in (Schölkopf, 2019).

To verify the effectiveness of our model, we
conduct experiments on two English and one Chi-
nese MTL datasets. The results show that our
model achieves state-of-the-art (SOTA) on 6 out of
7 subtasks and improves predictions’ consistency.
And we present the estimated causal effect for sev-
eral cases, which is consistent with humans’ prior
knowledge. In conclusion, the contributions of
this paper can be summarized as follows:

• We view MTL from the causal perspective
and suggest a mediation assumption instead
of the confounding assumption in conven-
tional MTL models.

• We propose a novel MTL model with two key
mechanisms: label transfer and Gumbel sam-
pling, which better utilize task dependencies
and alleviate cascading errors.

• The experiments are carried on both English
and Chinese datasets and demonstrate our
model’s effectiveness and better consistency
of predicted results for subtasks.

2 Related Work

In natural language processing (NLP), many stud-
ies focus on modeling task dependencies to im-
prove MTL. A line of work proposed hierarchical
MTL architectures by stacking the encoders of dif-
ferent tasks with simple tasks at lower layers and
complex tasks at top layers (Sgaard and Goldberg,
2016; Hashimoto et al., 2017; Sanh et al., 2018).
And Zhong et al. (2018) proposed a topological
MTL architecture based on the topological hier-
archy of tasks. Another line of work tried to re-
encode the predictions of low-level tasks. Giannis
et al. (2018) re-encoded the predicted labels with
the highest probability of low-level tasks during
testing, and encoded the gold labels during train-
ing. Luan et al. (2019) re-encoded the soft predic-
tions during testing and also encoded the gold ones
during training. Yang et al. (2019) proposed a bidi-
rectional architecture producing initial probability
distributions for different tasks and then refine the
probability distributions by conditioning on each
other during both training and testing.

Our work is also related to some studies for
text generation. The democratic and hierarchical
MTL schemes in Figure 1 are similar to the non-
autoregressive language models like BERT (De-
vlin et al., 2019) which is possible to generate syn-
tactically incorrect sentences (Ghazvininejad et al.,
2019). The logically dependent MTL scheme is
similar to the autoregressive language model but
remains a train-test discrepancy. GS or RL learn-
ing have been investigated to deal with the dis-
crepancy (Kusner and Hernández-Lobato, 2016;
Yu et al., 2017; Guo et al., 2018; Nie et al., 2019).

3 Task Definition

To show that our method’s high versatility, we in-
vestigate three different MTL scenarios: joint en-
tity and relation extraction (JERE), aspect-based
sentiment analysis (ABSA), and legal judgment
prediction (LJP).

3.1 Joint Entity and Relation Extraction

JERE includes entity mention extraction (EMD)
and relation extraction (RE) (Li and Ji, 2014).
Entity Mention Extraction. EMD can be for-
mulated as a sequence labeling problem with a
BILOU scheme (Sanh et al., 2018). Given a se-
quence of tokens X = {x1, x2, ..., xn}, EMD as-
signs a categorical label to each token Y (e) =
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notes a predefined set of categories.
Relation Extraction. RE can be formulated
as a multi-head selection problem (Bekoulis
et al., 2018). For the given sentence X , RE
will output a three-dimensional matrix Y (r) =

{y(r)i,j,c}, i≤n, j≤n, c ∈ C(r) where y(r)i,j,k denotes a
binary value representing the existence of the cth
relation between the ith and the jth tokens, and
C(r) denotes the set of categories. Consistent with
(Bekoulis et al., 2018), we only consider relations
between the last token of the head entity mentions.
Redundant relations are therefore not classified.

3.2 Aspect Based Sentiment Analysis
The challenge of "SemEval-2014 Task 4" divides
ABSA into four subtasks (Pontiki et al., 2014), and
we consider two subtasks which are logically de-
pendent.
Aspect Term Extraction. ATE can also be formu-
lated as a sequence labeling problem with BILOU
scheme (Li et al., 2019) or BIO scheme (Luo et al.,
2019b; He et al., 2019). Similar to EMD, ATE
assigns a categorical label to each token Y (t) =[
y
(t)
1 , y

(t)
2 , ..., y

(t)
n

]
, y

(t)
i ∈ C(t) where C(t) denotes

a predefined set of categories.
Aspect Category Detection. ACD is to detect
the aspect categories for the given sentence X ,
which can be formulated as a multi-label classi-
fication problem. Let C(d) denotes a predefined
set of categories, we need to predict a label set
Y (d) = {y(d)c }, c ∈ C(d) for the given sentence X

where y(d)c is a binary value representing existence
of the cth category.

