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André F. T. Martins
Instituto de Telecomunicações
LUMLIS (Lisbon ELLIS Unit)

Instituto Superior Técnico & Unbabel
Lisbon, Portugal

andre.t.martins@tecnico.ulisboa.com

Abstract

Latent structure models are a powerful tool for
modeling language data: they can mitigate the
error propagation and annotation bottleneck in
pipeline systems, while simultaneously uncov-
ering linguistic insights about the data. One
challenge with end-to-end training of these
models is the argmax operation, which has null
gradient. In this paper, we focus on surrogate
gradients, a popular strategy to deal with this
problem. We explore latent structure learning
through the angle of pulling back the down-
stream learning objective. In this paradigm,
we discover a principled motivation for both
the straight-through estimator (STE) as well
as the recently-proposed SPIGOT—a variant
of STE for structured models. Our perspec-
tive leads to new algorithms in the same family.
We empirically compare the known and the
novel pulled-back estimators against the pop-
ular alternatives, yielding new insight for prac-
titioners and revealing intriguing failure cases.

1 Introduction

Natural language data is rich in structure, but most
of the structure is not visible at the surface. Ma-
chine learning models tackling high-level language
tasks would benefit from uncovering underlying
structures such as trees, sequence tags, or segmen-
tations. Traditionally, practitioners turn to pipeline
approaches where an external, pretrained model
is used to predict, e.g., syntactic structure. The
benefit of this approach is that the predicted tree is
readily available for inspection, but the downside is
that the errors can easily propagate throughout the
pipeline and require further attention (Finkel et al.,
2006; Sutton and McCallum, 2005; Toutanova,
2005). In contrast, deep neural architectures tend
to eschew such preprocessing, and instead learn

†Work partially done while VN was at the Instituto de
Telecomunicações, Lisbon.

soft hidden representations, not easily amenable to
visualization and analysis.

The best of both worlds would be to model
structure as a latent variable, combining the trans-
parency of the pipeline approach with the end-
to-end unsupervised representation learning that
makes deep models appealing. Moreover, large-
capacity model tend to rediscover structure from
scratch (Tenney et al., 2019), so structured latent
variables may reduce the required capacity.

Learning with discrete, combinatorial latent vari-
ables is, however, challenging, due to the inter-
section of large cardinality and null gradient is-
sues. For example, when learning a latent depen-
dency tree, the latent parser must choose among
an exponentially large set of possible trees; what’s
more, the parser may only learn from gradient in-
formation from the downstream task. If the highest-
scoring tree is selected using an argmax operation,
the gradients will be zero, preventing learning.

One strategy for dealing with the null gradi-
ent issue is to use a surrogate gradient, explic-
itly overriding the zero gradient from the chain
rule, as if a different computation had been per-
formed. The most commonly known example is
the straight-through estimator (STE; Bengio et al.,
2013), which pretends that the argmax node was
instead an identity operator. Such methods lead to
a fundamental mismatch between the objective and
the learning algorithm. The effect of this mismatch
is still insufficiently understood, and the design
of successful new variants is therefore challeng-
ing. For example, the recently-proposed SPIGOT
method (Peng et al., 2018) found it beneficial to
use a projection as part of the surrogate gradient.

In this paper, we study surrogate gradient meth-
ods for deterministic learning with discrete struc-
tured latent variables. Our contributions are:

• We propose a novel motivation for surrogate gra-
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Figure 1: A model with a discrete latent variable z.
Given an input x, we assign a score sz = [f(x)]z to
each choice, and pick the highest scoring one, ẑ, to pre-
dict ŷ = gθ(ẑ). For simplicity, here gθ does not ac-
cess x directly. (a). Since argmax has null gradients,
the encoder parameters φ do not receive updates. (b).
If ground truth supervision were available for the la-
tent z, φ could be trained jointly with an auxiliary loss.
(c). As such supervision is not available, we induce a
best-guess label µ by pulling back the downstream loss.
This strategy recovers the STE and SPIGOT estimators.

dient methods, based on optimizing a pulled-
back loss, thereby inducing pseudo-supervision
on the latent variable. This leads to new insight
into both STE and SPIGOT.

• We show how our framework may be used to de-
rive new surrogate gradient methods, by varying
the loss function or the inner optimization algo-
rithm used for inducing the pseudo-supervision.

• We experimentally validate our discoveries on
a controllable experiment as well as on English-
language sentiment analysis and natural language
inference, comparing against stochastic and re-
laxed alternatives, yielding new insights, and
identifying noteworthy failure cases.

While the discrete methods do not outperform
the relaxed alternatives using the same building
blocks, we hope that our interpretation and insights
would trigger future latent structure research.

The code for the paper is available on https:

//github.com/deep-spin/understanding-spigot.

