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Abstract

Recent work raises concerns about the use of
standard splits to compare natural language
processing models. We propose a Bayesian
statistical model comparison technique which
uses k-fold cross-validation across multiple
data sets to estimate the likelihood that one
model will outperform the other, or that the two
will produce practically equivalent results. We
use this technique to rank six English part-of-
speech taggers across two data sets and three
evaluation metrics.

1 Introduction

Gorman and Bedrick (2019) raise concerns about
standard procedures used to compare speech and
language processing models. They evaluate the
performance of six English part-of-speech tag-
gers using multiple randomly-generated training-
testing splits; in some cases, they fail to reproduce
previously-published system rankings established
using a single “standard” split. They argue that
point estimates of performance derived from a sin-
gle training-testing splits are insufficient to estab-
lish system rankings, even when null hypothesis
significance testing is used for model comparison.

In this study, we propose a technique for sys-
tem comparison based on Bayesian statistical anal-
ysis. Our approach, motivated in Section 2 and
described in Section 3, allow us to infer the likeli-
hood that one model will outperform the other, or
even that both models’ performance will be prac-
tically equivalent, something that is not possible
with the frequentist statistical tests used by Gor-
man and Bedrick. Our approach can also be ap-
plied simultaneously across multiple data sets. As
a proof of concept, in Sections 4-5 we apply the
proposed method using the experimental setup of
Gorman and Bedrick, and in Section 6, we use it
to rank the six taggers, compare evaluation met-
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rics, and interpret the results. Our failure to repro-
duce some of earlier reported results leads us to
discuss the impact of repeating experiments, con-
trasting performance in multiple measures and the
advantages of comparing likelihoods in Section 6.
We also discuss the notion of practical equivalence
for speech and language technology.

2 Prior work

Langley (1988) argues that machine learning
should be viewed as an experimental science, and
as such, machine learning technologies should be
evaluated according to their performance on mul-
tiple held-out data sets. Dietterich (1998) pro-
poses a framework for comparing two supervised
classifiers using a null hypothesis tests to deter-
mine whether two classifiers have the same like-
lihood of predicting a correct result. This study
introduces several methods, including a paired
t-test for k-fold cross-validation results. How-
ever, he notes that the assumptions of normal-
ity and independence may not be satisfied in all
cases. Nadeau and Bengio (2000) propose a
correlation-based correction for the Dietterich #-
test procedure which adjusts for the overlap be-
tween folds. Hull (1994) and Schiitze et al. (1995)
propose non-parametric tests for comparing mod-
els across multiple data sets; Salzberg (1997)
proposes Bonferroni-corrected ANOVA analysis.
DemsSar (2006) reports that the Friedman non-
parametric test with the Nemenyi correction makes
fewer assumptions and has greater power than
parametric tests. Other authors (e.g., Luengo et al.,
2009; Garcia et al., 2010; Derrac et al., 2011) fur-
ther adapt the Friedman test for model comparison.

However, as Demsar (2006) notes, there still
does not exist a non-parametric null hypothesis test
designed for use with a repeated measure (i.e., k-
fold) design across multiple data sets. As a result,
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there is no procedure that takes into consideration
the variance in scores of a given data set, at least
within the frequentist paradigm. Demsar (2008)
and Benavoli et al. (2017) enumerate additional
problems with null hypothesis significance testing
(NHST) procedures for model comparison:

e NHST does not estimate probabilities for hy-
potheses; i.e., it does not tell us how likely
two models are to perfrom equivalently,

e NHST p-values conflate effect size and sam-
ple size; i.e., with a sufficiently large sample,
one can claim significance even if the effect
size is trivial,

e NHST yields no information about the null
hypothesis; i.e., one cannot draw further con-
clusions from a failure to reject the null hy-
pothesis, and

* there is no principled way to select an appro-
priate a-level for NHST.

These issues lead Benavoli et al. to reject NHST-
based model comparison in favor of a Bayesian ap-
proach. Bayesian hypothesis tests are defined by a
likelihood function p(d | 6), a probability model
of the data d conditioned on 6, a vector of param-
eters. The prior distribution for 0, p(6) must also
be defined. From these components, a posterior
probability distribution p(6 | d) can then be calcu-
lated and queried (i.e., sampled from) to perform
inference. Various techniques can be used to esti-
mate 0; they are usually related to the differences
in models’ scores using some evaluation metric,
and ultimately, to whether one method is likely to
perform better or worse than the other. Thus, the
posterior distribution can be used to perform model
comparison. Benavoli et al. also introduce the no-
tion of a region of practical equivalence (hence-
forth, ROPE), which allows Bayesian hypothesis
testing to estimate the likelihood that two mod-
els’ results will be functionally indistinguishable.
ROPE defines an interval around a model’s result
- if another model’s performance falls within this
interval - they are deemed practically equivalent.
For example, if one deems that a difference of 1
percentage point in accuracy between models de-
notes practical equivalence, a [—0.01,0.01] inter-
val is used as ROPE. If one model performs at .941
accuracy and another at .949 - they will be deemed
practically equivalent. This allows to protect the

statistical procedure from artifacts and false alarms
of significance. Readers are referred to the acces-
sible tutorial by Benavoli et al. (2017) for further
details.

