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Abstract
The neural attention mechanism plays an im-
portant role in many natural language process-
ing applications. In particular, multi-head at-
tention extends single-head attention by allow-
ing a model to jointly attend information from
different perspectives. However, without ex-
plicit constraining, multi-head attention may
suffer from attention collapse, an issue that
makes different heads extract similar atten-
tive features, thus limiting the model’s repre-
sentation power. In this paper, for the first
time, we provide a novel understanding of
multi-head attention from a Bayesian perspec-
tive. Based on the recently developed particle-
optimization sampling techniques, we propose
a non-parametric approach that explicitly im-
proves the repulsiveness in multi-head atten-
tion and consequently strengthens model’s ex-
pressiveness. Remarkably, our Bayesian inter-
pretation provides theoretical inspirations on
the not-well-understood questions: why and
how one uses multi-head attention. Extensive
experiments on various attention models and
applications demonstrate that the proposed re-
pulsive attention can improve the learned fea-
ture diversity, leading to more informative rep-
resentations with consistent performance im-
provement on multiple tasks.

1 Introduction

Multi-head attention (Vaswani et al., 2017) is an
effective module in deep neural networks, with
impressive performance gains in many natural-
language-processing (NLP) tasks. By extending
a single head to multiple paralleled attention heads,
the architecture is widely adopted to capture dif-
ferent attentive information and strengthen the ex-
pressive power of a model. Lin et al. (2017) ap-
plied the idea of multi-heads on self-attention and
extract a 2-D matrix instead of a vector to repre-
sent different contexts of a sentence. The Trans-
former (Vaswani et al., 2017) and its variants such

as BERT (Devlin et al., 2019) are influential ar-
chitectures solely based on multi-head attention,
achieving state-of-the-art performance on plenty of
NLP tasks. The key of multi-head attention is its
ability to jointly attend to information from differ-
ent representation subspaces at different positions,
which results in multiple latent features depicting
the input data from different perspectives. How-
ever, there are no explicit mechanisms guaranteeing
this desired property, leading to potential attention
redundancy or attention collapse, which has been
observed in previous research (Voita et al., 2019;
Kovaleva et al., 2019). Although there exist works
by directly adding regularization on loss functions
to encourage diversity in multi-head attention (Lin
et al., 2017; Li et al., 2018), the underlying working
principle has not been well-validated, and perfor-
mance improvement is limited. Furthermore, an
important problem on why and how multi-head at-
tention improves over its single-head counterpart
is poorly understood.

In this paper, we provide a novel understanding
of multi-head attention from a Bayesian perspective
by adapting the deterministic attention to a stochas-
tic setting. The standard multi-head attention can
be understood as a special case of our framework,
where attention-parameter updates between heads
are independent, instead of sharing a common prior
distribution. Based on our framework, attention re-
pulsiveness could then be imposed by performing
Bayesian inference on attention parameters with
the recently developed particle-optimization sam-
pling methods (Liu and Wang, 2016), which has
been shown to be effective in avoiding mode col-
lapse. These methods treat each head as a parti-
cle/sample, which is then optimized to approximate
a posterior distribution of an attention model. With
it, multiple heads are enforced to move to modes
in the parameter space to be far from each other,
thus improving the repulsiveness in multi-head at-
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tention and enhancing model’s expressiveness. Our
Bayesian interpretation also provides a theoretical
understanding of the reason and benefits of apply-
ing multi-head attention. Experiments on various
attention models demonstrate the effectiveness of
our framework.

Our contributions are summarized as follow:

• We provide a new understanding of multi-
head attention from a Bayesian perspective,
yielding a more principled and flexible inter-
pretation of multi-head attention.

• Based on the recently developed particle-
optimization sampling techniques, we propose
an algorithm to explicitly encourage repulsive-
ness in multi-head attention without introduc-
ing extra trainable parameters or explicit regu-
larizers. The proposed method can be imple-
mented with an efficient end-to-end training
scheme.

• Our Bayesian interpretation provides a theo-
retical foundation to understand the benefits
of multi-head attention, which reveals the exis-
tence of an optimal number of attention heads
in a specific model.

• We apply our approach on four attention mod-
els with a wide range of tasks. Experimental
results show that repulsive attention improves
the expressiveness of models, and yields con-
sistent performance gains on all the tasks con-
sidered.

2 Preliminaries

2.1 Multi-head Attention
The attention mechanism aims at modeling depen-
dencies among elements of a learned representation
at different positions. The two commonly used at-
tention functions are additive attention (Lin et al.,
2017; Bahdanau et al., 2015) and dot-product at-
tention (Vaswani et al., 2017). We review the pop-
ularly used dot-product attention below and defer
the additive attention to Appendix A.

Dot-product Attention The multi-head scaled
dot-product attention is used in the Transformer
model (Vaswani et al., 2017). The attention func-
tion for a single head is formulated as mapping a
query and a set of key-value pairs to output as

Ai =Softmax(QiK
T
i /

√
dk),Zi = AiVi (1)

where Qi = QWQ
i ,Ki = KWK

i ,Vi = VWV
i

Q,K,V are matrices depicting the hidden repre-
sentation of every word in one sentence (i.e. self-
attention) or two sentences (i.e. inter-attention);
dk is the dimension of key and query; Zi is the
attention feature of the input sentence from the i-
th head; {WQ

i ,W
K
i ,W

V
i } are the corresponding

learnable attention parameters. The M -head at-
tention projects the queries, keys and values into
M subspaces with different learnable linear projec-
tions. These attention functions are performed in
parallel and are concatenated at last, resulting in a
final latent representation:

Multi-head(Q,K,V) = ZWO, with (2)

Z = Concat(Z1, · · · ,ZM )

2.2 Particle-optimization Sampling
Particle-optimization sampling is a recently de-
veloped Bayesian sampling technique that inter-
actively transports a set of particles/samples to
a target distribution p by minimizing the KL di-
vergence between the particle density and the tar-
get p. In our case, p would be a posterior dis-
tribution, p(θ|D) ∝ exp(−U(θ)), of the param-
eter θ ∈ Rd, defined over an observed dataset
D = {Dk}Nk=1. Here U(θ) , − log p(D|θ) −
log p0(θ) = −

∑N
k=1 log p(Dk|θ) − log p0(θ) is

called the potential energy with p0 a prior over θ.
In our case, the model parameter θ could be one
or several of the attention parameters such as WQ

i .
For simplicity, we will stick to θ in the presen-
tation. In particle-optimization sampling, a total
of M particles {θ(i)}Mi=1 are updated iteratively to
approximate p(θ|D). In this paper, we use two rep-
resentative algorithms, the Stein Variational Gra-
dient Descent (SVGD) and the Stochastic Particle-
Optimization Sampling (SPOS), for sampling.