2 Related Work

Discrete latent variable learning is often tackled
in stochastic computation graphs, by estimat-
ing the gradient of an expected loss. An estab-
lished method is the score function estimator (SFE)
(Glynn, 1990; Williams, 1992; Kleijnen and Rubin-
stein, 1996). SFE is widely used in NLP, for tasks
including minimum risk training in NMT (Shen
et al., 2016; Wu et al., 2018) and latent linguistic
structure learning (Yogatama et al., 2017; Havrylov
et al., 2019). In this paper, we focus on the al-
ternative strategy of surrogate gradients, which
allows learning in deterministic graphs with dis-
crete, argmax-like nodes, rather than in stochastic
graphs. Examples are the straight-through esti-
mator (STE) (Hinton, 2012; Bengio et al., 2013)
and the structured projection of intermediate gradi-
ents optimization technique (SPIGOT; Peng et al.
2018). Recent work focuses on studying and ex-
plaining STE. Yin et al. (2019) obtained a conver-
gence result in shallow networks for the unstruc-
tured case. Cheng et al. (2018) show that STE can
be interpreted as the simulation of the projected
Wasserstein gradient flow. STE has also been stud-
ied in binary neural networks (Hubara et al., 2016)
and in other applications (Tjandra et al., 2019).
Other methods based on the surrogate gradients
have been recently explored (Vlastelica et al., 2020;
Meng et al., 2020).

A popular alternative is to relax an argmax into
a continuous transform such as softmax or sparse-
max (Martins and Astudillo, 2016), as seen for in-
stance in soft attention mechanisms (Vaswani et al.,
2017), or structured attention networks (Kim et al.,
2017; Maillard et al., 2017; Liu and Lapata, 2018;
Mensch and Blondel, 2018; Niculae et al., 2018a).
In-between surrogate gradients and relaxation is
Gumbel softmax, which uses the Gumbel-max
reparametrization to sample from a categorical dis-
tribution, applying softmax either to relax the map-
ping or to induce surrogate gradients (Jang et al.,
2017; Maddison et al., 2017). Gumbel-softmax
has been successfully applied to latent linguistic
structure as well (Choi et al., 2018; Maillard and
Clark, 2018). For sampling from a structured vari-
able is required, the Perturb-and-MAP technique
(Papandreou and Yuille, 2011) has been success-
fully applied to sampling latent structures in NLP
applications (Corro and Titov, 2019a,b).

https://github.com/deep-spin/understanding-spigot
https://github.com/deep-spin/understanding-spigot
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3 Structured Prediction Preliminaries

We assume a general latent structure model in-
volving input variables x ∈ X , output variables
y ∈ Y , and latent discrete variables z ∈ Z . We
assume that Z ⊆ {0, 1}K , where K ≤ |Z| (typi-
cally, K � |Z|): i.e., the latent discrete variable
z can be represented as a K-th dimensional binary
vector. This often results from a decomposition
of a structure into parts: for example, z could be
a dependency tree for a sentence of L words, rep-
resented as a vector of size K = O(L2), indexed
by pairs of word indices (i, j), with zij = 1 if arc
i→ j belongs to the tree, and 0 otherwise. This al-
lows us to define the score of a structure as the sum
of the scores of its parts. Given a vector s ∈ RK ,
containing scores for all possible parts, we define

score(z) := s>z. (1)

Notation. We denote by ek the one-hot vector
with all zeros except in the kth coordinate. We de-
note the simplex by 4|Z| := {p ∈ R|Z| | p ≥
0,
∑

z∈Z p(z) = 1}. Given a distribution p ∈
4|Z|, the expectation of a function h : Z → RD
under p is Ez∼p[h(z)] :=

∑
z∈Z p(z)h(z). We de-

note the convex hull of the (finite) set Z ⊆ RK
by conv(Z) :=

{
Ez∼p[z] | p ∈ 4|Z|

}
. The eu-

clidean projection of s onto a set D is ΠD(s) :=
argmind∈D ‖s− d‖2.

Background. In the context of structured pre-
diction, the set M := conv(Z) is known as the
marginal polytope, since any point inside it can be
interpreted as some marginal distribution over parts
of the structure (arcs) under some distribution over
structures. There are three relevant problems that
may be formulated in a structured setting:

• Maximization (MAP inference): finds a highest
scoring structure, MAP(s) := argmax

z∈Z
s>z.

• Marginal inference: finds the (unique) marginals
induced by the scores s, corresponding
to the Gibbs distribution where p(z) ∝
exp

(
score(z)

)
. The solution maximizes the

entropy-regularized objective

Marg(s) := argmax
µ∈M

s>µ+ H̃(µ), (2)

where H̃ is the maximum entropy among all dis-
tributions over structures that achieve marginals

µ (Wainwright and Jordan, 2008):

H̃(µ) := max
p∈4|Z|
Ep[z]=µ

−
∑
z∈Z

p(z) log p(z). (3)

• SparseMAP: finds the (unique) sparse marginals
induced by the scores s, given by a Euclidean
projection ontoM: (Niculae et al., 2018a)

SparseMAP(s) := ΠM(s)

= argmax
µ∈M

s>µ− 1

2
‖µ‖2. (4)

Unstructured setting. As a check, we consider
the encoding of a categorical variable with K dis-
tinct choices, encoding each choice as a one-hot
vector ek and setting Z = {e1, . . . , eK}. In this
case, conv(Z) = 4K . The optimization problems
above then recover some well known transforma-
tions, as described in Table 1.

unstructured structured
vertices ek zk

interior points p µ
maximization argmax MAP

expectation softmax Marg
Euclidean projection sparsemax SparseMAP

Table 1: Building blocks for latent structure models.

