
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2151–2161,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2151

Retrofitting Structure-aware Transformer Language Model for End Tasks

Hao Fei1, Yafeng Ren2∗ and Donghong Ji1
1. Department of Key Laboratory of Aerospace Information Security and Trusted Computing,
Ministry of Education, School of Cyber Science and Engineering, Wuhan University, China

2. Guangdong University of Foreign Studies, China
{hao.fei,renyafeng,dhji}@whu.edu.cn

Abstract

We consider retrofitting structure-aware Trans-
former language model for facilitating end
tasks by proposing to exploit syntactic dis-
tance to encode both the phrasal constituency
and dependency connection into the language
model. A middle-layer structural learning
strategy is leveraged for structure integration,
accomplished with main semantic task train-
ing under multi-task learning scheme. Ex-
perimental results show that the retrofitted
structure-aware Transformer language model
achieves improved perplexity, meanwhile in-
ducing accurate syntactic phrases. By perform-
ing structure-aware fine-tuning, our model
achieves significant improvements for both
semantic- and syntactic-dependent tasks.

1 Introduction

Natural language models (LM) can generate fluent
text and encode factual knowledge (Mikolov et al.,
2013; Pennington et al., 2014; Merity et al., 2017).
Recently, pre-trained contextualized language mod-
els have given remarkable improvements on vari-
ous NLP tasks (Peters et al., 2018; Radford et al.,
2018; Howard and Ruder, 2018; Yang et al., 2019;
Devlin et al., 2019; Dai et al., 2019). Among
such methods, the Transformer-based (Vaswani
et al., 2017) BERT has become a most popular
encoder for obtaining state-of-the-art NLP task
performance. It has been shown (Conneau et al.,
2018; Tenney et al., 2019) that besides rich seman-
tic information, implicit language structure knowl-
edge can be captured by a deep BERT (Vig and
Belinkov, 2019; Jawahar et al., 2019; Goldberg,
2019). However, such structure features learnt
via the vanilla Transformer LM are insufficient
for those NLP tasks that heavily rely on syntactic
or linguistic knowledge (Hao et al., 2019). Some
effort devote to improved the ability of structure
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Figure 1: Full-layer multi-task learning for structural
training (left), and the middle-layer training for deep
structure-aware Transformer LM (right).

learning in Transformer LM by installing novel
syntax-attention mechanisms (Ahmed et al., 2019;
Wang et al., 2019). Nevertheless, several limita-
tions can be observed.

First, according to the recent findings by probing
tasks (Conneau et al., 2018; Tenney et al., 2019;
Goldberg, 2019), the syntactic structure represen-
tations are best retained right at the middle layers
(Vig and Belinkov, 2019; Jawahar et al., 2019).
Nevertheless, existing tree Transformers employ
traditional full-scale training over the whole deep
Transformer architecture (as shown in Figure 1(a)),
consequently weakening the upper-layer semantic
learning that can be crucial for end tasks. Sec-
ond, these tree Transformer methods encode either
standalone constituency or dependency structure,
while different tasks can depend on varying types of
structural knowledge. The constituent and depen-
dency representation for syntactic structure share
underlying linguistic characteristics, while the for-
mer focuses on disclosing phrasal continuity and
the latter aims at indicating dependency relations
among elements. For example, semantic parsing
tasks are more dependent on the dependency fea-
tures (Rabinovich et al., 2017; Xia et al., 2019),
while constituency information is much needed for
sentiment classification (Socher et al., 2013).

In this paper, we aim to retrofit structure-aware
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Transformer LM for facilitating end tasks. • On the
one hand, we propose a structure learning module
for Transformer LM, meanwhile exploiting syn-
tactic distance as the measurement for encoding
both the phrasal constituency and the dependency
connection. • On the other hand, as illustrated in
Figure 1, to better coordinate the structural learning
and semantic learning, we employ a middle-layer
structural training strategy to integrate syntactic
structures to the main language modeling task un-
der multi-task scheme, which encourages the induc-
tion of structural information to take place at most
suitable layer. • Last but not least, we consider per-
forming structure-aware fine-tuning with end-task
training, allowing learned syntactic knowledge in
accordance most with the end task needs.