SVGD In SVGD (Liu and Wang, 2016), the i-th
particle in the (`+ 1)-th iteration is updated with
stepsize ε`+1 as

θ
(i)
`+1 = θ

(i)
` + ε`+1φ(θ

(i)
` ) (3)

φ(θ
(i)
` ) =

1

M

M∑
j=1

[−κ(θ(j)` ,θ
(i)
` )∇

θ
(j)
`

U(θ
(j)
` )

+∇
θ
(j)
`

κ(θ
(j)
` ,θ

(i)
` )] (4)

where κ(·, ·) is a positive definite kernel (e.g., RBF
kernel). The two terms in φ play different roles: the
first term drives the particles towards high density
regions of p(θ|D); whereas the second term acts as
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a repulsive force that prevents all the particles from
collapsing together into local modes of p(θ|D).

SPOS Though obtaining significant empirical
success, under certain conditions, SVGD experi-
ences a theoretical pitfall, where particles tend to
collapse. To overcome this, Zhang et al. (2020)
generalize SVGD to a stochastic setting by inject-
ing random noise into particle updates. The update
rule for particles θ(i)` is

φ(θ
(i)
` ) =

1

M

M∑
j=1

[−κ(θ(j)
` ,θ

(i)
` )∇

θ
(j)
`

U(θ
(j)
` )+ (5)

∇
θ
(j)
`

κ(θ
(j)
` ,θ

(i)
` )]− β−1∇

θ
(i)
`

U(θ
(i)
` ) +

√
2β−1ε−1

` ξ
(i)
`

where β > 0 is a hyperparameter, ξ(i)` ∼ N (0, I)
is the injected random Gaussian noise to enhance
the ability of escaping local modes, leading to bet-
ter ergodic properties compared to standard SVGD.

3 A Bayesian Inference Perspective of
Multi-head Attention

In this section, we interpret multi-head attention
as Bayesian inference of latent representation via
particle-optimization sampling. We denote x and
z as the input and output (latent representation) of
the attention model, respectively. The single-head
attention can be written as a deterministic mapping
z = fatt(x;θ), with θ the parameter of the map-
ping. Standard multi-head attention defines multi-
ple parallel attention mappings, each endowed with
independent parameters. The attention features are
finally aggregated via a function g(·) as

z = g(z1, ...,zM ), zi = fatt(x;θi) . (6)

Next, we generalize (6) as a Bayesian inference
problem for the latent representation z.

Attention as Bayesian Inference We first gen-
eralize the deterministic transformation, z =
fatt(x;θ), to a stochastic generative process as:

θ ∼ p(θ|D), z = fatt(x;θ) ,

where a sample of the posterior of the global at-
tention parameter θ, p(θ|D) ∝ p(D|θ)p(θ), is
used as the parameter when generating the la-
tent attention feature z. Bayesian inference for
attention then computes the predictive distribu-
tion p(z|x,D) of the attentive latent representa-
tion z for a new input x given the training data D
by p(z|x,D) =

∫
δfatt(x;θ)(z)p(θ|D)dθ , where

δz(·) is the delta function with point mass at z.
To enable efficient evaluation of the integral, we
adopt Bayesian sampling for approximation, i.e.,
p(z|x,D) is approximated by a set of M sam-
ples/particles initialized from p(θ|D), leading to
the following generative process:

z = g(z1, ...,zM ) (7)

zi = fatt(x;θi), with θi ∼ p(θ|D)

The above formulation defines a principled version
of multi-head attention from a Bayesian view. One
can see that (7) reduces to the standard multi-head
attention if all θi are treated independently without
sharing the common parameter distribution p(θ|D).
In other words, our reformulation of multi-head at-
tention is a stochastic generative process, thus is
more general. Furthermore, efficient end-to-end
learning can be performed by conducting repul-
sive Bayesian sampling for all parameters {θi}Mi=1,
which consequently could diversify the attention
features {zi}Mi=1.

4 Repulsive Attention Optimization

The Bayesian multi-head attention in (7) further
inspires us to develop the repulsive attention. The
idea is to learn to generate repulsive samples from
the posterior p(θ|D). We propose to adopt the
particle-optimization sampling methods, which
could explicitly encourage repulsiveness between
samples. In our algorithm, the parameter of
p(z|x;θ) for each head is considered as one parti-
cle. Following the particle-optimization rules, M
heads {θi}Mi=1 are updated iteratively to approxi-
mate the posterior distribution of attention parame-
ter p(θ|D).

4.1 Learning Repulsive Multi-head Attention

We propose to learning repulsive attention by
replacing the standard updates of attention pa-
rameters via stochastic gradient descent (SGD)
with particle-optimization sampling methods while
keeping the multi-head attention model unchanged.
This procedure forms an efficient end-to-end train-
ing scheme similar to standard attention learning.
To be specific, in standard multi-head attention, the
parameter of every head is updated independently
according to the respective gradient of a loss func-
tion. To achieve repulsive multi-head attention, we
follow the particle-optimization sampling update
rule (e.g. (3) and (4)) to update the parameter of
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every head while keeping the update for the remain-
ing parameters via SGD unchanged. Equations (4)
and (5) can be viewed as modified gradients with
explicit repulsive force and can be integrated into
any optimizer, e.g., Adam (Kingma and Ba, 2015).
Note that ∇

θ
(i)
`

U(θ
(i)
` ) equals to the gradient of

θ
(i)
` in standard multi-head attention when the neg-

ative log-likelihood is used as the loss function and
the prior of θ(i) is assumed to be uniform. The
learning algorithm is illustrated in Algorithm 1. In
practice, the update of M heads can be performed
in parallel with efficient matrix operations.