3.3 Legal Judgment Prediction
LJP aims to predict the judgment results of legal
cases, such as relevant law articles and charges.
In this paper, we consider three subtasks for Chi-
nese LJP: Relevant Article Prediction (RAP),
Charge Prediction (CP), and Prison Term Pre-
diction (PTP). Following previous work (Zhong
et al., 2018; Yang et al., 2019), we only consider
those cases with single relevant article and sin-
gle charge, and divide the prison term into non-
overlapping intervals. Then each subtask can be
formulated as a single-label classification problem.
Specifically, for the given case X , LJP is to assign
labels y(a) ∈ C(a), y(c) ∈ C(c), y(p) ∈ C(p) where
C(a), C(c) and C(p) are the sets of categories of RAP,
CP, and PTP, respectively.

For the three MTL scenarios, the common point
is that the subtasks in each are logically depen-
dent. And we have prior knowledge of that the
logical orders are EMD→RE, ATE→ACD, and
RAP→CP→PTP respectively. And the first sce-
nario is to investigate the knowledge transfer be-
tween two token-level tasks, and the second sce-
nario is from a token-level to a sentence-level task.
The third is among three sentence-level tasks.

4 Methodology

In this section, we first analyze MTL from the
causal perspective in Subsection 4.1 and then in-
troduce our models in the following subsections.
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Figure 2: Two kinds of typical causal assumptions. Let
H be the feature representation for X , and Y m and
Y n be the outputs for two tasks tm and tn, respectively.
The confounding assumption (the left sub-figure) con-
siders Y m and Y n to be conditionally independent,
while the mediation assumption (the right sub-figure)
considers the logical dependency from Y m to Y n.

4.1 Basic Causal Assumptions

LetX,Y be two variables representing a sequence
of text and the corresponding label, and H be the
feature representations of X . The causal graph is
thereforeX→H→Y . Previous work suggests that
MTL may help extract common useful features
(Liu et al., 2017), which mainly enhance the pro-
cess X→H . When considering H→Y , there are
two possible causal assumptions for MTL: the con-
founding and mediation shown in Figure 2 where
Y m and Y n are the outputs of task tm and tn re-
spectively.

The confounding assumption is that Y m and
Y n are conditionally independent and only deter-
mined by H . However, For logically dependent
tasks, we suggest a mediation assumption that Y m

has a causal effect on Y n. Specifically, the as-
sumption includes two causal paths between Y m

and Y n. One links Y m to Y n through the media-
tor H (the solid line), known as the indirect effect.
The other links Y m to Y n directly (the dashed
line), known as the direct effect.

It is worth noting that someone may argue that
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Figure 3: The full causal graphs of four types of MTL models: (a) Fully-Shared MTL shares the feature represen-
tation Hs for all tasks; (b) Shared-Private MTL learns a task-specific representation Hk based on Hs for task tk;
(c) Hierarchical MTL stacks the encoders of different tasks; (d) Our model Causal MTL further incorporates the
inter-task causality through the indirect causal path, THk−1→Hk→Y k, and the direct causal path, THk−1→Y k.

Y m and Y n can have mutual causal effects on
each other, but the causal graphs are acyclic in
most cases. Moreover, recent work has demon-
strated that the hierarchical order matters (Sanh
et al., 2018).

4.2 Full Causal Graphs
We denote our model as causal multi-task learning
(CMTL) and show the full causal graphs in Figure
3 when considering more than two tasks. We also
compare with other three typical MTL models, in-
cluding fully-shared multi-task learning (FSMTL),
shared-private multi-task learning (SPMTL), hi-
erarchical multi-task learning (HMTL). FSMTL
shares the feature representation Hs for all tasks,
and SPMTL learns a task-specific representation
Hk based on Hs for task tk. HMTL stacks the
encoders of different tasks. Our model CMTL
is derived from HMTL, but the main difference
is that CMTL incorporates the inter-task causal-
ity through two paths. It first creates an inter-
mediate variable THk−1 conveying the label in-
formation of all tasks preceding tk. Then the
model involves the indirect causal effect by the
path THk−1→Hk→Y k. And it also involves the
direct causal effect by the path THk−1→Y k.

4.3 Model Details
The architecture of our model is shown in Figure
4. Generally, the indirect causal effect is imple-
mented by the solid lines connecting "Label Trans-
fer" and "Encoders". And the direct causal effect is
implemented by the dashed lines connecting "La-
bel Transfer" and "Predictors".
Token Embedding. Firstly, given an input sen-
tence, X with length n, a token embedding layer
is used to map each token into a fixed-dimensional
vector. When combining with BERT (Devlin et al.,

Token Embedding X
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Hm→n
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X

Label 
Embedding

Label 
Embedding

Label 
Embedding

Label  
Transfer

Encoder(k−2) Encoder(k−1) Encoder(k )

Predictor(k−2) Predictor(k−1) Predictor(k )

Label  
Transfer

Figure 4: The architecture of CMTL. The indirect and
direct causal paths are implemented by the solid lines
connecting "Label Transfer" and "Encoders", and the
dashed lines connecting "Label Transfer" and "Predic-
tors", respectively.