4 Latent Structure Models

Throughout, we assume a classifier parametrized
by φ and θ, which consists of three parts:

• An encoder function fφ which, given an input
x ∈ X , outputs a vector of “scores” s ∈ RK , as
s = fφ(x);

• An argmax node which, given these scores, out-
puts the highest-scoring structure:

ẑ(s) := argmax
z∈Z

s>z = MAP(s) ; (5)

• A decoder function gθ which, given x ∈ X
and z ∈ Z , makes a prediction ŷ ∈ Y as
ŷ = gθ(x, z). We will sometimes write ŷ(z)
to emphasize the dependency on z. For reasons
that will be clear in the sequel, we must assume
that the decoder also accepts average structures,
i.e., it can also output predictions gθ(x, µ) where
µ ∈ conv(Z) is a convex combination (weighted
average) of structures.
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Thus, given input x ∈ X , this network predicts:

ŷ = gθ

x,
ẑ(s)︷ ︸︸ ︷

argmax
z∈Z

fφ(x)>z

 . (6)

To train this network, we minimize a loss function
L(ŷ, y), where y denotes the target label; a com-
mon example is the negative log-likelihood loss.

The gradient w.r.t. the decoder parameters,
∇θL(ŷ, y), is easy to compute using automatic dif-
ferentiation on gθ. The main challenge is to prop-
agate gradient information through the argmax
node into the encoder parameters. Indeed,

∇φL(ŷ, y) =
∂fφ(x)

∂φ

∂ẑ(s)

∂s︸ ︷︷ ︸
=0

∇zL(ŷ(ẑ), y) = 0,

so no gradient will flow to the encoder. We list
below the three main categories of approaches that
tackle this issue.

Introducing stochasticity. Replace the argmax
node by a stochastic node where z is modeled as a
random variable Z parametrized by s (e.g., using a
Gibbs distribution). Then, instead of optimizing a
deterministic loss L(ŷ(ẑ), y), optimize the expec-
tation of the loss under the predicted distribution:

EZ∼p(z;s)[L(ŷ(Z), y)]. (7)

The expectation ensures that the gradients are no
longer null. This is sometimes referred to as mini-
mum risk training (Smith and Eisner, 2006; Stoy-
anov et al., 2011), and typically optimized using
the score function estimator (SFE; Glynn, 1990;
Williams, 1992; Kleijnen and Rubinstein, 1996).

Relaxing the argmax. Keep the network deter-
ministic, but relax the argmax node into a continu-
ous function, for example replacing it with softmax
or sparsemax (Martins and Astudillo, 2016). In
the structured case, this gives rise to structured
attention networks (Kim et al., 2017) and their
SparseMAP variant (Niculae et al., 2018a). This
corresponds to moving the expectation inside the
loss, optimizing L

(
ŷ(EZ∼p(z;s)[Z]︸ ︷︷ ︸

µ

), y
)
.

Inventing a surrogate gradient. Keep the
argmax node and perform the usual forward com-
putation, but backpropagate a different, non-null

gradient in the backward pass. This is the ap-
proach underlying straight-through estimators (Hin-
ton, 2012; Bengio et al., 2013) and SPIGOT (Peng
et al., 2018). This method introduces a mismatch
between the measured objective and the optimiza-
tion algorithm. In this work, we proposed a novel,
principled justification for inducing surrogate gra-
dients. In what follows, we assume that:

• We can compute the gradient

γ(µ) := ∇µL(ŷ(µ), y) , (8)

for any µ, usually by automatic differentiation;1

• We want to replace the null gradient
∇sL(ŷ(ẑ), y) by a surrogate ∇̃sL(ŷ(ẑ), y).

5 SPIGOT as the Approximate
Optimization of a Pulled Back Loss

We next provide a novel interpretation of SPIGOT
as the minimization of a “pulled back” loss.
SPIGOT uses the surrogate gradient:

∇̃sL(ŷ(ẑ), y) = ẑ −ΠM (ẑ − ηγ)

= ẑ − SparseMAP(ẑ − ηγ),
(9)

highlighting that SparseMAP (Niculae et al.,
2018a) computes an Euclidean projection (Eq. 4).

5.1 Intermediate Latent Loss
To begin, consider a much simpler scenario: if we
had supervision for the latent variable z (e.g., if the
true label z was revealed to us), we could define
an intermediate loss `(ẑ, z) which would induce
nonzero updates to the encoder parameters. Of
course, we do not have access to this z. Instead, we
consider the following alternative:

Definition 1 (Pulled-back label). A guess µ ∈
M = conv(Z) for what the unknown z ∈ Z
should be, informed by the downstream loss.