Algorithm 1 Repulsive Multi-head Attention
Input: Initialized M -head attention model A
with attention parameters Θ0 = {θi}Mi=1 and
all the other parameters Ω0; Training data D =
{Dk}Nk=1 = {(xk, yk)}Nk=1;
Output: Optimized attention model with learned
parameters Θ̂ and Ω̂;
Train:

for iteration ` do
forward: ŷk = A(xk;Θ`,Ω`),∀k;
calculate loss: L({ŷk}, {yk});
backward and calculate gradients:
gradient of Ω`: ϕ(Ω`)← ∇Ω`

L
for attention head i do

calculate φ(θ(i)` ) with Eq (4) or (5);
gradient of θ(i)` :ϕ(θ(i)` )← ε`φ(θ

(i)
` );

end for
update parameters:
Ω`+1 ← Optimizer(Ω`, ϕ(Ω`))
Θ`+1 ← Optimizer(Θ`, ϕ(Θ`))

end for

4.2 In-depth Analysis
Why Multi-head Attention? Our Bayesian in-
terpretation of the attention mechanism naturally
provides an answer to the question of why one
needs multi-head attention. By treating each head
as one sample, adopting multiple heads means
using more samples to approximate an underly-
ing posterior distribution. The question comes to
should one use more heads (samples). Intuitively
this seems to be true because more samples typi-
cally make more accurate approximations. How-
ever, this could not be the case in practice. The
reason might be two-fold: i) Overfitting: Learning
with a limited amount of data could easily causes
overfitting, thus requiring a smaller model (less at-

tention heads); ii) Numerical error: Our proposed
method to update samples (attention-head param-
eters) is essentially a discrete numerical method
of the corresponding continuous-time partial dif-
ferential equation, i.e., the samples are not exact
samples from the target distribution. Thanks to the
recently developed theory for particle-optimization
sampling (Zhang et al., 2020), one can conclude
that more heads could accumulate more numer-
ical errors, leading to performance deterioration.
More formally, when using particles to approxi-
mate a target posterior distribution, there exists
a gap (approximation error) between the particle
distribution and the true distribution (Zhang et al.,
2020). This approximation error, when applied
to our setting, approximately scales in the order
of O( 1√

M
+ Mε

1/2
0 + e−

∑
` ε`). Please refer to

Theorem 10 in (Zhang et al., 2020) for a formal
description.

How Many Heads are Enough? The above er-
ror bound suggests that there is a trade-off between
approximation accuracy and the number of heads
M . Specifically, we have i) when M is small, the
term 1√

M
in the bound would dominate, leading

to decreasing errors (increasing performance) with
increasing M ; ii) when M is large enough, the
term Mε

1/2
0 dominates, suggesting that larger M

could actually increase the approximation error (de-
creased performance). These phenomena are con-
sistent with our experimental results. We note that
an exact form of the optimalM is not available due
to a number of unknown constants (omitted in the
big-O notation). Therefore, one should seek other
ways such as cross-validation to choose a good M
in practice. Our argument also aligns with recent
research, which found that more heads do not nec-
essarily lead to better performance (Michel et al.,
2019).

5 Experiments

We demonstrate the effectiveness of our method
with representative multi-head attention models on
a broad range of tasks including sentence classi-
fication, machine translation, language modeling
and text generation. This section summarizes key
results on different models. More detailed experi-
ment settings and analysis are deferred to the ap-
pendix. To apply our approach, only the learning
method of multi-head attention is adapted.
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(a) detailed attentions (b) detailed attentions

(c) standard multi-head attention (d) repulsive multi-head attention

Figure 1: Attention heatmaps of a 4-star Yelp review. Results on the left is from the standard multi-head attention,
and the result on the right is from our repulsive multi-head attention. (a) and (b) shows detailed attention maps
taken by 5 out of 30 rows of the matrix embedding, while (c) and (d) shows the overall attention by summing up
all 30 attention weight vectors.

Models Acc(%) Dist

Age

BiLSTM + MA 81.47 0.129
BiLSTM + MA + R 81.30 0.178
BiLSTM + RMA (SVGD) 81.82 0.492
BiLSTM + RMA (SPOS) 82.55 0.461

Yelp

BiLSTM + MA 69.3 0.246
BiLSTM + MA + R 70.2 0.536
BiLSTM + RMA (SVGD) 71.2 1.602
BiLSTM + RMA (SPOS) 71.7 1.655

SNLI

BiLSTM + MA 83.79 1.293
BiLSTM + MA + R 84.55 1.606
BiLSTM + RMA (SVGD) 84.58 1.688
BiLSTM + RMA (SPOS) 84.76 1.370

Table 1: Performance (accuracy) comparison on Age,
Yelp and SNLI dataset. Dist: the average 2-norm dis-
tance between each pair of the latent representation en-
coded from different heads on test set. MA: standard
multi-head attention. RMA: proposed repulsive multi-
head attention. R: regularization approach.

5.1 Self-attentive Sentence Classification

Model & Baselines We first apply our method
to the self-attentive sentence classification model
(Lin et al., 2017) which combines BiLSTM with
additive attention to learn the sentence embedding
and then does classification on it. We compare our
method with the one using the standard multi-head
attention (BiLSTM + MA) and the one applying
the Frobenius regularization (BiLSTM + MA + R)
on it to introduce diversity as in Lin et al. (2017).

Tasks & Datasets Following Lin et al. (2017),
three sentence classification tasks including author
profiling, sentiment analysis, and textual entail-
ment are evaluated on the Age, Yelp, and SNLI
datasets respectively.

Results As shown in Table 1, with the proposed
repulsive multi-head attention, the model achieves
higher accuracy on all three tasks. Especially on
the sentiment analysis task which often contains
multiple aspects in one sentence. Our methods
also outperform the regularization method pro-
posed in Lin et al. (2017). With different particle-
optimization rules, SPOS is able to achieve better
performance due to its extra advance discussed by
Zhang et al. (2020). We further evaluate the diver-
sity of multiple heads by calculating the average
distance between each pair of latent representa-
tions. Results show that our methods indeed en-
force heads to be more diverse, compared with the
standard multi-head attention. The less diverse of
the regularization-based method also indicates the
validness of our argument in Appendix C.6.

Repulsive-attention visualization We further
visualize attention maps in the learned sentence
embedding space in Figure 1. It is interesting to see
attention collapse indeed happens in the standard
multi-head attention, where almost all heads focus
on one single factor "amazing". On the contrary,
the proposed method is able to capture multiple key
factors in the review that are strong indicators of
the sentiment behind the sentence. For example,
"downfall" and "service was passing" are key fac-
tors for this 4-star review captured by our repulsive
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Models BLEU Time

IWSLT14 De-En

Transformer-small-MA 34.4 1
Transformer-small-MA + R 34.9 1.29
Transformer-small-RMA 35.2 1.13

WMT14 En-De

Transformer-base-MA 27.3 1
Transformer-base-MA + R 28.2 1.35
Transformer-big-MA 28.4 -
Transformer-base-RMA 28.4 1.18

Table 2: Translation Performance on IWSLT14 De-En
and WMT14 En-De Datasets. MA: standard multi-
head attention. RMA: proposed repulsive multi-head
attention. R: regularization approach. Time: relative
training time of every step versus MA.

multi-head attention, which are missed by the stan-
dard attention. The full attention heatmaps of all
30 heads and more examples are in Appendix D.