We conduct experiments on language modeling
and a wide range of NLP tasks. Results show
that the structure-aware Transformer retrofitted
via our proposed middle-layer training strategy
achieves better language perplexity, meanwhile in-
ducing high-quality syntactic phrases. Besides, the
LM after structure-aware fine-tuning can give sig-
nificantly improved performance for various end
tasks, including semantic-dependent and syntactic-
dependent tasks. We also find that supervised
structured pre-training brings more benefits to
syntactic-dependent tasks, while the unsupervised
LM pre-training brings more benefits to semantic-
dependent tasks. Further experimental results on
unsupervised structure induction demonstrate that
different NLP tasks rely on varying types of struc-
ture knowledge as well as distinct granularity of
phrases, and our retrofitting method can help to
induce structure phrases that are most adapted to
the needs of end tasks.

2 Related Work

Contextual language modeling. Contextual lan-
guage models pre-trained on a large-scale corpus
have witnessed significant advances (Peters et al.,
2018; Radford et al., 2018; Howard and Ruder,
2018; Yang et al., 2019; Devlin et al., 2019; Dai
et al., 2019). In contrast to the traditional static
and context-independent word embedding, contex-
tual language models can strengthen word repre-
sentations by dynamically encoding the contextual
sentences for each word during pre-training. By fur-
ther fine-tuning with end tasks, the contextualized
word representation from language models can help
to give the most task-related context-sensitive fea-

tures (Peters et al., 2018). In this work, we follow
the line of Transformer-based (Vaswani et al., 2017)
LM (e.g., BERT), considering its prominence.

Structure induction. The idea of introducing
tree structures into deep models for structure-aware
language modeling has long been explored by su-
pervised structure learning, which generally relies
on annotated parse trees during training and max-
imizes the joint likelihood of sentence-tree pairs
(Socher et al., 2010, 2013; Tai et al., 2015; Yazdani
and Henderson, 2015; Dyer et al., 2016; Alvarez-
Melis and Jaakkola, 2017; Aharoni and Goldberg,
2017; Eriguchi et al., 2017; Wang et al., 2018; Gū
et al., 2018).

There has been much attention paid to unsu-
pervised grammar induction task (Williams et al.,
2017; Shen et al., 2018a,b; Kuncoro et al., 2018;
Kim et al., 2019a; Luo et al., 2019; Drozdov et al.,
2019; Kim et al., 2019b). For example, PRPN
(Shen et al., 2018a) computes the syntactic dis-
tance of word pairs. On-LSTM (Shen et al., 2018b)
allows hidden neurons to learn long-term or short-
term information by a gate mechanism. URNNG
(Kim et al., 2019b) applies amortized variational
inference, encouraging the decoder to generate rea-
sonable tree structures. DIORA (Drozdov et al.,
2019) uses inside-outside dynamic programming
to compose latent representations from all possible
binary trees. PCFG (Kim et al., 2019a) achieves
grammar induction by probabilistic context-free
grammar. Unlike these recurrent network based
structure-aware LM, our work focuses on structure
learning for a deep Transformer LM.

Structure-aware Transformer language model.
Some efforts have been paid for the Transformer-
based pre-trained language models (e.g. BERT) by
visualizing the attention (Vig and Belinkov, 2019;
Kovaleva et al., 2019; Hao et al., 2019) or probing
tasks (Jawahar et al., 2019; Goldberg, 2019). They
find that the latent language structure knowledge
is best retained at the middle-layer in BERT (Vig
and Belinkov, 2019; Jawahar et al., 2019; Gold-
berg, 2019). Ahmed et al. (2019) employ a de-
composable attention mechanism for recursively
learn the tree structure for Transformer. Wang et al.
(2019) integrate tree structures into Transformer
via constituency-attention. However, these Trans-
former LMs suffer from the full-scale structural
training and monotonous types of the structure,
limiting the performance of structure LMs for end
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Figure 2: Overall framework of the retrofitted structure-
aware Transformer language model.

tasks. Our work is partially inspired by Shen et al.
(2018a) and Luo et al. (2019) on employing syntax
distance measurements, while their works focus on
the syntax learning by recurrent LMs.

3 Model

The proposed structure-aware Transformer lan-
guage model mainly consists of two components:
the Transformer encoders and structure learning
module, which are illustrated in Figure 2.