2019), we will keep it fixed during training to save
the cost of memory. And BERT will convert X
to a sequence of WordPiece tokens with a length
greater than n. To make it suitable for token-level
tasks, we select the first WordPiece token embed-
ding for each original token. Furthermore, we use
the normalization of different layers, which is sim-
ilar to ELMo (Peters et al., 2018) to utilize deep
and shallow embeddings. The final token embed-
dings are denoted by E = {ei}1≤i≤n.

Label Embedding. As shown in Figure 4, label
embedding layers are used to encode the labels of
tasks. We denote the gold label of task tk as Y k =
{yki }, yki ∈ Ck where Ck is the set of categories.
Let 1≤i≤n when tk is a token-level task, and let
i=0 when tk is a sentence-level task (Y k contains
only one element). Then our model encode Y k

to label embeddings LEk = {leki }. Specifically,
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our model convert yki to a one-hot vector yk
i , and

compute the label embedding by:

leki = W kyk
i (1)

where W k is the parameter matrix for task tk with
shape dl × |Ck| and dl is the dimension of label
embeddings. In this way, the labels of different
tasks are mapped into the same latent space.
Label Transfer. After label embedding, for a task,
we want our model to utilize the label information
of all its preceding tasks instead of only the last
one. This process is naturally suitable for recur-
rent neural networks (RNNs) in which the k-th el-
ement depends on its preceding k−1 elements. In
our model, RNN-LSTM (Hochreiter and Schmid-
huber, 1997) is adopted for LT which maintains
transferred hidden states THk = {thk

i } for task
tk. And the computation of thk

i can be expressed
as:

thk
i =

−−−−→
LSTM

(LT)
(lek−1

i , thk−1
i ) (2)

Similarly, we have 1≤i≤n when tk is a token-
level task, and let i=0 when tk is a sentence-level
task. It means that Equation 2 can be used for
token-level or sentence-level transfer.
Encoders. Then the transferred label will be fed
to encoders. As shown in Figure 4, the inputs
of Encoder(k) include three parts: the token em-
beddings, the transferred label, and the outputs of
(k−1)th encoder. And the outputs Hk can be rep-
resented by:

Hk = Encoder(k)
(
E, THk−1,Hk−1

)
(3)

Generally, the choice of encoder falls into
three categories: RNN, CNN, and Transformer
(Vaswani et al., 2017). And we mainly implement
RNN and CNN in our model because the memory
complexity of Transformer is O(n2) (Kitaev et al.,
2020), which is much higher for long text.

For the MTL scenarios JERE and ABSA, the
encoders are based on bidirectional LSTM (BiL-
STM). Equation 3 becomes:

Hk=BiLSTM(k)
(
E ⊕ THk−1 ⊕Hk−1

)
(4)

where ⊕ denotes the concatenation operation
along the last dimension. And Hk is the feature
representation of X for task tk with shape n× dh,
and dh is the size of hidden states.

For the MTL scenario LJP, the subtasks are all
sentence-level classification tasks and we empiri-
cally find that involving CNN performs better than
simply adopting BiLSTM (see Section 5.4). And
we employ CNN encoders (Kim, 2014) followed
with max pooling to generate initial sentence-level
representations hk

init and a shared LSTM layer to
generate final representations hk

0 for task tk:

hk
init = pool

(
CNN(k) (E)

)
(5)

hk
0 =

−−−−→
LSTM

(s) (
hk
init ⊕ thk−1

0 , hk−1
0

)
(6)

where thk−1
0 denotes the sentence-level trans-

ferred label embedding.
Predictors. Then the predictors will process Hk

(or hk
0) and THk−1 (or thk−1

0 ) as follows:

ŷk
i = Predictor(k)

(
hk
i ⊕ thk−1

i

)
(7)

where 1≤i≤n for JERE and ABSA, and i=0 for
LJP. And ŷk

i is the predicted probability distribu-
tion with shape for the categories in Ck. The pre-
dictors are simply based on fully connected net-
works, and sequence labeling tasks do not involve
conditional random field (CRF) (Lafferty et al.,
2001). More details can be found in Appendix.

4.4 Gumbel Sampling
During the training stage, for task tk, we
can pre-train the network using the gold labels
Y j={yji }j<k of all the low-level tasks. However,
the train-test discrepancy has not been tackled be-
cause the model uses predicted labels of low-level
tasks during testing. To deal with the problem, we
use GS to sample a label from the predicted prob-
ability distribution ŷj

i . Specifically, we assume
that Predictor(j) involves a logit value oj

i followed
with a softmax function to produce the probability
distribution ŷj

i .