5.2 Transformer-based Neural Translation
Model & Baselines The Transformer (Vaswani
et al., 2017) is a representative multi-head atten-
tion based model. We apply the proposed repul-
sive multi-head attention (RMA) on it and compare
our method with the original one (MA) and the
disagreement regularization method (R) (Li et al.,
2018) which encourages the diversity in attention
by a cosine similarity penalty on attention outputs.

Tasks & Datasets Following Vaswani et al.
(2017) , we apply Transformer for machine trans-
lation, with two standard translation datasets: the
IWSLT14 German-to-English (De-En) dataset , and
the WMT14 English-to-German (En-De) dataset.

Results Results are presented in Table 2. With
the repulsive multi-head attention, Transformer
models achieve noticeable improvement on the
BLEU score on both datasets, compared with
both baselines. It is also encouraging to see
that the Transformer-base-RMA with a much
smaller model achieves comparable performance
as Transformer-big. As for training time, our ap-
proach takes slightly more time than the baseline,
but is much more efficient than the regularization
approach.

Which attention module to be diversified? We
conduct extra experiments on Transformer-small
to investigate which attention module benefits most
from the repulsiveness. Results (see Appendix C.3)
suggest that diversifying different attention module
benefits differently. Remarkably, only diversifying

(a) Transformer-base-MA (b) Transformer-base-RMA

Figure 2: Distribution of heads by performance drop
after masking at test time. The redundancy of heads in
RMA is much less.

the attention in the first layer is able to achieve
comparable performance to the case of diversify-
ing attention in all layers, with little computational
time increased. This finding suggests that the re-
pulsiveness in the first layer’s attention plays an
important role for modelling language.

Redundancy in heads The redundancy problem
in attention has been observed in recent works
(Michel et al., 2019), that a large percentage of
attention heads can be removed at test time without
significantly impacting performance. Following
Michel et al. (2019), we analysis the redundancy
in Transformer by ablating each head at testing
and evaluating the performance drop. The more
drops, the more important of the head. Figure 2
shows that the majority of heads in standard multi-
head attention are redundant for the performance
is comparable before and after masking. However,
the repulsive attention largely alleviates the redun-
dancy. More interestingly, there are a lot of counter-
intuitive cases in standard attention: removing a
head results in an increase in performance. How-
ever, this does not seem to happen in repulsive
attention model, indicating better leveraging of the
superior expressiveness of multi-head mechanism.

5.3 Language Representation Learning

Model ELECTRA (Clark et al., 2020) is an ef-
ficient approach to self-supervised language rep-
resentation learning. It consists of two networks,
Generator and Discriminator, both of which are
parameterized by Transformers. The pre-trained
Discriminator is used in various downstream tasks
via fine-tuning. We apply the proposed repulsive
multi-head attention to ELECTRA (small setting)
in the pre-training stage. We only make the first
layer attention of Discriminator to be repulsive,
according to the finding in Section 5.2 that the di-
versity in the first attention layer of Transformer
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Pre-training Data Model Prams CoLA SST MRPC STS QQP MNLI QNLI RTE Avg.

Wikipedia
+

BooksCorpus

TinyBERT 14.5M 51.1 93.1 82.6 83.7 89.1 84.6 90.4 70.0 80.6
MobileBERT 25.3M 51.1 92.6 84.5 84.8 88.3 84.3 91.6 70.4 81.0
GPT 117M 45.4 91.3 75.7 80.0 88.5 82.1 88.1 56.0 75.9
BERT-Base 110M 52.1 93.5 84.8 85.8 89.2 84.6 90.5 66.4 80.9
ELECTRA 14M 54.6 89.1 83.7 80.3 88.0 79.7 87.7 60.8 78.0

OpenWebText ELECTRA 14M 56.2 88.3 87.5 86.8 88.1 78.6 87.4 67.3 / 71.4 80.0 / 80.5
+ RMA 14M 59.4 87.1 87.9 87.0 88.6 79.3 87.8 64.9 / 73.1 80.3 / 81.3

Table 3: Results on the GLUE test set. For RMA, repulsive attention is only applied to pre-training. For RTE, the
left value is fine-tuned from pre-trained models, the right value is from intermediate task training.

benefits the most.

Tasks & Dataset We train ELECTRA models
on OpenWebText Corpus due to the data used in
Clark et al. (2020) is not publicly available. The
pretrained models are then fine-tuned and evaluated
on the General Language Understanding Evalua-
tion (GLUE) (Wang et al., 2019) benchmark on
eight datasets (Warstadt et al., 2019; Socher et al.,
2013; Dolan and Brockett, 2005; Cer et al., 2017;
Williams et al., 2018; Rajpurkar et al., 2016; Dagan
et al., 2005; Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009).

Results Results are shown in Table 3. For each
task, we perform single-task fine-tuning 50 times,
and report the averaged results. The training time
with and without repulsive attention is almost the
same. It shows that repulsive attention improves the
baseline results (Clark et al., 2020) in seven out of
eight tasks on GLUE, and the gains are larger espe-
cially on MNLI (the largest dataset on GLUE) and
CoLA . This suggests that repulsive attention can
yield better language representations. Since MNLI
and RTE are both entailment tasks, following Clark
et al. (2020) and Phang et al. (2018), we use inter-
mediate task training for RTE. We first fine-tune
the pre-trained model on MNLI, then continuously
fine-tune it on RTE. The repulsive attention outper-
forms the baseline method by a large margin in this
setting. This is probably because the repulsive at-
tention particularly favor large data variability (e.g.,
MNLI dataset), where different aspects of data can
be uniquely represented in different heads.

5.4 Graph-to-Text Generation

Model & Baselines GraphWriter (Koncel-
Kedziorski et al., 2019) is a knowledge-graph-to-
text model, which aims at generating coherent
multi-sentence abstract given a knowledge graph
and a title. There is a Transformer-style encoder
defined with graph attention modules (Velickovic

Metrics GW + R + RMA

BLEU-1 42.56 42.25 45.60
BLEU-2 27.64 27.98 29.96
BLEU-3 19.27 19.77 21.07
BLEU-4 13.75 14.21 15.12
METEOR 18.11 18.61 19.52
ROUGE-1 35.80 37.24 38.23
ROUGE-2 16.83 17.78 18.39
ROUGE-L 27.21 26.90 28.55

Table 4: Automatic evaluations of generation systems
on test set of AGENDA.