Corani et al. (2017) generalize Bayesian model
comparison to a repeated measures scenario in
which there are multiple data sets with unequal
score variances. They propose a hierarchical
Bayesian model for estimating the likelihood of
one model performing better, worse, or equiva-
lently, to another. We now proceed to briefly de-
scribe and adapt this procedure to re-evaluate the
findings of Gorman and Bedrick (2019).

3 Bayesian model comparison

Imagine a scenario where one wishes to compare
the performance of two classifiers across g data
sets. By performing m k-fold evaluations, the ex-
perimenter obtains a vector of n = mk obser-
vations, i.e., differences in scores, between the
two models: x; = (x;1,...,X;,). The values in
these vectors are a positive cross-correlation g be-
cause cross-validation introduces overlap in train-
ing data. Let ; denote the mean difference score
on the ith data set, and let dy denote the average
population-level difference. Corani et al. (2017)
propose a hierarchical probabilistic model

X; ~ MVN(lé,, 2,‘),

01...04 ~ t(Uy, 00, V), (1)
01...04 ~ unif(0, 0)

where MVN is a multivariate normal distribution
over the vector of classifier differences with mean
0; and a covariance matrix X; with variance aiz
along the diagonal and Qaiz on the off-diagonal.
Data set variances are drawn from a Student dis-
tribution parameterized by the average population-
level difference 8y and variance 0¢, with u degrees
of freedom. The prior distributions for 8¢, 0y, and
u are defined so as to preserve the robustness of
the model; these are motivated and described in
more detail by Corani et al. (2017). Crucially, we
model the differences obtained in individual runs
using a multi-variate normal distribution oriented
to the per-data set mean differences with a per-
data set variance, and the mean differences using
a unimodal distribution robust to outliers and non-
normality. Per-data set variances are modeled by a
uniform distribution.
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After the model learns the parameter distribu-
tions from experimental data, we obtain a poste-
rior probability distribution p(dg, 0o, u | d). To
infer whether one classifier is more likely to out-
perform another—or whether they are practically
equivalent—we draw N; samples from the poste-
rior distribution. We use decision counters 7.,
Nrope»> and g, to keep track of how many times
the left model was more likely to outperform the
right model, to be practically equivalent to the
right model, and to be outperformed by the right
model, respectively. For each sample of the pa-
rameters, we define the posterior of the mean dif-
ference accuracy on a new unseen data set Opext
as #(0p, 0o, u). We obtain the outcome probabil-
ities by integrating the distribution over the three
intervals—e.g., we obtain the probability that the
left model is better than the right by integrating
from the left end of the distribution to the left edge
of the ROPE interval, and so on—and then incre-
menting the decision counter for the region with
the highest outcome probability. Finally, we com-
pute likelihoods for the three scenarios by divid-
ing the decision counts by the number of sam-
ples drawn: P(left) = 5, P(rope) = "<, and
P(right) = "%g:”

Instead of significance, we thus estimate the
likelihoods that one method is better than the other
(or are practically equivalent). These estimates
follow from observing the beliefs of a Bayesian
model that models the probability of the methods’
mean difference on unseen data sets, after sam-
pling parameters from a meta-distribution which
estimates the difference and variance over the pop-
ulation of data sets with u degrees of freedom.

4 Materials and methods

To compare the results of our study with the ones
obtained by Gorman and Bedrick (2019), we use
the same models, data sets, and evaluation met-
rics.! That is, we compare implementations of
the TnT (Brants, 2000), Collins (Collins, 2002),
LAPOS (Tsuruoka et al., 2011), Stanford (Man-
ning, 2011), NLP4J (Choi, 2016), and Flair (Ak-
bik et al., 2018) part-of-speech taggers using the
Wall St. Journal portions of the Penn Treebank
(v. 3; Marcus et al., 1993) and OntoNotes (v. 5;
Weischedel et al., 2011), two widely-used corpora
of American English financial news. Summary
statistics for this data are given in Table 1.

'http://github.com/kylebgorman/SOTA-taggers

# sentences # tokens
Penn Treebank 49,208 1,173,766
OntoNotes 37,025 901,673

Table 1: Summary statistics for the two corpora.