3.1 Transformer Encoder
The language model is built based on N -layer
Transformer blocks. One Transformer layer ap-
plies multi-head self-attention in combination with
a feedforward network, layer normalization and
residual connections. Specifically, the attention
weights are computed in parallel via:

E = softmax(
QKT

√
d

)V

= softmax(
(t · x) (t · x)√

d
)(t · x)

(1)

where Q (query), K (key) and V (value) in multi-
head setting process the input x = {x1, · · · , xn} t
times.

Given an input sentence x, the output contextual
representation of the l-th layer Transformer block
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Figure 3: Simultaneously measuring dependency rela-
tions (1) and phrasal constituency (3) based on the ex-
ample sentence (2) by employing syntax distance (4).

can be formulated as:

{hl
1, · · · ,hl

n} = Trm({x1, · · · , xn})
= η(Φ(η(El)) + El)

(2)

where η is the layer normalization operation and Φ
is a feedforward network. In this work, the output
contextual representation hl = {hl

1, · · · ,hl
n} of

the middle layers can be used to learn the structure
ystruc, and the one at the final layer will be used
for language modeling or end task training ytask.

3.2 Unsupervised Syntax Learning Module

The structure learning module is responsible
for unsupervisedly generating phrases, providing
structure-aware language modeling to the host LM.

Syntactic context. We extract the context repre-
sentations from Transformer middle layers for the
next syntax learning. We optimize the structure-
aware Transformer LM by forcing the structure
knowledge injection focused at middle three lay-
ers: (l − 1)th, lth, and (l + 1)th. Note that although
we only make structural attending to the selected
layers, structure learning can enhance lower layers
via back-propagation.

Specifically, we take the first of the chosen three-
layer as the word context CΨ = hl−1. For the
phrasal context CΩ = {cΩ

1 , · · · , cΩ
n}, we make

use of contextual representations from the three
chosen layers by weighted sum:

CΩ = αl−1 · hl−1 + αl · hl + αl+1 · hl+1 (3)

where αl−1, αl and αl+1 are sum-to-one trainable
coefficients. Rich syntactic representations are ex-
pected to be captured in CΩ by LM.
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Structure measuring. In this study, we reach the
goal of measuring syntax by employing syntax dis-
tance. The general concept of syntax distance di
can be reckoned as a metric (i.e., distance) from
a certain word xi to the root node within the de-
pendency tree (Shen et al., 2018a). For instance in
Figure 3, the head word ‘remembered’ xi and its
dependent word ‘James’ xj follow di < dj . While
in this work, to maintain both the dependency and
phrasal constituents simultaneously, we add addi-
tional constraints on words and phrases. Given two
words xi and xj (0 ≤ i < j ≤ n) in one phrase, we
define di < dj . This can be demonstrated by the
word pair ‘the’ and ‘story’. While if they are in dif-
ferent phrases1, e.g., Su and Sv, the corresponding
inner-phrasal head words follow di (in Su) > dj
(in SV ), e.g., ‘story’ and ‘party’.

In the structure learning module, we first com-
pute the syntactic distances d = {d1, · · · , dn} for
each word based on the word context via a convo-
lutional network:

{d1, · · · , dn} = Φ(CNN({cΨ
1 , · · · , cΨ

n })) (4)

where di is a scalar, and Φ is for linearization. With
such syntactic distance, we expect both the depen-
dency as well as constituency syntax can be well
captured in LM.

Syntactic phrase generating. Considering the
word xi opening an induced phrase Sm =
[xi, · · · , xi+w] in a sentence, where w is the phrase
width, we need to decide the probability p∗(xj) that
a word xj (j=i+ w + 1) (i.e., the first word out-
side phrase Sm) belongs to Sm:

p∗(xj) =
i+w∏
k=i

sigmoid(dj − dk). (5)

We set the initial width w = 1, if p∗(xj) is above
the window threshold λ, xj should be considered
inside the phrase; otherwise, the phrase Sm should
be closed and restart at xj . We incrementally con-
duct such phrasal searching procedure to segment
all the phrases in a sentence. Given an induced
phrase Sm = [xi, · · · , xi+w], we obtain its embed-
ding sm via a phrasal attention:

ui = softmax(di · p∗(xi)) (6)

sm =
i+w∑
i

ui · cΨ
i (7)

1Note that we cannot explicitly define the granularity
(width) of every phrases in constituency tree, while instead it
will be decided by the structure learning module in heuristics.