Win Lose Tie

Structure 51% 12% 37%
Informativeness 66% 13% 21%
Grammar 37% 17% 46%
Overall 65% 14% 21%

Table 5: Human judgments of GraphWriter with and
without repulsive attention.

et al., 2018) that could also be easily adapted to our
method. We compare our method with the original
one that has the standard multi-head attention, and
the one with the cosine similarity regularization on
attention parameters in encoder layers.

Tasks & Datasets & Metrics Experiments are
conducted on the Abstract GENeration DAtaset
(AGENDA) (Koncel-Kedziorski et al., 2019), a
dataset of knowledge graphs paired with scien-
tific abstracts. We evaluate the quality of abstracts
with 3 major metrics: BLEU (uni-gram to 4-gram
BLEU) (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE (Lin and Hovy,
2003). In ROUGE, the unigram and bigram over-
lap (ROUGE-1 and ROUGE-2) are a proxy for
assessing informativeness and the longest common
subsequence (ROUGE-L) represents fluency.

Results The results are shown in Table 4. The
GraphWriter model with repulsive multi-head at-
tention significantly outperforms the original model
and regularization approach in all metrics. Espe-
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(a) (b)
Figure 3: Demonstration on performance difference
with different number of heads. (a) Testing error
of the self-attentive sentence classification model on
Yelp dataset. (b) Negative log likelihood loss of
Transformer-small on IWSLT14 De-En dataset.

cially, the higher recall score in ROUGE shows that
there are more N-grams across the reference ab-
stracts that can be found in the generated abstracts.
Similar observations are noticed when analyzing
the generated examples in detail (an example is
illustrated in Appendix E). Koncel-Kedziorski et al.
(2019) pointed out one limitation of their model
is 40% of entities in the knowledge graphs do not
appear in the generated text. With the repulsive
attention, remarkably, the GraphWriter model is
observed to perform much better with a 10% im-
provement on the knowledge graph coverage and
fewer repeat clauses.

Human Evaluation To further illustrate the im-
provement of using diverse attention, we conduct
human evaluation. Following Koncel-Kedziorski
et al. (2019), we give 50 test datapoints to experts
(5 computer science students) and ask them to pro-
vide per-criterion judgments for the generated ab-
stracts. Comparisons of the two methods from 4
aspects are shown in Table 5. The human judgment
indicates that the repulsive attention improves both
the structure and informativeness of generated ab-
stracts significantly, which is consistent with the
automatic evaluation and our observations.

5.5 On the Number of Attention Heads

Our analysis in Section 4.2 suggests the existence
of the optimal number of attention heads. To verify
this, we further conduct experiments on sentence
classification and translation tasks by varying the
number of attention heads in models. The results
are shown in Figure 3. The model error/loss first
decreases then increases w.r.t.M , the number of at-
tention heads. The optimal M are around 20 and 4
for the sentiment analysis and the Transformer, re-

spectively. Interestingly, the Transformer degrades
quickly as the number of heads increases. This
might because the constant corresponding to the
O(Mε0) term in the bound is too large, making this
term quickly dominate with increasing M . Further-
more, it is also observed that the standard multi-
head attention follows the same trend, but performs
much worse and is more sensitive to the M . This
indicates the benefit of Bayesian modeling, which
could usually stabilize a model better.

6 Related Work

We provide a first explanation of multi-head at-
tention from a Bayesian perspective, and propose
particle-optimization sampling for repulsive atten-
tion. Most previous works aim at improving at-
tention diversity with regularization-based meth-
ods, e.g., the Frobenius regularization on attention
weights in Lin et al. (2017) and the cosine similar-
ity regularization on attention outputs in Li et al.
(2018). These works focus on a particular model
and the underlying working principle has not been
well-validated. Our approach is a principled one
that is more interpretable and widely applicable.

The attention collapse belongs to a feature-
overlapping problem, which also happens in other
areas. Some works tackle this problem by chang-
ing architectures, for example ResNet (He et al.,
2016) and DenseNet (Huang et al., 2017) implicitly
reduce feature correlations by summing or concate-
nating activation from previous layers. There are
also works done by altering the training method
as we do. Han et al. (2017) adopt the dropout
mechanism and propose a dense-sparse-dense train-
ing flow, for regularizing deep neural networks.
Prakash et al. (2019) attempt addressing the unnec-
essary overlap in features captured by image filters
with pruning-restoring scheme in training. To our
knowledge, we are the first to tackle the attention-
feature overlap problem from a Bayesian view with
a principled interpretation.

7 Conclusion

We propose a principled way of understanding
multi-head attention from a Bayesian perspective.
We apply particle-optimization sampling to train
repulsive multi-head attention with no additional
trainable parameters nor explicit regularizers. Our
Bayesian framework explains the long-standing
question of why and how multi-head attention af-
fects model performance. Extensive experimental
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results on representative attention models demon-
strate that our approach can significantly improve
the diversity in multi-head attention, resulting in
more expressiveness attention models with perfor-
mance improvement on a wide range of tasks.

Acknowledgements

We sincerely thank all the reviewers for providing
valuable feedback. This paper is funded by the
Verizon Media FREP program.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations (ICLR),
San Diego, CA, USA.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
an automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the Workshop on Intrinsic and Extrin-
sic Evaluation Measures for Machine Translation
and/or Summarization@ACL, Ann Arbor, Michigan,
USA, pages 65–72.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fifth pascal recognizing textual entailment chal-
lenge.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations (ICLR), Addis Ababa,
Ethiopia.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop
(MLCW), Southampton, UK, pages 177–190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), Minneapolis, MN, USA,
pages 4171–4186.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing, IWP@IJCNLP, Jeju Island, Ko-
rea.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL@ACL Workshop on Textual En-
tailment and Paraphrasing, Prague, Czech Republic,
pages 1–9.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In Proceedings of the 34th International
Conference on Machine Learning (ICML), Sydney,
NSW, Australia, pages 1321–1330.

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second pascal recognising tex-
tual entailment challenge.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, En-
hao Gong, Shijian Tang, Erich Elsen, Peter Vajda,
Manohar Paluri, John Tran, Bryan Catanzaro, and
William J. Dally. 2017. DSD: dense-sparse-dense
training for deep neural networks. In 5th Inter-
national Conference on Learning Representations
(ICLR), Toulon, France.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA,
pages 770–778.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. 2017. Densely connected con-
volutional networks. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Hon-
olulu, HI, USA, pages 2261–2269.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR),San Diego, CA, USA.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019.
Text generation from knowledge graphs with graph
transformers. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), Minneapolis, MN, USA,
pages 2284–2293.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing and
the International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), Hong Kong,
China, pages 4365–4374.