We perform 20 randomized 10-fold cross val-
idations, obtaining 200 measurements of each
model’s performance on each data set. In each
run, 80% of the data is used for training, 10%
for validation, and 10% for evaluation. We fit
Bayesian models using the baycomp library? and
draw 50,000 samples from the posterior.

Following Gorman and Bedrick, we use three
evaluation metrics. Token accuracy is simply the
number of test data tokens correctly tagged divided
by the total number of tokens, and is the stan-
dard intrinsic evaluation metric used for this task.
OOV accuracy is similar to token accuracy but is
restricted to out-of-vocabulary tokens, i.e., those
found in the test data but not in the training data.
Finally, sentence accuracy is the number of test
data sentences that contain no tagging errors, di-
vided by the number of test sentences. Ground-
truth data is provided by human annotators.>

5 Results

Posterior distributions of the hierarchical models
are visualized in Figures 1-3 and summarized in
Table 2. We define the ROPE to have the same
size as the 95% confidence interval; this is roughly
2-3% for sentence and OOV accuracy, and 0.2%
for token accuracy. Thus, two models are judged
to be practically equivalent in sentence accuracy
if they differ in performance on fewer than 98 sen-
tences of the Penn Treebank or 75 sentences on the
slightly smaller OntoNotes corpus. For token ac-
curacy, they are practically equivalent if they differ
on fewer than 210 PTB tokens or 162 OntoNotes
tokens, respectively.

The hierarchical model estimates, for example,
that TnT, the simplest tagger, would be outper-
formed in token accuracy by any of the other five
taggers 80-90% of the time. However, there is
a surprisingly high chance of practical equiva-
lence in token accuracy between the Collins tag-
ger, LAPOS, and the Stanford tagger; for instance,

"http://github. com/janezd/baycomp
3 Annotation quality for these data has been studied by Rat-
naparkhi (1997) and Manning (2011), among others.
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Token accuracy

Sentence accuracy OOV accuracy

> ~ <

> ~ < > ~ <

TnT Collins 168 003 .829
LAPOS 137 001 .862
Stanford 109 000 .891
NLP4J 152 000 .848
Flair A58 000 .842
Collins LAPOS 16 .617 267
Stanford 180 441 379
NLP4J 137 014 848
Flair 164 000 .836
LAPOS  Stanford 099 822 079
NLP4J 72 112 716
Flair 192 004 805
Stanford NLP4J 206 122 .672
Flair 197 001 .802
NLP4J Flair 150 055 .795

125 001 874 158 550 292
127 000 873 162 305 533
112 .000 .888 088 010 .903
156 000 844 16 002 .882
136 000 .864 094 000 .906
105 215 680 063 842 .095
24 120 756 18 038 845
153 010 837 166 010 .824
157 000 843 138 001 .861
084 829 .087 138 091 771
163 137 .700 161 018 821
190 001 .809 127 003 870
191 200 .609 148 441 411
190 001 .809 130 058 812
148 024 827 092 .619 288

Table 2: Token, sentence, and OOV accuracy ranking likelihoods.

the probability of practical equivalence of the lat-
ter two is 84%. This result is contrary to Gor-
man and Bedrick’s replication of a standard split
evaluation—they report that LAPOS is signifi-
cantly better than the Collins tagger, and that the
Stanford tagger is significantly better than LA-
POS, according to two-tailed McNemar tests at
o = .05—but it is consistent with their subse-
quent failure to consistently reproduce this ranking
using randomly-generated splits and Bonferroni-
corrected McNemar tests. In contrast, NLP4J and
Flair are quite likely to outperform the other tag-
gers, and Flair has an 80% chance of outperform-
ing NLP4J.

Similar results are obtained with sentence accu-
racy, a less-commonly used metric. TnT is once
again quite likely to be outperformed by other
models. Whereas LAPOS is quite likely to outper-
form the Collins tagger, there is an 82% probability
that LAPOS and Stanford taggers will yield practi-
cally equivalent results. Both NLP4J and Flair are
both quite likely to outperform earlier models, and
Flair is most likely to outperform NLP4J.

There is a 55% chance of practical equivalence
between TnT and the Collins tagger for OOV
accuracy. This is somewhat surprising because
the two models use rather different strategies for
OOV inference: TnT estimates hidden Markov
model emission probabilities for OOVs using a
simple suffix-based heuristic (Brants, 2000, 225f.),

whereas the Collins tagger, a discriminatively-
trained model, uses sub-word features developed
by Ratnaparkhi (1997) to handle rare or unseen
words. Similarly, whereas NLP4J and Flair also
use distinct OOV modeling strategies, we estimate
that they have a 62% likelihood to achieve practi-
cal equivalence on this metric.