ŷj
i = softmax(oj

i ) (8)

Gumbel-softmax uses a re-parameter trick to ap-
proximate the multinomial sampling by:

ỹj
i = softmax((oj

i + g)/τ) (9)

where g samples from Gumbel(0, 1) and τ is the
temperature. When τ→0, ỹj

i approximated to the
one-hot vector of a sampled value from ŷj

i . During
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training, our model will replace gold labels by ỹj
i .

And then a low-level task will have certain prob-
abilities to sample a counterfactual value, and get
feedback from high-level tasks if the causal effect
is actually existed.

4.5 Interpretation From a Causal Perspective
After training, we attempt to interpret our model
from a causal perspective to inspect what matters
for predictions. The key idea is causal effect es-
timation from observed data (Veitch et al., 2019),
which is based on Pearl’s theory with the interven-
ing operation (Pearl, 2010). Considering two tasks
tm and tn, we would estimate the causal effect of
a label ymi of task tm on a label ynj of task tn. We
first intervene ymi to get a random counterfactual
value ymi ̸=ymi . Under the mediation assumption,
the average causal effect is estimated by:

Ψ
(
ymi , y

n
j

)
= E

[
f
(
ynj |ymi ,Hn(ymi )

)]
− E

[
f
(
ynj |ymi ,Hn(ymi )

)] (10)

where E(·) stands for the expectation operation on
the observed data, and f(ynj |ymi ,Hn(ymi ) stands
for the predicted probability of ynj given ymi and
the corresponding features Hn(ymi ) for task tn.

Besides estimating the causal effect of labels,
we also inspect the influence of the elements in
X like n-grams. We can intervene the original
sequence to get another text sequence Xxg with
an n-gram xg masked out. Since n-grams may be
quite sparse, only the individual causal effect is es-
timated:

ψ
(
xg, y

n
j

)
= fn

(
ynj |X

)
− fn

(
ynj |Xxg

)
(11)

where fn(·) represents the prediction for task tn

given a text sequence.

Dataset Train Dev Test Type

JERE
351 80 80 Document

7,273 1,765 1,535 Sentence

ABSA 2,587 457 800 Sentence

LJP 102,177 13,143 25,149 Document

Table 1: Statistics of three MTL datasets.

5 Experiments

5.1 Datasets
To verify the effectiveness of our model, we ex-
periment on three datasets corresponding to three

MTL scenarios. For JERE, we use the ACE05
corpus (Doddington et al., 2004), which covers 7
types of entities and 6 types of relations. We use
the same data splits as previous work (Katiyar and
Cardie, 2017; Sanh et al., 2018). For ABSA, we
use restaurant domain reviews of SemEval-2014
task 4 (Pontiki et al., 2014). ATE is a simple BIO
tagging task, and ACD is a multi-label classifica-
tion task with 5 categories. Furthermore, we ran-
domly hold-out 15% of the training data as the de-
velopment set. For LJP, we use the CAIL (Chi-
nese AI and Law Challenge) 2018 dataset. Fol-
lowing (Zhong et al., 2018; Yang et al., 2019), we
only consider those cases with a single law article
and single charge. Meanwhile, those infrequent
law articles and charges (less than 100 in the train
set) are not included. And we divide the terms
into non-overlapping intervals, which is consistent
with (Zhong et al., 2018). The number of cate-
gories for RAP, CP, and PTP is 94, 116, and 11,
respectively. The statistics of the filtered datasets
can be found in Table 1.

5.2 Baselines

The compared models include two single-task
models which use BiLSTM and CNN (Kim,
2014) as encoders respectively, and three conven-
tional multi-task models including FSMTL (Liu
et al., 2017; Zheng et al., 2018), SPMTL (Liu
et al., 2017; Zheng et al., 2018), and HMTL (Sanh
et al., 2018). Besides these models, we also com-
pare several SOTA models for each MTL scenario,
which will be cited in the following subsections.

5.3 Evaluation and Settings

The evaluation metrics are micro Precision (P), Re-
call (R), and F1 scores for each subtask in JERE
and ABSA. For LJP, the evaluation metrics are ac-
curacy (Acc.), macro P, macro R and macro F1

scores which are consistent with (Zhong et al.,
2018; Yang et al., 2019).

For all models, we use the Allennlp framework
to build neural networks (Gardner et al., 2018).
The hidden size of BiLSTM and label embed-
dings is 300. We also investigate each model with
BERT-large-uncased (Devlin et al., 2019) or 300-
dimensional Glove (Pennington et al., 2014) for
JERE and ABSA. For LJP, since it is a Chinese
dataset, we use THULAC (Maosong et al., 2016)
for word segmentation. We randomly initialize the

http://cail.cipsc.org.cn/index.html
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Tasks EMD RE ATE ACD

Metrics P R F1 P R F1 P R F1 P R F1

STL
BiLSTM 80.60 72.55 76.36 52.89 35.49 42.48 75.99 70.90 73.36 85.88 83.71 84.78
BiLSTM + BERT 86.36 87.66 87.01 66.86 53.35 59.35 85.08 88.01 86.52 89.80 87.61 88.69