245

Jian Li, Zhaopeng Tu, Baosong Yang, Michael R.
Lyu, and Tong Zhang. 2018. Multi-head attention
with disagreement regularization. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Brussels, Belgium,
pages 2897–2903.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic evaluation of summaries using n-gram co-
occurrence statistics. In Human Language Technol-
ogy Conference of the North American Chapter of
the Association for Computational Linguistics (HLT-
NAACL), Edmonton, Canada.

Zhouhan Lin, Minwei Feng, Cícero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. In 5th International Conference on
Learning Representations (ICLR),Toulon, France.

Qiang Liu and Dilin Wang. 2016. Stein variational
gradient descent: A general purpose bayesian in-
ference algorithm. In Advances in Neural Informa-
tion Processing Systems 29: Annual Conference on
Neural Information Processing Systems (NeurIPS),
Barcelona, Spain, pages 2370–2378.

Christos Louizos and Max Welling. 2017. Multiplica-
tive normalizing flows for variational bayesian neu-
ral networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML),
Sydney, NSW, Australia, pages 2218–2227.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), Vancouver, BC, Canada,
pages 14014–14024.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT), Min-
neapolis, MN, USA, pages 48–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Philadelphia, PA, USA,
pages 311–318.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. arXiv
preprint arXiv:1811.01088.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, Brussels,
Belgium, pages 186–191.

Aaditya Prakash, James A. Storer, Dinei A. F. Florên-
cio, and Cha Zhang. 2019. Repr: Improved train-
ing of convolutional filters. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, pages 10666–10675.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Austin, Texas, USA,
pages 2383–2392.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), Grand Hyatt Seattle, Seattle, Washington,
USA, pages 1631–1642.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A.
Bilmes, Tanmoy Bhattacharya, and Sarah Michalak.
2019. On mixup training: Improved calibration and
predictive uncertainty for deep neural networks. In
Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Pro-
cessing Systems (NeurIPS), Vancouver, BC, Canada,
pages 13888–13899.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems (NeurIPS), Long
Beach, CA, USA, pages 5998–6008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph attention networks. In 6th Inter-
national Conference on Learning Representations
(ICLR), Vancouver, BC, Canada.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of
the 57th Conference of the Association for Compu-
tational Linguistics (ACL), Florence, Italy, pages
5797–5808.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th
International Conference on Learning Representa-
tions (ICLR), New Orleans, LA, USA.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, pages 625–641.



246

Max Welling and Yee Whye Teh. 2011. Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference
on Machine Learning (ICML), Bellevue, Washing-
ton, USA, pages 681–688.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), New Orleans, Louisiana, USA, pages 1112–
1122.

Jianyi Zhang, Ruiyi Zhang, and Changyou Chen. 2020.
Stochastic particle-optimization sampling and the
non-asymptotic convergence theory. In The 23rd In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS), Palermo, Sicily, Italy, pages
1877–1887.



247

A Additive Attention

First proposed by (Bahdanau et al., 2015), additive
attention uses a one-hidden layer feed-forward net-
work to calculate the attention alignment. We use
the attention function in Lin et al. (2017), which
is also a self-attention, as an example. It aims at
extracting the latent representation of a sentence.
The single-head attention function is:

a = Softmax(v>tanh(WH>)), z = aH

where H ∈ Rn×d is the hidden state matrix of
a sentence with n words, every word is embed-
ded in a d dimensional vector. v ∈ R1×n is the
normalized alignment score vector for each word.
W ∈ Rda×d and v ∈ Rda×1 are attention parame-
ters. The final sentence representation vector z is a
weighted sum of words’ hidden states weighted by
attention vector. In order to capture overall seman-
tics of the sentence instead of a specific component,
multi-head attention could be applied as

A = Softmax(V>tanh(WH>)),Z = AH

where V ∈ Rda×M is the matrix performs M
heads, A ∈ RM×n is the M -head attention ma-
trix and Z ∈ RM×d is the resulting sentence repre-
sentation matrix contains semantics from multiple
aspects.

B Additional Experimental Details

For our approach, RBF kernel κ(x, y) =
exp(− 1

h‖x − y‖22) with the bandwidth h =
med2/ logM is used as the kernel function, where
med denotes the median of the pairwise distance
between current particles. The prior distribution
of attention parameters is assumed to be uniform.
We find that adding an repulsive weight before
the repulsive term (i.e. the second term in Eq. 4)
in particle-optimization update rules could help
adjusting the degree of diversity in attention and
achieving better performance. In our experiments,
we adopt this trick and use the hyper-parameter α
to denote the repulsive weight. Since our method
only modifies the learning process of attention, all
models and settings in our experiments kept the
same with the corresponding previous work unless
stated otherwise.

B.1 Self-attentive Sentence Classification
Dataset Three tasks are conducted on three pub-
lic sentence classification datasets. Author profiling

(Age dataset 1) is to predict the age range of the
user by giving their tweets. Sentiment analysis
(Yelp dataset 2) is to predict the number of stars
the user assigned to by analysis their reviews. Tex-
tual entailment (SNLI dataset 3) is to tell whether
the semantics in the two sentences are entailment
or contradiction or neutral. Following Lin et al.
(2017), the train / validate / test split of Age is
68485 / 4000 / 4000, Yelp is 500K / 2000 / 2000,
SNLI is 550K / 10K / 10K.

Experimental settings We implement the stan-
dard multi-head attention model in Lin et al. (2017)
following the settings in it except that we use Spacy
toolkit 4 as the tokenizer and GloVe 5 (GloVe 840B
300D) as the pre-trained word embedding. For re-
pulsive multi-head attention learning, we keep all
settings the same with the standard one (Lin et al.,
2017). Hyper-parameters ε and α in SVGD are se-
lected with grid search. For SPOS, we fix these two
hyper-parameters and only tune β. The selection
is based on the performance on the validation data.
We train and evaluate all the models with 10 ran-
dom seeds and compare their average performance.
Models are trained on one TITAN Xp GPU.

B.2 Transformer-based Neural Translation
Dataset IWSLT14 German-to-English (De-En)
dataset contains 153K / 7K / 7K sentence pairs.
WMT14 English-to-German (En-De) dataset con-
tains about 4.5 million training sentence pairs and
uses newstest2013 dataset as the validation set,
newstest2014 dataset as the test set. Data and the
processing scripts could be found here 6.