4 Structure-aware Learning

Multi-task training for language modeling and
structure induction. Different from traditional
language models, a Transformer-based LM em-
ploys the masked language modeling (MLM),
which can capture larger contexts. Likewise, we
predict a masked word using the corresponding
context representation at the top layer:

pW(yi|x) = softmax(ci|x) (8)

LW =

k∑
i

log pW(yi|x) (9)

On the other hand, the purpose on unsupervised
syntactic induction is to encourage the model to in-
duce sm that is most likely entailed by the phrasal
context cΩ

i . The behind logic lies is that, if the ini-
tial Transformer LM can capture linguistic syntax
knowledge, then after iterations of learning with
the structure learning module, the induced structure
can be greatly amplified and enhanced (Luo et al.,
2019). We thus define the following probability:

pG(sm|cΩ
i ) =

1

1 + exp(−sTm · cΩ
i )

(10)

Additionally, to enhance the syntax learning, we
employ negative sampling:

LNeg =
1

n

n∑
j

pG(ŝTj |cΩ
i ) (11)

where ŝ is a randomly selected negative phrase.
The final objective for structure learning is:

LG =
K∑
i

(
M∑
m

(1− pG(sm|cΩ
i )) + LNeg) (12)

We employ multi-task learning for simultane-
ously training our LM for both word prediction and
structure induction. Thus, the overall target is to
minimize the following multi-task loss objective:

Lpre = LW + γpre · LG (13)

where γpre is a regulating coefficient.

Supervised syntax injection. Our default
structure-aware LM unsupervisedly induces syntax
at the pre-training stage, as elaborated above.
Alternatively, in Eq. (7), if we leverage the gold (or
apriori) syntax distance information for phrases,
we can achieve supervised structure injection.
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Unsupervised structure fine-tuning. We aim to
improve the learnt structural information for better
facilitating the end tasks. Therefore, during the
fine-tuning stage of end tasks, we consider further
making the structure learning module trainable:

Lfine = Ltask + γfine · LG (14)

where Ltask refers to the loss function of the end
task, and γfine is a regulating coefficient. Note
that to achieve the best structural fine-tuning, the
supervised structure injection is unnecessary, and
we do not allow supervised structure aggregation
at the fine-tuning stage.

Our approach is model-agnostic as we realize the
syntax induction via a standalone structure learn-
ing module, which is disentangled from a host
LM. Thus the method can be applied to various
Transformer-based LM architectures.

5 Experiments

5.1 Experimental Setups
We employ the same architecture as BERT base
model2, which is a 12-layer Transformer with 12
attention heads and 768 dimensional hidden size.
To enrich our experiments, we also consider the
Google pre-trained weights as the initialization. We
use Adam as our optimizer with an initial learning
rate in [8e-6, 1e-5, 2e-5, 3e-5], and a L2 weight de-
cay of 0.01. The batch size is selected in [16,24,32].
We set the initial values of coefficients αl−1, αl

and αl+1 as 0.35, 0.4 and 0.25, respectively. The
pre-training coefficient γpre is set as 0.5, and the
fine-tuning one γfine as 0.23. These values give the
best effects in our development experiments. Our
implementation is based on the PyTroch library3.

Besides, for supervised structure learning in our
experiments, we use the state-of-the-art BiAffine
dependency parser (Dozat and Manning, 2017) to
parse sentences for all the relevant datasets, and
use the Self-Attentive parser (Kitaev and Klein,
2018) to obtain the constituency structure. Being
trained on the English Penn Treebank (PTB) corpus
(Marcus et al., 1993), the dependency parser has
95.2% UAS and 93.4% LAS, and the constituency
parser has 92.6% F1 score. With the auto-parsed
annotations, we can calculate the syntax distances
(substitute the ones in Eq. 4) and obtain the corre-
sponding phrasal embeddings (in Eq. 7).

2https://github.com/google-research/
bert

3https://pytorch.org/
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Figure 4: Development experiments on syntactic prob-
ing tasks at varying Transformer layer.
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Figure 5: Constituency parsing under different λ.