MTL

FSMTL 73.85 75.02 74.43 54.06 25.03 34.22 77.80 72.93 75.29 76.63 50.54 60.90
SPMTL 80.39 71.61 75.75 60.17 40.66 48.53 75.92 74.51 75.21 89.10 83.71 86.32
HMTL 63.98 74.91 69.01 56.15 39.13 46.12 69.59 79.72 74.31 89.04 83.22 86.03
FSMTL + BERT 87.09 86.56 86.82 54.54 29.61 38.38 85.19 86.77 85.98 79.46 48.68 60.38
SPMTL + BERT 86.52 87.45 86.98 56.69 61.69 59.09 85.04 89.77 87.34 89.42 88.20 88.80
HMTL + BERT 86.82 87.33 87.07 64.42 58.52 61.33 85.34 89.33 87.29 90.01 87.02 88.49

SOTA for JERE
(Sanh et al., 2018) (With CR) * 87.15 87.33 87.24 70.40 56.40 62.69 - - - - - -
(Dixit and Al-Onaizan, 2019) 85.85 86.10 85.98 68.02 58.38 62.83 - - - - - -
(Luan et al., 2019) (With CR) * - - 88.40 - - 63.20 - - - - - -

SOTA for ABSA
(Luo et al., 2019a) - - - - - - - - 85.31 - - -
(Xue et al., 2017) - - - - - - - - 83.65 - - 88.91
(Movahedi et al., 2019) - - - - - - - - - 91.60 89.63 90.61

Ours
CMTL 79.84 71.39 75.38 55.48 44.07 49.12 80.27 78.92 79.59 89.08 85.96 87.49
CMTL + BERT 88.29 87.53 87.91 69.45 62.51 65.80 87.24 88.62 87.93 93.24 88.88 91.00

Gold Labels
CMTL + BERT (Gold EMD) - - - 69.63 67.10 68.34 - - - - - -
CMTL + BERT (Gold ATE) - - - - - - - - - 92.26 90.73 91.49

Table 2: Experiment results of different models for JERE and ABSA. The results marked with (*) means that their
models use an additional task, Coreference Resolution (CR). Note that previous SOTA models are task-specific,
which means that the SOTA models for JERE (or ABSA) are not ready for ABSA (or JERE). The rows with "Gold
Labels" means using gold labels of low-level tasks.

Tasks RAP CP PTP

Metrics Acc. P R F1 Acc. P R F1 Acc. P R F1

STL
BiLSTM 84.94 84.25 81.17 81.98 84.06 83.72 81.22 81.59 38.44 36.32 32.38 32.93
CNN 86.49 86.67 83.43 84.23 86.95 86.14 85.01 84.95 38.80 35.13 34.42 34.06

MTL
FSMTL-CNN 86.47 85.50 83.30 83.64 86.89 86.52 84.56 84.87 38.68 36.98 34.12 35.08
SPMTL-CNN 86.42 86.31 82.84 83.82 87.50 87.43 84.18 85.03 39.09 37.58 33.89 35.04
HMTL-CNN 87.17 87.04 83.58 84.54 86.64 85.92 84.76 84.63 38.61 36.03 35.02 35.27

SOTA
(Zhong et al., 2018) 85.95 86.63 83.18 84.10 85.47 84.72 83.58 83.37 38.45 38.48 34.71 35.63
(Yang et al., 2019) 85.82 85.87 82.66 83.63 85.39 84.46 83.31 83.09 37.11 38.50 33.96 35.29

Ours CMTL 86.85 87.20 84.09 84.93 87.64 87.53 85.08 85.69 39.61 40.70 35.50 37.35

Gold Labels
CMTL (Gold RAP) - - - - 97.68 96.56 97.04 96.63 41.71 40.14 37.38 38.15
CMTL (Gold RAP, CP) - - - - - - - - 41.86 40.39 37.58 38.37

Table 3: Experiment results of different models for LJP. The rows with "Gold Labels" means using gold labels of
low-level tasks.

word embeddings. For CNN-based models, we set
the number of filters as 512 and the sliding window
length as 2,3,4,5 (each window contains 128 fil-
ters). The temperature of GS τ is set to 0.05. The
batch size is 32, and the learning rate is 5 × 10−4.
The maximum training epochs for JERE, ABSA,
and LJP are 80, 20, and 10 respectively, and each
model will stop training when F1 scores reach the
lowest on the development set in past 10 epochs
(the patience is set to 10). Moreover, a special set-
ting for LJP is that we pre-train our model for 5
epochs with gold labels and train the next 5 epochs
with GS. For the other two MTL scenarios that
have fewer categories of labels, pre-training is not
involved. We report the averaged metrics after the
training process is repeated 5 times.