Figure 1 provides the intuition of the pulled-back
label and loss. We take a moment to justify
picking µ ∈ M rather than directly in Z . In
fact, if K = |Z| is small, we can enumerate
all possible values of z and define the guess as
the latent value minimizing the downstream loss,
µ = argminz∈Z L(ŷ(z), y). This is sensible, but

1This gradient would not exist if the decoder gθ were
defined only at vertices z ∈ Z and not mean points µ ∈M.



2190

intractable in the structured case. Moreover, early
on in the training process, while gθ is untrained,
the maximizing vertex carries little information.
Thus, for robustness and tractability, we allow for
some uncertainty by picking a convex combination
µ ∈M so as to approximately minimize

µ ≈ argmin
µ∈M

L(ŷ(µ), y). (10)

For most interesting predictive models ŷ(µ) (e.g.,
deep networks), this optimization problem is non-
convex and lacks a closed form solution. One com-
mon strategy is the projected gradient algorithm
(Goldstein, 1964; Levitin and Polyak, 1966), which,
in addition to gradient descent, has one more step:
projection of the updated point on the constraint
set. It iteratively performs the following updates:

µ(t+1) = ΠM

(
µ(t) − ηtγ(µ(t))

)
, (11)

where ηt is a step size and γ is as in Eq. 8. With a
suitable choice of step sizes, the projected gradient
algorithm converges to a local optimum of Eq. 10
(Bertsekas, 1999, Proposition 2.3.2). In the sequel,
for simplicity we use constant η. If we initialize
µ(0) = ẑ = argmaxz∈Z s

>z, a single iteration of
projected gradient yields the guess:

µ(1) = ΠM
(
ẑ − ηγ(ẑ)

)
. (12)

Treating the induced µ as if it were the “ground
truth” label of z, we may train the encoder fφ(x)
by supervised learning. With a perceptron loss,

`Perc(ẑ(s), µ) = max
z∈Z

s>z − s>µ

= s>ẑ − s>µ , (13)

a single iteration yields the gradient:

∇s`Perc(ẑ, µ(1)) = ẑ − µ(1) , (14)

which is precisely the SPIGOT gradient surrogate
in Eq. 9. This leads to the following insight into
how SPIGOT updates the encoder parameters:

SPIGOT minimizes the perceptron loss be-
tween z and a pulled back target com-
puted by one projected gradient step on
min
µ∈M

L(ŷ(µ), y) starting at ẑ = MAP(s).

This construction suggests possible alternatives, the
first of which uncovers a well-known algorithm.

Relaxing the M constraint. The constraints in
Eq. 10 make the optimization problem more
complicated. We relax them and define µ ≈
argminµ∈RK L(ŷ(µ), y). This problem still re-
quires iteration, but the projection step can now be
avoided. One iteration of gradient descent yields
µ(1) = ẑ − ηγ. The perceptron update then re-
covers a novel derivation of straight-through with
identity (STE-I), where the backward pass acts as
if ∂ẑ(s)∂s

!
= Id (Bengio et al., 2013),

∇s`Perc(ẑ, µ(1)) = ẑ − (ẑ − ηγ) = ηγ. (15)

This leads to the following insight into straight-
through and its relationship to SPIGOT:

Straight-through (STE-I) minimizes the per-
ceptron loss between z and a pulled back
target computed by one gradient step on
min
µ∈RK

L(ŷ(µ), y) starting at ẑ = MAP(s).

From this intuition, we readily obtain new surro-
gate gradient methods, which we explore below.

6 New Surrogate Gradient Methods

Multiple gradient updates. Instead of a single
projected gradient step, we could run multiple steps
of Eq. 11. We would expect this to yield a better
approximation of µ. This comes at a computational
cost: each update involves running a forward and
backward pass in the decoder gθ with the current
guess µ(t), to obtain γ(µ(t)) := ∇µL

(
ŷ(µ(t)), y

)
.

Different initialization. The projected gradient
update in Eq. 12 uses µ(0) = ẑ = argmaxz∈Z s

>z
as the initial point. This is a sensible choice, if we
believe the encoder prediction ẑ is close enough to
the optimal µ, and it is computationally convenient,
because the forward pass uses ẑ, so γ(ẑ) is readily
available in the backward pass, thus the first inner
iteration comes for free. However, other initializa-
tions are possible, for example µ(0) = Marg(s) or
µ(0) = 0, at the cost of an extra computation of
γ(µ(0)). In this work, we do not consider alternate
initializations for their own sake; they are needed
for the following two directions.