5.2 Development Experiments

Structural learning layers. We first validate at
which layer of depths the structural-aware Trans-
former LM can achieve the best performance when
integrating our retrofitting method. We thus design
probing experiments, in which we consider follow-
ing two syntactic tasks. 1) Constituency phrase
parsing seeks to generate grammar phrases based
on the PTB dataset and evaluate whether induced
constituent spans also exist in the gold Treebank
dataset. 2) Dependency alignment aims to com-
pute the proportion of Transformer attention con-
necting tokens in a dependency relation (Vig and
Belinkov, 2019):

Score =

∑
x∈X

∑x
i=1

∑x
j=1 αi,j(x) · dep(xi, xj)∑

x∈X
∑x

i=1

∑x
j=1 αi,j(x)

(15)
where αi,j(x) is the attention weight, and
dep(xi, xj) is an indicator function (1 if xi and
xj are in a dependency relation and 0 otherwise).
The experiments are based on English Wikipedia,
following Vig and Belinkov (2019).

As shown in Figure 4, both the results on un-
supervised and supervised phrase parsing are the
best at layer 6. Also the attention aligns with de-
pendency relations most strongly in the middle lay-
ers (5-6), consistent with findings from previous
work (Tenney et al., 2019; Vig and Belinkov, 2019).
Both two probing tasks indicate that our proposed
middle-layer structure training is practical. We thus
inject the structure in the structure learning module
at the 6-th layer (l = 6).

https://github.com/google-research/bert
https://github.com/google-research/bert
https://pytorch.org/
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system
Syntactic. Semantic.

Avg.
TreeDepth TopConst Tense SOMO NER SST Rel SRL

• w/o Initial Weight:
Trm 25.31 40.32 61.06 50.11 89.22 86.21 84.70 88.30 65.65
RvTrm 29.52 45.01 63.83 51.42 89.98 86.66 85.02 88.94 67.55
Tree+Trm 30.37 46.58 65.83 53.08 90.62 87.25 84.97 88.70 68.43
PI+TrmXL 31.28 47.06 63.78 52.36 90.34 87.09 85.22 89.02 68.27
Ours+Trm

+usp. 33.98 49.69 66.39 57.04 92.24 90.48 87.05 90.87 70.74
+sp. 37.35 57.68 72.04 56.41 91.86 90.06 86.34 90.54 73.12
+syn-embed. 36.28 54.30 67.61 55.68 91.87 87.10 86.87 89.41 71.14
• Initial Weight:
BERT 38.61 79.37 90.61 65.31 92.40 93.50 89.25 92.20 80.16
Ours+BERT(usp.) 45.82 88.64 94.68 67.84 94.28 94.67 90.41 93.12 83.68

Table 1: Structure-aware Transformer LM for end tasks.

System Const. Ppl.
PRPN 42.8 -
On-LSTM 49.4 -
URNNG 52.4 -
DIORA 56.2 -
PCFG 60.1 -
Trm 22.7 78.6
RvTrm 47.0 50.3
Tree+Trm 52.0 45.7
PI+TrmXL 56.2 43.4
Ours+Trm

+usp. 60.3 37.0
+sp. 68.8 29.2

BERT 31.3 21.5
Ours+BERT(usp.) 65.2 16.2

Table 2: Performance on constituency parsing and lan-
guage modeling.

Phrase generation threshold. We introduce a
hyper-parameter λ as a threshold to decide whether
a word belong to a given phrase during the phrasal
generation step. We explore the best λ value based
on the same parsing tasks. As shown in Figure 5,
with λ = 0.5 for unsupervised induction and λ =
0.7 for supervised induction, the induced phrasal
quality is the highest. Therefore we set such λ
values for all the remaining experiments.

5.3 Structure-aware Language Modeling

We evaluate the effectiveness of our proposed
retrofitted structure-aware LM after pre-training.
We first compare the performance on language
modeling4. From the results shown in Table 2, our

4Transformer can see its subsequent words bidirectionally,
so we measure the perplexity on masked words. And we thus
avoid directly comparing with the Recurrent-based LMs.

retrofitted Transformer yields better language per-
plexity in both unsupervised (37.0) or supervised
(29.2) manner. This proves that our middle-layer
structure training strategy can effectively relieve
negative mutual influence of structure learning
on semantic learning, while inducing high-quality
of structural phrases. We can also conclude that
language models with more successful structural
knowledge can better help to encode effective in-
trinsic language patterns, which is consistent with
the prior studies (Kim et al., 2019b; Wang et al.,
2019; Drozdov et al., 2019).