5.4 Main Results

We first present the experiment results on two En-
glish datasets for JERE and ABSA, respectively,
in Table 2. Regarding JERE, our model achieves
a SOTA result on RE and beats the model pro-
posed by (Luan et al., 2019), which uses an addi-
tional task (coreference resolution, CR) by 2.60 F1

points. Among the models without CR, our model
achieves the best results on both EMD and RE, im-
proving F1 scores by 1.93 and 2.97 points, respec-
tively. Regarding ABSA, our model achieves new
SOTA results on ATE and ACD, which increases
F1 scores by 2.62 and 0.39 points, respectively. Ta-
ble 2 also shows the results of conventional MTL
models, including FSMTL, SPMTL, and HMTL.
Our model consistently outperforms them when
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using or not using BERT embeddings.
Then we present the experiment results on the

Chinese dataset for LJP in Table 3. Note that
"HMTL-CNN" is not merely replacing the BiL-
STM encoders of "HMTL" by CNN, because we
empirically find this way does not perform well.
Therefore, we denote the ablated model of our
model as "HMTL-CNN" which is consistent with
the scenarios JERE and ABSA. It is also worth
noting that the previous SOTA models for LJP are
re-implemented by us because we get slightly dif-
ferent data splits after preprocessing the dataset.
Moreover, they did not utilize the development set
and only tested their models after training certain
epochs. As a result, some models may greatly suf-
fer from overfitting at the final epoch. In our ex-
periments, as shown in Table 3, previous SOTA
models perform best on PTP, and our model fur-
ther improves the F1 scores by 1.72 points over
the best of them. Compared with other baseline
models, our model performs best on all subtasks.

We also show the results of a toy experiment
where our model uses gold labels of low-level
tasks in Table 2 and 3. In the three MTL sce-
narios, using gold labels of low-level tasks leads
to performance gains to high-level tasks. The re-
sults confirm the existence of label dependencies
between tasks. It means that if humans rectify the
predictions of low-level tasks, our model can uti-
lize them to improve the predictions of high-level
tasks. And conventional MTL models can not uti-
lize this information because they assume the la-
bels to be conditional independent.

Tasks EMD RE ATE ACD RAP CP PTP

Metrics F1 F1 F1 F1 F1 F1 F1

CMTL 87.91 65.80 87.93 91.00 84.93 85.69 37.35
HMTL+LT 87.57 63.56 87.09 89.69 84.01 84.67 35.61
HMTL 87.07 61.33 87.29 88.49 84.54 84.63 35.27

CMTL (Indirect) 87.74 65.66 87.66 90.86 84.84 85.28 37.21
CMTL (Direct) 87.11 64.09 87.89 90.52 84.51 84.81 37.02

Table 4: Ablation analysis. The mechanisms GS and
LT are eliminated from CMTL one after another, re-
sulting in models "HMTL+LT" and "HMTL", respec-
tively. Furthermore, only keeping the indirect or the
direct causal path of LT results in models "CMTL (In-
direct)" and "CMTL (Direct)", respectively.

5.5 Ablation Study

To analyze which mechanisms are driving the im-
provements, we present the results of an ablation
study in Table 4. We first eliminate GS and LT

from CMTL one after another, which results in
models "HMTL+LT" and "HMTL". As shown,
GS and LT are both influential, especially for high-
level tasks. For example, eliminating GS leads
to a drop of F1 score by 2.24 points on RE, and
eliminating the two mechanisms leads to a signifi-
cant drop of 4.47 points. Moreover, we only keep
the indirect and the direct causal path of CMTL,
which results in models "CMTL (Indirect)" and
"CMTL (Direct)" respectively. Both the two ab-
lated models perform slightly worse than CMTL.
Moreover, the indirect causal path is more impor-
tant than the direct one for most subtasks.

51 1 14 19 5 26 12 2 5 0
149 9

The defendant Jiang and others went to the residence of the victim Zhong. 
… During this period, Jiang and others snatched 5,000 yuan of cash and 
bank card from Zhong’s wallet, and forced Zhong to tell the bank card 
password. … After succeeding, Jiang and others sent Zhong to 
Huangjiang Town and fled with the money.

Case 2 for LJP:

Relavant Article Charge Prison Term
HMTL 238 (√) Kidnapping (×) 24-36 Months (×)
CMTL 238 (√) Illegal Detention (√) 12-24 Months (√)

Article 238: Those who illegally detain others or deprive others of their 
personal freedom shall be sentenced to fixed-term imprisonment, which is 
not more than three years.

Three people were killed and about 50 injured when another Briton,      
Asif Muhammad Hanif, 21, from London, detonated explosives strapped 
to his body.
EMD:             B-PER, I-PER, L-PER U-LOC

Case 1 for JERE:

HMTL: None  (×) CMTL: GEN-AFF 133 (√)RE:

Figure 5: Example cases with the prediction results of
HMTL and CMTL. The symbol

√
denotes a correct

prediction and × denotes a wrong prediction.