Experimental settings Our implementation is
based on the open-sourced fairseq 7 (Ott et al.,
2019). We follow the settings in Vaswani et al.
(2017) and have reproduced their reported results.
For the WMT14 dataset, the base Transformer
is used, which consists of a 6-layer encoder and
a 6-layer decoder. The size of the hidden units
and embeddings is 512 and the number of heads is
8. The big Transformers has 1024 hidden units
and 16 heads, which is listed as a reference. For
IWSLT14 dataset, the small setting is used and

1https://pan.webis.de/clef16/pan16-web/author-
profiling.html

2https://www.yelp.com/dataset/download
3https://nlp.stanford.edu/projects/snli/
4https://spacy.io/
5https://nlp.stanford.edu/projects/glove/
6https://github.com/pytorch/fairseq/tree/v0.6.0/examples/translation
7https://github.com/pytorch/fairseq
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the number of heads in every layer is set to 4. All
the configurations are kept the same when apply-
ing our method or the regularization method. In
our method, only the training process is changed
and SVGD update rule is utilized in our algorithm.
The stepsize ε in our method is set to 0.1 and the
repulsive term α is set to 0.01. The Transformer-
small model is trained on one TITAN Xp GPU. The
Transformer-base model is trained on four GTX
1080Ti GPUs.

Additional Results To support a fair compari-
son, we also evaluate the Transformer-base model
on WMT14 En-De task. The SACREBLEU score
(Post, 2018) with and without our approach is 27.1
and 26.28, respectively.

B.3 ELECTRA

Dataset Following the official code of Clark et al.
(2020), ELECTRA models are pretrained on the
OpenWebTextCorpus 9 dataset, an open source ef-
fort to reproduce OpenAI’s WebText dataset. Open-
WebTextCorpus containes 38GB of text data from
8,013,769 documents. The pretrained model is
then finetuned and evaluated on GLUE benchmark
10. GLUE contains a variety of tasks covering tex-
tual entailment (RTE and MNLI) question-answer
entailment (QNLI), paraphrase (MRPC), question
paraphrase (QQP), textual similarity (STS), senti-
ment (SST), and linguistic acceptability (CoLA).
Our evaluation metrics are Spearman correlation
for STS, Matthews correlation for CoLA, and ac-
curacy for the other GLUE tasks.

Experiment settings The ELECTRA-small
model we implemented follow all official settings
11 except that it is fully-trained on one GTX
1080Ti GPU for 6 days. The ELECTRA-small
model has 12 layers with 4 heads in every layer’s
attention. For our method, the stepsize ε is set to
0.01 and the repulsive term α is set to 0.1. The
repulsive learning of attention is only applied to
the pre-training stage. The fine-tuning remains the
same with the original one.

8SacreBLEU hash: BLEU+case.mixed+lang.en-de
+numrefs.1+smooth.exp+test.wmt14/full+tok.
13a+version.1.4.12

9https://skylion007.github.io/OpenWebTextCorpus/
10https://gluebenchmark.com/
11https://github.com/google-research/electra

B.4 GraphWriter

Dataset Experiments are conducted on the Ab-
stract GENeration DAtaset (AGENDA) (Koncel-
Kedziorski et al., 2019), a dataset of knowledge
graphs paired with scientific abstracts. It consists
of 40k paper titles and abstracts from the Semantic
Scholar Corpus taken from the proceedings of 12
top AI conferences. We use the standard split of
AGENDA dataset in our experiments: 38,720 for
training, 1000 for validation, and 1000 for testing.

Experimental settings We follow the official
settings 12 in Koncel-Kedziorski et al. (2019) with
the encoder containing 6 layers and 4-head graph
attention in every layer. We reproduce their results
and keep all settings the same when applying the
proposed repulsive attention. The SVGD update
rule is used in our algorithm and applied to all lay-
ers. The stepsize ε is set to 0.1 and the repulsive
weight is set to 0.01 in this experiment. The model
is trained on one TITAN Xp GPU.

C Additional Analysis of Our Approach

C.1 Comparison with SGLD

We also conducted a comparison of our method
with Stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011), which is also
a Bayesian sampling method. Results are in Ta-
ble 6. Though random noise brought by SGLD
might help achieving diversity, it’s sub-optimal.
Using particle-optimization to add the repulsive
term makes it more effective.

Sampling
Method Age Yelp SNLI IWSLT14 De-En

None 81.47 69.3 83.79 34.4
SGLD 81.57 70.1 83.80 34.7
SVGD 81.82 71.2 84.58 35.2

Table 6: Performance of attention models with differ-
ent sampling methods on four tasks. For Age, Yelp and
SNLI sentence classification tasks, the evaluation met-
ric is accuracy (%). For IWSLT14 De-En translation
task, the evaluation metric is BLEU score. "None" here
means the standard multi-head attention models.

C.2 What Prior to Use?

In our approach, the repulsiveness is imposed by
the inference algorithm (i.e. SVGD), not prior. To
study the impact of different priors, we also tested

12https://github.com/rikdz/GraphWriter
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the Gaussian prior. We found that (see Table 7) dif-
ferent priors have little impact on the final results,
i.e., there is not a consistent winner for different
priors. This suggests that, the prior has little im-
pact on repulsiveness in our framework. But one
can still impose prior knowledge of the attention to
help our algorithm learn a better attention model.
We would like to explore that in future works.

Prior Age Yelp SNLI

Uniform 81.82 71.7 84.58
Gaussian 81.88 71.6 84.28

Table 7: Performance of our approach with different
priors on three sentence classification tasks.The evalua-
tion metric is accuracy (%)

C.3 Which attention modules to be
diversified?

Models BLEU Time

MA 34.4 1

RMA (Q) 34.7 1.06
RMA (K) 34.7
RMA (V) 34.9

RMA (En) 34.6 1.06
RMA (De) 34.7
RMA (En-De) 34.9

RMA (first layer) 35.1 1.03
RMA (last layer) 34.7

RMA (All) 35.2 1.13

Table 8: Ablation study of Transformer-small-RMA
model on IWSLT14 De-En dataset with repulsive multi-
head attention applied on different part of the model.
En: self-attention in encoder. De: self-attention in de-
coder. En-De: inter-attention between encoder and de-
coder. Time: relative training time of every step versus
MA.