Different intermediate loss: SPIGOT-CE. For
simplicity, consider the unstructured case where
M = 4, and use the initial guess µ(0) =
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softmax(s). Replacing `Perc by the cross-entropy
loss `CE(µ(0), µ(1)) = −

∑K
k=1 µk logµ

(0)
k yields

∇s`CE(µ(0), µ(1)) = µ(0)−Π4(µ(0)−ηγ). (16)

In the structured case, the corresponding loss is the
CRF loss (Lafferty et al., 2001), which corresponds
to the KL divergence between two distributions
over structures. In this case, we initialize µ(0) =
Marg(s) and update

∇s`CE(µ(0), µ(1)) = µ(0)−ΠM(µ(0)−ηγ). (17)

Exponentiated gradient updates: SPIGOT-EG.
In the unstructured case, optimization overM =
4 can also be tackled via the exponentiated gradi-
ent (EG) algorithm (Kivinen and Warmuth, 1997),
which minimizes Eq. 10 with the following multi-
plicative update:

µ(t+1) ∝ µ(t) � exp(−ηt∇µL(ŷ(µ(t)), y)), (18)

where � is elementwise multiplication and thus
each iterate µ(t) is strictly positive, and normalized
to be inside 4. EG cannot be initialized on the
boundary of 4, so again we must take µ(0) =
softmax(s). A single iteration of EG yields:

µ(1) ∝ µ(0) � exp(−ηγ)

= softmax(logµ(0) − ηγ)

= softmax(s− ηγ). (19)

It is natural to use the cross-entropy loss, giving

∇s`CE(µ(0), µ(1))=µ(0)−softmax(s−ηγ), (20)

i.e., the surrogate gradient is the difference between
the softmax prediction and a “perturbed” softmax.
To generalize to the structured case, we observe
that both EG and projected gradient are instances
of mirror descent under KL divergences (Beck and
Teboulle, 2003). Unlike the unstructured case, we
must iteratively keep track of both perturbed scores
and marginals, since Marg−1 is non-trivial. This
leads to the following mirror descent algorithm:

s(0) = s, µ(0) = Marg(s(0)) ,

s(t+1) = s(t) − ηγ(µ(t)) ,

µ(t+1) = Marg(s(t)) .

(21)

With a single iteration and the CRF loss, we get

∇s`CE = Marg(s)− Marg(s− ηγ) . (22)

Algorithm 1: Surrogate gradients pseu-
docode: common forward pass, specialized
backward passes.

Parameters: step size η, n. iterations k

Function Forward(s, x, y):
return ẑ ← MAP(s) // Eq. (5)

Function GradLoss(µ, x, y):
return γ ← ∇µL(ŷ(µ), y) // Eq. (8)

Function BackwardSPIGOT(s, x, y):
µ(0) = MAP(s)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ) // Eq. (11)

return µ(0) − µ(k) // Eq. (14)

Function BackwardSTE-I(s, x, y):
µ(0) = MAP(s) // Eq. (15)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← µ(t−1) − ηγ

return µ(0) − µ(k)

Function BackwardSPIGOT-CE(s, x, y):
µ(0) ← Marg(s) // Eq. (17)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
µ(t) ← ΠM(µ(t−1) − ηγ)

return µ(0) − µ(k)

Function BackwardSPIGOT-EG(s, x, y):
(s(0), µ(0))← (s, Marg(s)) // Eq. (21)
for t← 1 to k do

γ ← GradLoss(µ(t−1), x, y)
s(t) ← s(t−1) − ηγ
µ(t) ← Marg(s(t))

return µ(0) − µ(k)

Algorithm 1 sketches the implementation of the
proposed surrogate gradients for the structured case.
The forward pass is the same for all variants: given
the scores s for the parts of the structure, it calcu-
lates the MAP structure z. The surrogate gradients
are implemented as custom backward passes. The
function GradLoss uses automatic differentiation
to compute γ(µ) at the current guess µ; each call
involves thus a forward and backward pass through
gθ. Due to convenient initialization, the first iter-
ation of STE-I and SPIGOT come for free, since
both µ(0) and γ(µ(0)) are available as a byprod-
uct when computing the forward and, respectively,
backward pass through gθ in order to update θ. For
SPIGOT-CE and SPIGOT-EG, even with k = 1 we
need a second call to the decoder, since µ(0) 6= ẑ,
so an additional decoder call is necessary for ob-
taining the gradient of the loss with respect to µ(0).
The unstructured case is essentially identical, with
Marg replaced by softmax.
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(3 clusters) (10 clusters)
Model Accuracy V-measure Accuracy V-measure

Baselines
Linear model 68.05±0.09 0.00±0.00 60.00±0.06 0.00±0.00
Gold cluster labels 92.40±0.06 100.00±0.00 88.50±0.10 100.00±0.00

Relaxed
Softmax 93.15±0.33 66.88±0.97 86.45±0.33 75.07±1.18
Sparsemax 92.95±0.38 71.35±16.60 83.75±1.32 76.13±3.89
*Gumbel-Softmax 94.25±3.42 100.00±6.80 80.45±0.77 89.68±1.10

Argmax
*ST-Gumbel 93.85±3.25 100.00±6.80 81.25±0.68 91.52±1.46
*SFE 68.45±0.33 47.73±17.65 59.80±0.58 55.56±3.30
*SFE w/ baseline 94.20±0.08 100.00±0.00 84.70±0.97 96.83±0.85
STE-S 86.95±4.01 84.44±11.61 75.95±1.10 82.83±2.75
STE-I 92.60±0.23 100.00±0.00 84.50±1.43 94.48±1.35
SPIGOT 77.90±1.26 20.53±1.85 68.80±1.02 29.24±2.24
SPIGOT-CE 93.40±2.64 97.08±13.92 83.50±0.87 94.88±1.39
SPIGOT-EG 92.70±3.04 100.00±8.27 79.40±2.03 82.29±2.15

Table 2: Discrete latent variable learning on synthetic data: downstream accuracy and clustering V-measure. Me-
dian and standard error reported over four runs. We mark stochastic methods with *.