5.6 Case Study

Influence of Label Transfer. Generally, LT en-
ables a high-level task to utilize all its lower-
level tasks’ predictions and, therefore, improves
the consistency of the predicted results. To di-
rectly see the influence, we give some cases in Fig-
ure 5. For example, in Case 1, both HMTL and
CMTL successfully recognize the entities, includ-
ing "Asif Muhammad Hanif" and "London". Nev-
ertheless, HMTL does not correctly predict their
relationship "GEN-AFF" (citizens and the place
they come from) while CMTL correctly predicts
it. Another example is Case 2, which shows the
translated document of a Chinese legal case. As
shown, the relevant law is Article 238, which de-
scribes the crime of illegal detention. But the pre-
dicted charge of HMTL is kidnapping, which is a
more serious crime. These inconsistent judgments
are unacceptable to the judge or the public in prac-
tice.
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Illegal
Detention

Illegal Trade
of Drug-
Making

Causing
Traffic

Accident

Dangerous
Driving

Article 238 0.30 - - -
Article 350 - 0.90 - -
Article 133 - - 0.07 0.04

Table 5: The estimated causal effects of several law
articles on certain charges in our model for LJP. The
symbol "-" represents that the estimated effect is below
0.001.

Estimated Causal Effect. To show that the esti-
mated causal effect (computed by Equation 10) in
our model is consistent with humans’ prior knowl-
edge, we present some results in Table 5. As
shown, Article 238 has a causal effect on Illegal
Detention with 0.30 points, and has no effect on
other charges. This is consistent with legal knowl-
edge (view Article 238 in Figure 5). And Article
350 has a causal effect on Causing Traffic Acci-
dent with 0.90 points that are quite high. The rea-
son may be that Article 350 has only 163 samples
in the train set, while Article 238 has 1,427 sam-
ples. The confidence of infrequent labels can be
greatly improved by knowing the low-level gold
labels. The third row shows the kind of one-to-
many causal effect that Article 133 has a causal
effect on both Causing Traffic Accident and Dan-
gerous Driving. But the effect is small, and the
prediction should mainly count on the features ex-
tracted from the input text.

�!��%5:��#6�����'<��12,
?�;=8�
�����:��$��%%5:��)�-37
�4?+�$�
�%%��?	
	������>�!��%
������>

Case 3 for LJP:

Influential 4-grams Article 133 Article 233

HMTL+LT

	, ��, ��, �� (N1) -0.47 0.48


, ��, ��, �� (N2) 0.45 -0.45

CMTL

	, ��, ��, �� (N1) -0.02 0.02


, ��, ��, �� (N2) 0.80 -0.79

The defendant, Zhang, was driving a heavy tank tractor with unqualified 
safety facilities, and collided with an unlicensed two-wheeled motorcycle 
driven by the victim Zhang,… The victim Zhang was injured and died after 
being rescued by the hospital (N1). The defendant Zhang was mainly 
responsible for the accident (N2).

HMTL+LT: Article 233 (×) CMTL: Article 133 (√)Prediction:

Figure 6: The estimated causal effects of 4-grams. Ar-
ticle 133 is about dangerous driving, and Article 233
is about negligently causing one’s death. Although the
two law articles both describe one’s death, Article 133
has priority in the event of traffic accidents.

Influence of Gumbel Sampling. GS enables
a low-level task to get useful feedback from its

higher-level tasks. To see the influence, we show
another case for task RAP (the lowest-level task in
LJP) in Figure 6. As shown, the gold label of the
case is Article 133, which is about dangerous driv-
ing. Without GS, the model HMTL+LT predicts
an incorrect result, Article 233, about negligently
causing one’s death. The two law articles both de-
scribe one’s death, but Article 133 has priority in
the event of traffic accidents. Figure 6 shows the
estimated causal effect of each 4-gram (computed
by Equation 11). CMTL captures the priority of
Article 133 by understanding that the translated n-
gram "mainly responsible for the accident" is more
important (with a causal effect of 0.80 on Article
133) than the n-gram "died after being rescued by
the hospital" (with a causal effect of −0.02).

6 Conclusion

In this paper, we investigated the MTL problem
with logically dependent tasks. We first analyze
MTL models from the perspective of causal infer-
ence and then propose a model CMTL to utilize
task dependencies properly. The model achieves
SOTA results on 6 out of 7 subtasks and improves
the consistency of predicted results of different
subtasks. In the future, we are interested in so-
cial science topics, such as modeling the causal
effect between mental health and the suicide deci-
sions reflected through social media, which may
help predict and stop the final decisions.
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A Details of Predictors and Loss
Function

The subtasks in three MTL scenarios can be cate-
gorized into four types: sequence labeling, inter-
token multi-label classification, multi-label text
classification, and single-label text classification.
Since the primary goal of our work is to investi-
gate the task dependency, the architectures of pre-
dictors are based on simple fully-connected neural
networks (FCNNs).