We also compare the constituency parsing with
state-of-the-art structure-aware models, includ-
ing 1) Recurrent-based models described in §2:
PRPN (Shen et al., 2018a), On-LSTM (Shen et al.,
2018b), URNNG (Kim et al., 2019b), DIORA
(Drozdov et al., 2019), PCFG (Kim et al., 2019a),
and 2) Transformer based methods: Tree+Trm
(Wang et al., 2019), RvTrm (Ahmed et al., 2019),
PI+TrmXL (Luo et al., 2019), and the BERT model
initialized with rich weights. As shown in Table 2,
all the structure-aware models can give good pars-
ing results, compared with non-structured models.
Our retrofitted Transformer LM gives the best per-
formance (60.3% F1) in unsupervised induction.
Combined with the supervised auto-labeled parses,
it give the highest F1 score (68.8%).

5.4 Fine-tuning for End Tasks

We validate the effectiveness of our method for
end tasks with structure-aware fine-tuning. All
systems are first pre-trained for structure learning,
and then fine-tuned with end task training. The
evaluation is performed on eight tasks, involving
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Figure 6: Visualization of attention heads (heatmap) and the corresponding syntax distances (bar chart).

syntactic tasks and semantic tasks. TreeDepth
predicts the depth of the syntactic tree, TopConst
tests the sequence of top level constituents in the
syntax tree, and Tense detects the tense of the
main-clause verb, while SOMO checks the sensi-
tivity to random replacement of words, which are
the standard probing tasks. We follow the same
datasets and settings with previous work (Conneau
et al., 2018; Jawahar et al., 2019).

Also we evaluate the semantic tasks including
1) NER, named entity recognition on CoNLL03
(Tjong Kim Sang and De Meulder, 2003), 2) SST,
binary sentiment classification task on Standford
sentiment treebank (Socher et al., 2013), 3) Rel,
relation classification on Semeval10 (Hendrickx
et al., 2010), and 4) SRL, semantic role labeling
task on the CoNLL09 WSJ (Hajič et al., 2009). The
performance is reported by the F1 score.

The results are summarized in Table 1. First,
we find that structure-aware LMs bring improved
performance for all the tasks, compared with
the vanilla Transformer encoder. Second, the
Transformer with our structural-aware fine-tuning
achieves better results (70.74% on average) for
all the end tasks, compared with the baseline tree
Transformer LMs. This proves that our proposed
middle-layer strategy best benefits the structural
fine-tuning, compared with the full-layer struc-
ture training on baselines. Third, with supervised
structure learning, significant improvements can be
found across all tasks.

For the supervised setting, we replace the super-
vised syntax fusion in structure learning module

Mean Median
RvTrm 0.68 0.69
Tree+Trm 0.60 0.64
PI+TrmXL 0.54 0.58
Ours+Trm(usp.) 0.50 0.52
Ours+Trm(sp.) 0.32 0.37

Table 3: Fine-grained parsing.

with the auto-labeled syntactic dependency embed-
ding and concatenate it with other input embed-
dings. The results are not as prominent as the
supervised syntax fusion, which reflects the ad-
vantage of our proposed structure learning mod-
ule. Besides, based on the task improvements from
the retrofitted Transformer by our method, we can
further infer that the supervised structure benefits
more syntactic-dependent tasks, and the unsuper-
vised structure benefits semantic-dependent tasks
the most. Finally, the BERT model integrating with
our method can give improved effects5.

6 Analysis

6.1 Induced Phrase after Pre-training.

We take a further step, evaluating the fine-grained
quality on phrasal structure induction after pre-
training. Instead of checking whether the induced
constituent spans are identical to the gold coun-
terparts, we now consider measuring the devia-

tion PhrDev(ŷ, y) =
√

1
N

∑
i[∆(ŷi, yi)−∆]2,

5We note that the direct comparison with BERT model is
not fair, because the large numbers of well pre-trained param-
eters can bring overwhelming advances.
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where ∆(ŷi, yi) is the phrasal editing distance
between the induced phrase length and the gold
length within a sentence. ∆ is the averaged edit-
ing distance. If all the predicted phrases are same
with the ground truth, or all different from it,
PhrDev(ŷ, y) = 0, which means that the phrases
are induced with the maximum consistency, and
vice versa. We make statistics for all the sentences
in Table 3. Our method can unsupervisedly gener-
ate higher quality of structural phrases, while we
can achieve the best injection of the constituency
knowledge into LM by the supervised manner.