There are three types of attention in Transformer:
self-attention in the encoder, self-attention in the
decoder, and inter-attention between the encoder
and decoder. We conduct extra experiments on
Transformer-small to investigate which attention
module benefits most from the repulsiveness. Re-
sults are shown in Table 8. We first apply the re-
pulsive attention on each of {Q,K,V} parameters
in every attention module for all layers. The results
indicate that diversifying the V -parameter seems
to yield better performance. We then compare re-
pulsive attention inside the encoder, inside the de-
coder and between them, respectively. The results

show improvement in all cases, and diversifying
inter-attention seems to achieve the most benefit.
Finally, we diversify the attention in different lay-
ers of the Transformer. The results suggest that
only diversifying the attention in the first layer is
able to achieve comparable performance to the case
of diversifying all layers, with little computational
time increased.

C.4 Improved Calibration
A reliable model must not only be accurate, but also
indicate when it is likely to get the wrong answer.
It means the confidence of a well calibrated model
should be indicative of the actual likelihood of cor-
rectness. Following the calibration metrics in Guo
et al. (2017) and Thulasidasan et al. (2019), we eval-
uate the calibration of the model in Figure 4. For
classifiers, the predicted softmax scores of winning
class are represented as the confidence of models.
Expected Calibration Error (ECE) and Overconfi-
dence Error (OE) are two calibration metrics eval-
uating the reliability of a model. Following Guo
et al. (2017) and Thulasidasan et al. (2019), soft-
max predictions are grouped into M interval bins
of equal size. Let Bm be the set of samples whose
prediction scores (the winning softmax score) fall
into bin Bm. The accuracy and confidence of Bm
are defined as

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i

where p̂i is the confidence (winning score) of sam-
ple i. The Expected Calibration Error (ECE) is
then defined as:

ECE =
M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|

In high-risk applications, confident but wrong pre-
dictions can be especially harmful. Overconfidence
Error (OE) is defined as follow for this case.

OE =
M∑
m=1

|Bm|
n

[conf(Bm)×

max(conf(Bm)− acc(Bm), 0)]

As shown in Figure 4, the standard attention model
is prone to be over-confident, meaning that the ac-
curacy is likely to be lower than what is indicated
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(a) (b)

Figure 4: (a) Scatterplots for accuracy and confidence for SNLI test set. The repulsive case (RMA) is much better
calibrated with the points lying closer to the y = x line, while in the standard case (MA), points tend to lie in the
overconfident region. (b) Expected Calibration Error (ECE) and Overconfidence Error (OE) for two cases.

Figure 5: Empirical CDF for the entropy of the predic-
tive distributions on Age dataset from the model trained
on Yelp dataset. Curves that are closer to the bottom
right part of the plot are preferable, as it denotes that
the probability of observing a high confidence predic-
tion is low.

by the predictive score. With the proposed repul-
sive training of attention, the model becomes better
calibrated with much lower calibration error and
overconfidence error, indicating that our method
is beneficial for training more reliable multi-head
attention models.

C.5 Improved Uncertainty Prediction

We follow Louizos and Welling (2017) to evaluate
the predictive uncertainty. We estimate the entropy
of the predictive distributions on Age dataset (out-
of-distribution entropy) from the models trained
on Yelp dataset. Since we a-priori know that none
of the Age classes correspond to a trained class
(they are two different tasks), the ideal predictive
distribution is uniform over the Age dataset, i.e. a

Methods Acc(%)
Age Yelp

cosine similarity regularization 81.35 68.50
i− > j 81.65 71.45

i− > j, +smooth 81.85 71.50

Table 9: Adapt cosine similarity regularization on atten-
tion parameters gradually to our framework. Accuracy
of the model is evaluated on the test set of Age and Yelp
dataset.

maximum entropy distribution. We plot the empiri-
cal CDF for the entropy in Figure 5. It shows that
the uncertainty estimates from the repulsive multi-
head attention model is better than the standard
attention and the regularization approach.

C.6 Discussion with Existing
Regularization-based Methods

Learning diverse attentions has been proposed
in Lin et al. (2017) and Li et al. (2018), with differ-
ent regularization techniques to enforce repulsive-
ness. In fact, we can show that existing methods
are simplified versions of our framework, but with
a potential mismatch between their algorithm and
the underlying repulsiveness guarantee. To explain
this, we follow Li et al. (2018) and apply cosine
similarity regularizer to the attention parameter θ.
When negative log-likelihood is used as the loss
function and the prior of θ(i) is assumed to be uni-
form, the update function φ becomes:

φ(θ
(i)
` ) = −∇

θ
(i)
`

U(θ
(i)
` ) +∇

θ
(i)
`

1

M

M∑
j=1

θ
(i)
` θ

(j)
`

‖θ(i)` ‖‖θ
(j)
` ‖

One can consider the cosine similarity as a kernel
function. Applying this new kernel function to our
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framework results in the following update:

φ(θ
(i)
` ) =

1

M

M∑
j=1

−
θ
(i)
` θ

(j)
`

‖θ(i)` ‖‖θ
(j)
` ‖
∇

θ
(j)
`

U(θ
(j)
` )

+
1

M

M∑
j=1

∇
θ
(j)
`

θ
(i)
` θ

(j)
`

‖θ(i)` ‖‖θ
(j)
` ‖

It is clear that our method (??) reduces to the regu-
larizing method when 1) removing the smoothing
term θ

(i)
` θ

(j)
`

‖θ(i)
` ‖‖θ(j)

` ‖
for j 6= i; and 2) replacing the

derivative ∇
θ
(j)
`

with ∇
θ
(i)
`

in the repulsive term.
For this reason, we argue that the regularization
method lacks of a formal guarantee on the repul-
siveness.

To show this, we adapt the cosine similarity reg-
ularization on attention parameters gradually to our
framework by 1) replacing the derivative∇

θ
(i)
`

with
∇

θ
(j)
`

in the repulsive term; 2) adding the smooth-

ing term κ(θ
(j)
` ,θ

(i)
` ). Table 9 shows that both the

smoothing and the corrected gradient lead to per-
formance improvement over the standard regular-
ization methods.
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D Visualization of Multi-head Attention in Sentence Classification Task

(a) detailed attentions of 30 heads

(b) overall attention

Figure 6: Attention heatmaps for the standard multi-head attention model
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(a) detailed attentions of 30 heads

(b) overall attention

Figure 7: Attention heatmaps for the standard multi-head attention model trained with Frobenius regularization
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(a) detailed attentions of 30 heads

(b) overall attention

Figure 8: Attention heatmaps for the repulsive multi-head attention model
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E A Generation Sample of Graph-to-Text Task

RMA

Figure 9: Example outputs of various systems versus Gold