7 Experiments

Armed with a selection of surrogate gradient meth-
ods, we now proceed to an experimental compar-
ison. For maximum control, we first study a syn-
thetic unstructured experiment with known data
generating process. This allows us to closely com-
pare the various methods, and to identify basic
failure cases. We then study the structured case of
latent dependency trees for sentiment analysis and
natural language inference in English. Full training
details are described in Appendix A.

7.1 Categorical Latent Variables

For the unstructured case, we design a syn-
thetic dataset from a mixture model z ∼
Categorical(1/K), x ∼ Normal(mz, σI), y =
sign(w>z x + bz), where mz are randomly placed
cluster centers, and wz, bz are parameters of a dif-
ferent ground truth linear model for each cluster.
Given cluster labels, one could learn the optimal
linear classifier separating the data in that cluster.
Without knowing the cluster, a global linear model
cannot fit the data well. This setup provides a test
bed for discrete variable learning, since accurate
clustering leads to a good fit. The architecture,
following §4, is:

• Encoder: A linear mapping from the input to
a K-dimensional score vector: s = fφ(x) =
Wfx+bf , where φ = (Wf , bf ) ∈ RK×dim(X )×
RK are parameters.

• Latent mapping: ẑ = ρ(s), where ρ is argmax

or a continuous relaxation such as softmax or
sparsemax.

• Decoder: A bilinear transformation, combining
the input x and the latent variable z:

ŷ = gθ(x, ẑ) = ẑ>Wgx+ bg,

where θ = (Wg, bg) ∈ RK×dim(X ) × R are
model parameters. If ẑ = ek, this selects the
kth linear model from the rows of Wg.

We evaluate two baselines: a linear model, and an
oracle where gθ(x, z) has access to the true z. In
addition to the methods discussed in the previous
section, we evaluate softmax and sparsemax end-to-
end differentiable relaxations, and the STE-S vari-
ant which uses the softmax backward pass while
doing argmax in the forward pass. We also com-
pare stochastic methods, including score function
estimators (with an optional moving average con-
trol variate), and the two Gumbel estimator variants
(Jang et al., 2017; Maddison et al., 2017): Gumbel-
Softmax with relaxed softmax in the forward pass,
and the other using argmax in the style of STE
(hence dubbed ST-Gumbel).

Results. We compare the discussed methods in
Table 2. Knowledge of the data-generating process
allows us to measure not only downstream accu-
racy, but also clustering quality, by comparing the
model predictions with the known true z. We mea-
sure the latter via the V-measure (Rosenberg and
Hirschberg, 2007), a clustering score independent
of the cluster labels, i.e., invariant to permuting the
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Figure 2: Learning curves on synthetic data with 10 clusters. Softmax learns the downstream task fast, but mixes
the clusters, yielding poor V-measure. SPIGOT fails on both metrics; STE-I and the novel SPIGOT-CE work well.

labels (between 0 and 100, with 100 representing
perfect cluster recovery). The linear and gold clus-
ter oracle baselines confirm that cluster separation
is needed for good performance. Stochastic models
perform well across both criteria. Crucially, SFE
requires variance reduction to performs well, but
even a simple control variate will do.

Deterministic models may be preferable when
likelihood assessment or sampling is not tractable.
Among these, STE-I and SPIGOT-{CE,EG} are in-
distinguishable from the best models. Surprisingly,
the vanilla SPIGOT fails, especially in cluster re-
covery. Finally, the relaxed deterministic models
perform very well on accuracy and learn very fast
(Figure 2), but appear to rely on mixing clusters,
therefore they remarkably fail to recover cluster
assignments.2 This is in line with the structured
results of Corro and Titov (2019b). Therefore, if la-
tent structure recovery is less important than down-
stream accuracy, relaxations seem preferable.

Impact of multiple updates. One possible ex-
planation for the failure of SPIGOT is that SPIGOT-
CE and SPIGOT-EG perform more work per iter-
ation, since they use a softmax initial guess and
thus require a second pass through the decoder. We
rule out this possibility in Figure 3: even when
tuning the number of updates, SPIGOT does not
substantially improve. We observe, however, that
SPIGOT-CE improves slightly with more updates,
outperforming STE-I. However, since each update
step performs an additional decoder call, this also
increases the training time.

2With relaxed methods, the V-measure is always calculated
using the argmax, even though gθ sees a continuous relaxation.
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Figure 3: Impact of multiple gradient update steps for
the pulled-back label, on the synthetic example with 10
clusters. For each point, the best step size η is chosen.