6.2 Fine-tuned Structures with End Tasks

Interpreting fine-tuned syntax. To interpret the
fine-tuned structures, we empirically visualize the
Transformer attention head from the chosen l-layer,
and the syntax distances of the sentence. We ex-
hibit three examples from SST, Rel and SRL,
respectively, as shown in Figure 6. Overall, our
method can help to induce clear structure of both
dependency and constituency. While interestingly,
different types of tasks rely on different granular-
ity of phrase. Comparing the heat maps and syn-
tax distances with each other, the induced phrasal
constituency on SST are longer than that on SRL.
This is because the sentiment classification task
demands more phrasal composition features, while
the SRL task requires more fine-grained phrases.
In addition, we find that the syntax distances in
SRL and Rel are higher in variance, compared
with the ones on SST, Intuitively, the larger devia-
tion of syntax distances in a sentence indicates the
more demand to the interdependent information be-
tween elements, while the smaller deviation refers
to phrasal constituency. This reveals that SRL and
Rel rely more on the dependency syntax, while
SST is more relevant to constituents, which is con-
sistent with previous studies (Socher et al., 2013;
Rabinovich et al., 2017; Xia et al., 2019; Fei et al.,
2020).

Distributions of heterogeneous syntax for dif-
ferent tasks. Based on the above analysis, we
further analyze the distributions of dependency and
constituency structures after fine-tuning, in differ-
ent tasks. Technically, we calculate the mean ab-
solute differences of syntax distances between el-
ements xi and the sub-root node xr in a sentence:
Diff = 1

N

∑N
i |di − dr|. We then linearly nor-

malize them into [0,1] for all the sentences in the
corpus of each task, and make statistics, as plot-

TreeDepth

TopConst
Tense

SOMO
NER SST Rel

SRL

0.1

0.5

0.9

Figure 7: Distributions of dependency and constituency
syntax in different tasks. Blue color indicates the pre-
dominance of dependency, while Red for constituency.

SST SRL

Ours+Trm Tree+Trm Ours+Trm Tree+Trm
NP 0.48 0.45 0.37 0.53
VP 0.21 0.28 0.36 0.21
PP 0.08 0.14 0.17 0.06
ADJP 0.10 0.05 0.05 0.12
ADVP 0.07 0.02 0.03 0.02
Other 0.06 0.06 0.02 0.06
Avg.Len. 3.88 3.22 2.69 3.36

Table 4: Proportion of each type of induced phrase.

ted in Figure 7. Intuitively, the larger the value is,
the more interdependent to dependency syntax the
task is, and otherwise, to constituency structure.
Overall, distributions of dependency structures and
phrasal constituents in fine-tuned LM vary among
different tasks, verifying that different tasks depend
on distinct types of structural knowledge. For ex-
ample, TreeDepth, Rel and SRL are most sup-
ported by dependency structure, while TopConst
and SST benefit from constituency the most. SOMO
and NER can gain from both two types.

Phrase types. Finally, we explore the diversity
of phrasal syntax required by two representative
end tasks, SST and SRL. We first look into the
statistical proportion for different types of induced
phrases6. As shown in Table 4, our method tends
to induce more task-relevant phrases, where the
lengths of induced phrases are more variable to the
task. Concretely, the fine-tuned structure-aware
Transformer helps to generate more NP also with
longer phrases for the SST task, and yield roughly
equal numbers of NP and VP for SRL tasks with
shorter phrases. This evidently gives rise to the
better task performance. In contrast, the syntax
phrases induced by the Tree+Trm model keep un-
varying for SST (3.22) and SRL (3.36) tasks.

6Five main types are considered: noun phrase (NP),
verb phrase (VP), prepositional phrase (PP), adjective phrase
(ADJP) and adverb phrase (ADVP).
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7 Conclusion

We presented a retrofitting method for structure-
aware Transformer-based language model. We
adopted the syntax distance to encode both the con-
stituency and dependency structure. To relieve the
conflict of structure learning and semantic learn-
ing in Transformer LM, we proposed a middle-
layer structure learning strategy under a multi-
tasks scheme. Results showed that structure-aware
Transformer retrofitted via our proposed method
achieved better language perplexity, inducing high-
quality syntactic phrase. Furthermore, our LM after
structure-aware fine-tuning gave significantly im-
proved performance for both semantic-dependent
and syntactic-dependent tasks, also yielding most
task-related and interpretable syntactic structures.
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