6 Discussion

Using the methods above, we obtain the following
likelihood-based performance rankings:

* token accuracy: TnT < Collins ~ LAPOS ~
Stanford < NLP4J < Flair,

* sentence accuracy: TnT < Collins < LAPOS
~ Stanford < NLP4J < Flair, and

* OOV accuracy: TnT = Collins ~ LAPOS <
Stanford I NLP4J ~ Flair.

We also find some divergences from the results
reported by Gorman and Bedrick. For instance,
they find that the Stanford tagger has significantly
higher token accuracy than LAPOS on the Penn
Treebank standard split. According to our model,
the two taggers are most likely practically equiv-
alent, a result which is consistent with their later
finding that Stanford outperforms LAPOS on only
1 out of 20 Penn Treebank random splits. We also
find out that while both taggers were practically
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equivalent in both token and sentence accuracy,
Stanford is likely to outperform LAPOS in OOV
words, which could have impacted the statistical
significance in the original experiment, as the rep-
etition of the k-fold procedure causes strong vari-
ation - of the vocabulary available at training and
OOV token sets - between experimental runs.

We note that Bayesian comparison and the pre-
cise quantities it estimate may give insights into
the particular strengths and weaknesses of the var-
ious models and evaluation metrics. For instance,
we infer that whereas the Collins tagger improves
upon TnT, and Flair improves upon NLP4J, in both
token and sentence accuracy, these improvements
are not likely to be due to differences in the mod-
els’ handling of out-of-vocabulary words. This is
because TnT and the Collins tagger, and NLP4J
and Flair, are most likely practically equivalent in
their tagging accuracy for OOV words.

In Bayesian approaches as we are thinking about
probabilities of a method outperforming another
method. As a result we can do what was not pos-
sible in the NHST approach taken by Gorman and
Bedrick. We can order methods into at a partial
ordering to gain an insight into which methods are
more likely to perform better than others. We can
do this based on the modeled likelihoods, but it
would not be in a NHST framework, because there
are currently no multiple comparison correction
procedures that take into account the variance of
repeated runs of a method on the same data set.

Gorman and Bedrick reported that LAPOS
would be sure to outperform Collins on PTB (20
out of 20 times), but not on Ontonotes (7 out of 20
times) in token accuracy. We found out that that
the most likely scenario, when the performance is
modeled using a hierarchical model on evidence
from both data sets jointly, that these difference
are likely within practical equivalence.

We set the interval of practical equivalence of
observed accuracies to match the 95% confidence
intervals reported by Bedrick and Gorman, to
maintain a capacity for comparing the two exper-
imental approaches. However, we believe it is
much more useful to have an interpretable and in-
tuitively understandable definition of what practi-
cal equivalence means in the experiment. Instead
of setting it based on statistical confidence inter-
vals, we recommend selecting the ROPE to rep-
resent the scale of human annotator differences,
or the error level that does not negatively impact

a downstream task that depends on the prediction
quality of evaluated methods.

7 Conclusions

We compare the performance of six part-of-speech
taggers on two data sets using twenty repetitions of
a ten-fold cross-validation procedure and statisti-
cal system comparison performed using hierarchi-
cal Bayesian models. By sampling from the pos-
terior distribution of these models, we estimate the
likelihood that a given tagger will be better than,
worse than, or practically equivalent to other tag-
gers on three different evaluation metrics. These
estimates are valid insofar as the data sets used to
estimate the Bayesian models comprise a represen-
tative sample of a coherent population of data sets.
This method provides a principled way to perform
statistical model comparison using k-fold cross-
validation, a data-efficient evaluation technique.
It also allows us to incorporate results obtained
across multiple data sets and to make population-
level inferences. We finally compare the results
obtained with the proposed method to those com-
puted using randomly generated splits and tradi-
tional NHST-based model comparison. The results
provide new insights into the strengths and weak-
nesses of English part-of-speech tagging models,
complementing other approaches to model com-
parison and interpretation.
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A Visualizations

Visualizations of the posterior samples in Section 5
are shown in Figures 1-3 below.
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Figure 1: Pairwise comparisons of models’ token accuracy; the triangles illustrate 50,000 samples drawn from the
posterior distribution, and the likelihood that a given method would perform better, or that their results would be

practically equivalent.
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Figure 2: Pairwise comparisons of models’ sentence accuracy; the triangles illustrate 50,000 samples drawn from
the posterior distribution alongside the likelihood that a given method would perform better, or that their results
would be practically equivalent.
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Figure 3: Pairwise comparisons of models’ OOV accuracy; the triangles illustrate 50,000 samples drawn from the
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