• If the task tk is EMD or ATE which belongs
to sequence labeling, given feature repre-
sentations Hk={hk

i }, 1≤i≤n, the prediction
layer will make a token-level prediction as
follows:

ŷk
i = softmax(W k

ph
k
i + bkp) (12)

where W k
p and bkp are the trainable parame-

ters of the FCNN. The loss is computed by
cross-entropy:

Lk = −
n∑

i=1

|Ck|∑
c=1

yki,c log ŷ
k
i,c (13)

where yki,c denotes the ground-truth value of
the cth category for ith token, and Ck is the
set of the categories.

• If task tk is RE which belongs to inter-token
multi-label classification, and the prediction
process can be described by:

ŷk
i,j = σ(V k

pf
(
Uk

ph
k
i +W k

ph
k
j + bkp

)
)

(14)
where ŷk

i,j denotes the predicted probability
distribution of the relations between the ith
and jth tokens. And V k

p , Uk
p , W k

p and bkp are
the trainable parameters of the FCNN. The
symbol σ(·) stands for the sigmoid function,
and f(·) stands for the element-wise activa-
tion function (relu in this paper). The loss
Lre is computed according to cross-entropy:

Lk = −
n∑

i=1

n∑
j=1

|Ck|∑
c=1

yki,j,c log ŷ
k
i,j,c (15)

where yki,j,c denotes the ground-truth value of
the cth category for the relation between the
ith and jth tokens. Note that we only con-
sider relations between the last token of the
head entity mentions. Redundant relations
are therefore not classified.
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• If task tk is ACD which belongs to multi-
label text classification, the prediction pro-
cess is as follows:

hk
0 = pool(Hk) (16)

where hk
0 represents the sentence-level fea-

ture representation obtained by the max-
pooling function pool(·) over the tokens. And
the predicted probability distribution is:

ŷk = σ(W k
ph

k
0 + bkp) (17)

Then the loss is computed by cross-entropy
as follows:

Lk =

|Ck|∑
c=1

ykc log ŷ
k
c (18)

• If task tk is RAP, CP, or PTP which belongs
to single-label text classification, the predic-
tion process is as follows:

ŷk = softmax(W k
ph

k
0 + bkp) (19)

where the difference from multi-label text
classification tasks is the use of softmax(·) in-
stead of σ(·). And the loss is also computed
by cross-entropy:

Lk =

|Ck|∑
c=1

ykc log ŷ
k
c (20)

When considering multi-task learning, we de-
note the set of tasks by T = {t1, t2, ..., tk, ..., tK}
and then sum up the losses of tasks by:

LMT =
K∑
k=1

λkLk (21)

where λk is the hyper-parameter for each task tk.
We empirically set λk = 1.0 in this paper.

B Validation Performance During
Training

We also show the validation performance of sev-
eral models on the highest-level subtask for three
MTL scenarios during training in Figure 7. As
shown, the F1 scores and losses on the develop-
ment set of three models are presented, including

Each model was trained on a Tesla P100 with a maxi-
mum memory of 16GB.

CMTL and two ablated models, HMTL+LT and
HMTL.

For RE, HMTL ran out of patience at about 35
epoch as it reached the lowest F1 score in the past
10 epochs. And HMTL+LT and CMTL kept train-
ing for nearly 80 epochs. The best F1 score of
CMTL was slightly higher than that of HMTL+LT
by 1.86 points, and the loss curve was more stable.
Similarly, for ACD and PTP, the best F1 scores of
CMTL were consistently higher than the other two
models, and the loss of CMTL was relatively sta-
ble. These results demonstrate that our model can
better utilize the task dependencies and be more
robust than the other two ablated models.

Moreover, an interesting result was that the vali-
dation loss of HMTL+LT grew faster than HMTL.
The reason may be that the predicted labels of low-
level tasks in HMTL+LT excessively influenced
the decision of high-level tasks, leading to cascad-
ing errors. If an incorrectly predicted label of the
low-level task is fed, the high-level task will have
high confidence to make a wrong prediction, mak-
ing the loss of HMTL+LT larger than HMTL. By
adding Gumbel sampling, our model achieved the
smallest loss on the development set, which indi-
cated that Gumbel sampling properly considered
the causal effect and alleviated the cascading er-
rors.
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(a) F1 scores on the development set for RE in JERE.
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(b) Loss on the development set for RE in JERE.
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(c) F1 scores on the development set for ACD in ABSA.
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(d) Loss on the development set for ACD in ABSA.
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(e) F1 scores on the development set for PTP in LJP.
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(f) Loss on the development set for PTP in LJP.

Figure 7: The validation performance of the highest-level subtask in three MTL scenarios.