7.2 Structured Latent Variables

For learning structured latent variables, we study
sentiment classification on the English language
Stanford Sentiment Treebank (SST) (Socher et al.,
2013), and Natural Language Inference on the
SNLI dataset (Bowman et al., 2015).

7.2.1 Sentiment Classification
The model predicts a latent projective arc-factored
dependency tree for the sentence, then uses the
tree in predicting the downstream binary sentiment
label. The model has the following components:

• Encoder: Computes a score for every possible
dependency arc i → j between words i and j.
Each word is represented by its embedding hi,3

then processed by an LSTM, yielding contextual
vectors

←→
hi . Then, arc scores are computed as

si→j = v> tanh
(
W>[

←→
hi ;
←→
hj ] + b

)
. (23)

3Pretrained GloVe vectors (Pennington et al., 2014).
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SST SNLI
Model Valid. Acc. Test Acc. Valid. Acc. Test Acc.

Baseline 83.79±0.17 83.99±0.32 85.54±0.14 85.09±0.21

Relaxed
Marginals 84.43±0.27 83.45±0.56 85.60±0.11 85.01±0.11
SparseMAP 83.94±0.41 83.61±0.33 85.54±0.10 85.35±0.06

Argmax
*Perturb-and-MAP 84.06±0.59 82.92±0.61 84.62±0.14 83.80±0.06
STE-S 83.25±0.83 83.32±0.88 82.07±0.50 81.10±0.65
STE-I 83.44±0.70 83.17±0.11 81.39±0.63 81.00±0.32
SPIGOT 84.51±0.80 84.80±1.10 84.03±0.28 83.52±0.24
SPIGOT-CE 82.22±0.61 83.01±0.55 80.22±1.02 79.20±0.68
SPIGOT-EG 82.94±1.06 82.88±0.90 85.36±0.16 84.84±0.16

Table 3: SST and SNLI average accuracy and standard deviation over three runs, with latent dependency trees.
Baselines are described in Section 7.2. We mark stochastic methods marked with *.

• Latent parser: We use the arc scores vector s to
get a parse ẑ = ρ(s) for the sentence, where ρ(s)
is the argmax, or combination of trees, such as
Marg or SparseMAP.

• Decoder: Following Peng et al. (2018), we
concatenate each

←→
hi with its predicted head←→

h head(i). For relaxed methods, we average all
possible heads, weighted by the corresponding
marginal:

←→
h head(i) :=

∑
j µi→j

←→
hj . The con-

catenation is passed through an affine layer, a
ReLU activation, an attention mechanism, and the
result is fed into a linear output layer.

For marginal inference, we use pytorch-struct
(Rush, 2020). For the SparseMAP projection, we
use the active set algorithm (Niculae et al., 2018a).
The baseline we compare our models against is a
BiLSTM, followed by feeding the sum of all hidden
states to a two-layer ReLU-MLP.

Results. The results from the experiments with
the different methods are shown in Table 3. As
in the unstructured case, the relaxed models lead
to strong downstream classifiers. Unlike the un-
structured case, SPIGOT is a top performer here.
The effect of tuning the number of gradient update
steps is not as big as in the unstructured case and
did not lead to significant improvement. This can
be explained by a “moving target” intuition: since
the decoder gθ is far from optimal, more accurate
µ do not overall help learning.

7.2.2 Natural Language Inference
We build on top of the decomposable attention
model (DA; Parikh et al., 2016). Following the
setup of Corro and Titov (2019b), we induce struc-
ture on the premise and the hypothesis. For com-

puting the score of the arc from word i to j, we
concatenate the representations of the two words,
as in Eq. 23. In the decoder, after the latent parse
tree is calculated, we concatenate each word with
the average of its heads. We do this separately for
the premise and the hypothesis. As baseline, we
use the DA model with no intra-attention.

Results. The SNLI results are shown in Table 3.
Here, the straight-through (argmax) methods are
outperformed by the more stable relaxation-based
methods. This can be attributed to the word-level
alignment in the DA model, where soft dependency
relations appear better suited than hard ones.

8 Conclusions

In this work, we provide a novel motivation for
straight-through estimator (STE) and SPIGOT,
based on pulling back the downstream loss. We
derive promising new algorithms, and novel insight
into existing ones. Unstructured controlled experi-
ments suggest that our new algorithms, which use
the cross-entropy loss instead of the perceptron loss,
can be more stable than SPIGOT while accurately
disentangling the latent variable. Differentiable re-
laxation models (using softmax and sparsemax) are
the easiest to optimize to high downstream accu-
racy, but they fail to correctly identify the latent
clusters. On structured NLP experiments, relax-
ations (SparseMAP and Marginals) tend to overall
perform better and be more stable than straight-
through variants in terms of classification accuracy.
However, the lack of gold-truth latent structures
makes it impossible to assess recovery performance.
We hope that our insights, including some of our
negative results, may encourage future research on
learning with latent structures.
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A Training Details

We trained all models with AdamW optimizer
(Kingma and Ba, 2014; Loshchilov and Hut-
ter, 2018). The embeddings for the SST and
SNLI experiments are initialized with Glove em-
beddings of size 300 (Pennington et al., 2014),
available from https://nlp.stanford.edu/projects/

glove/. The training details for all experiments are
described in Table 4.

Computing Infrastructure Each experiment
was run on a single GPU. The setup of the comput-
ers we used is as follows:

• GPU: Titan Xp - 12GB
CPU: 16 x AMD Ryzen 1950X @ 3.40GHz -
128GB

• GPU: RTX 2080 Ti - 12GB
CPU: 12 x AMD Ryzen 2920X @ 3.50GHz -
128GB

B Examples of Latent Trees

We performed a manual analysis of the trees output
from the different models. We notice that, on the
SST dataset, most latent trees produced by most
models are flat. This agrees with related work
(Williams et al., 2018; Niculae et al., 2018b). The
notable exception is SPIGOT-CE, where the aver-
age tree depth on the test set is around 5 and trees
seem more informative, suggesting benefits of the
cross-entropy loss. Figures 4, 5, 6 show examples
of the trees produced from different models.

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Synthetic Data SST SNLI
Data
Where to get it Generation script included https://nlp.stanford.

edu/sentiment/
https://nlp.stanford.
edu/projects/snli/

Preprocesing §7.1; attached code. Neutral instances removed.

Dataset size
Training set 5000 6920 570K
Validation set 1000 872 10K
Test set 1000 1821 10K
Labels 2 2 3

Fixed hyperparameters
Hidden size 100 100 200
Dropout 0 0 .2
Batch size one batch 32 64
Number of epochs 10K 40 40

Optimized hyperparameters (maximizing validation accuracy)
Learning rate (×10−3) {.1, 1, 2} {.01, .02, .05, .1, .5, 1, 2} {.01, .1, .3, 1, 3, 10}

(keeping η = 1)
Pullback step size η {.1, 1, 2} {.1, 1, 10} {.001, .01, .1, 1, 10}

(for best learning rate)

Number of model parameters
Baseline 2K 150K 340K
Model with latent structure 3K 180K 420K

Runtime (minutes)
Baseline < 1 / 1000 steps < 1 / epoch 1 / epoch
Softmax / Marginals 1 3 4
Sparsemax / SparseMAP 1 3 25
Gumbel Softmax / Perturb-and-MAP 1 5 7
STE-Softmax / STE-Marginals 1 4 6
STE-Identity 1 2 5
SPIGOT 1 3 15
SPIGOT-CE 2 4 30
SPIGOT-EG 2 5 7

Best learning rate (and pullback step size, where applicable)
Baseline .001 .00002 .0001
Softmax / Marginals .002 .0001 .0001
Sparsemax / SparseMAP .001 .00005 .0003
Gumbel Softmax / Perturb-and-MAP .002 .00005 .0001
STE-Softmax / STE-Marginals .002 .00005 .0003
STE-Identity .001 .0001 .0001
SPIGOT .002 (.1) .0001 (.1) .0003 (1)
SPIGOT-CE .001 (.1) .00005 (.1) .0001 (.1)
SPIGOT-EG .001 (.1) .00005 (.1) .0001 (.001)

Table 4: Training details and other reproducibility information.

https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/sentiment/
https://nlp.stanford.edu/projects/snli/
https://nlp.stanford.edu/projects/snli/
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(SPIGOT-CE)

An intelligent , moving and invigorating film .

1.0

1.0

1.0
1.0

1.0
1.0

1.0

(SPIGOT)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0

1.0
1.0

1.0

(SPIGOT-EG)

An intelligent , moving and invigorating film .
1.0

1.0
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals, SparseMAP):

An intelligent , moving and invigorating film .

1.0
1.0

1.0
1.0

1.0 1.0
1.0

Figure 4: Example of trees.
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(SPIGOT-CE)

A fascinating and fun film .

1.0
1.0

1.0
1.0

1.0

(SPIGOT)

A fascinating and fun film .
1.0 1.0 1.0

1.0

(SPIGOT-EG)

A fascinating and fun film .
1.0

1.0
1.0

1.0
1.0

(STE-I, Marginals)

A fascinating and fun film .
1.0 1.0

1.0
1.0

1.0

(SparseMAP)

A fascinating and fun film .

1.0
1.0

1.0 1.0
1.0

Figure 5: Example of trees.
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(SPIGOT-CE)

A taut , intelligent psychological drama .

1.0
1.0

1.0
1.0

1.0
1.0

(SPIGOT)

A taut , intelligent psychological drama .
1.0 1.0

1.0
1.0

1.0
1.0

(all others)

A taut , intelligent psychological drama .
1.0 1.0

1.0
1.0

1.0
1.0

Figure 6: Example of trees produced by different models for the sentence “A taut, intelligent psychological drama.”
The majority of the models produce mostly flat trees. In contrast, SPIGOT-CE identifies the adjectives describing
the keyword “drama” and attaches them correctly.


