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Abstract

Phrase localization is a task that studies the
mapping from textual phrases to regions of an
image. Given difficulties in annotating phrase-
to-object datasets at scale, we develop a
Multimodal Alignment Framework (MAF) to
leverage more widely-available caption-image
datasets, which can then be used as a form of
weak supervision. We first present algorithms
to model phrase-object relevance by lever-
aging fine-grained visual representations and
visually-aware language representations. By
adopting a contrastive objective, our method
uses information in caption-image pairs to
boost the performance in weakly-supervised
scenarios.  Experiments conducted on the
widely-adopted Flickr30k dataset show a sig-
nificant improvement over existing weakly-
supervised methods. With the help of the
visually-aware language representations, we
can also improve the previous best unsuper-
vised result by 5.56%. We conduct ablation
studies to show that both our novel model and
our weakly-supervised strategies significantly
contribute to our strong results.!

1 Introduction

Language grounding involves mapping language
to real objects or data. Among language grounding
tasks, phrase localization—which maps phrases to
regions of an image—is a fundamental building
block for other tasks. In the phrase localization
task, each data point consists of one image and its
corresponding caption, i.e., d = (I,S), where I
denotes an image and .S denotes a caption. Typi-
cally, the caption S contains several query phrases
P = {pn},]yzl, where each phrase is grounded to a
particular object in the image. The goal is to find
the correct relationship between (query) phrases in

!Code is available at https://github.com/

ginzzz/Multimodal-Alignment-Framework.
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Figure 1: Comparison of phrase localization task under
supervision (left) and weak supervision (right).

the caption and particular objects in the image. Ex-
isting work (Rohrbach et al., 2016; Kim et al., 2018;
Li et al., 2019; Yu et al., 2018; Liu et al., 2020)
mainly focuses on the supervised phrase localiza-
tion setting. This requires a large-scale annotated
dataset of phrase-object pairs for model training.
However, given difficulties associated with manual
annotation of objects, the size of grounding datasets
is often limited. For example, the widely-adopted
Flickr30k (Plummer et al., 2015) dataset has 31k
images, while the caption dataset MS COCO (Lin
et al., 2014) contains 330k images.

To address this limited data challenge, two dif-
ferent approaches have been proposed. First, a
weakly-supervised setting—which requires only
caption-image annotations, i.e., no phrase-object
annotations—was proposed by Rohrbach et al.
(2016). This is illustrated in Figure 1. Second,
an unsupervised setting—which does not need any
training data, i.e., neither caption-image and phrase-
object annotation—was proposed by Wang and
Specia (2019). To bring more semantic information
in such a setting, previous work (Yeh et al., 2018;
Wang and Specia, 2019) used the detected object
labels from an off-the-shelf object detector (which
we will generically denote by PreDet) and achieved
promising results. In more detail, for a given im-
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Figure 2: Example of the ambiguity caused by label-
based localization (top); and our fine-grained visual
representation disambiguate labels (bottom).

age I, the PreDet first generates a set of objects
O = {om}%zl. Afterward, all the query phrases
‘P and the detected objects O are fed into an align-
ment model to predict the final phrase-object pairs.
However, purely relying on the object labels causes
ambiguity. For example, in Figure 2, the grounded
objects of phrases “an older man” and “the man
with a red accordion” are both labeled as “man,”
and thus they are hard to differentiate.

Given these observations, we propose a Mul-
timodal Alignment Framework (MAF), which is
illustrated in Figure 3. Instead of using only the
label features from the PreDet (in our case, a Faster
R-CNN (Ren et al., 2015; Anderson et al., 2018a)),
we also enhance the visual representations by inte-
grating visual features from the Faster R-CNN into
object labels. (This is shown in Figure 2.) Next, we
build visually-aware language representations for
phrases, which thus could be better aligned with
the visual representations. Based on these represen-
tations, we develop a multimodal similarity func-
tion to measure the caption-image relevance with
phrase-object matching scores. Furthermore, we
use a training objective to score relevant caption-
image pairs higher than irrelevant caption-image
pairs, which guides the alignment between visual
and textual representations.

We evaluate MAF on the public phrase lo-
calization dataset, Flickr30k Entities (Plummer
et al., 2015). Under the weakly-supervised setting
(i.e., using only caption-image annotations with-
out the more detailed phrase-object annotations),
our method achieves an accuracy of 61.43%, out-

performing the previous weakly-supervised results
by 22.72%. In addition, in the unsupervised set-
ting, our visually-aware phrase representation im-
proves the performance from the previous 50.49%
by 5.56% up to 56.05%. Finally, we validate the
effectiveness of model components, learning meth-
ods, and training techniques by showing their con-
tributions to our final results.

2 Related Work

With the recent advancement in research in com-
puter vision and computational linguistics, multi-
modal learning, which aims to explore the explicit
relationship across vision and language, has drawn
significant attention. Multimodal learning involves
diverse tasks such as Captioning (Vinyals et al.,
2015; Xu et al., 2015; Karpathy and Fei-Fei, 2015;
Venugopalan et al., 2015), Visual Question Answer-
ing (Anderson et al., 2018a; Kim et al., 2018; Tan
and Bansal, 2019), and Vision-and-Language Navi-
gation (Anderson et al., 2018b; Chen et al., 2019;
Thomason et al., 2020). Most of these tasks would
benefit from better phrase-to-object localization, a
task which attempts to learn a mapping between
phrases in the caption and objects in the image by
measuring their similarity. Existing works consider
the phrase-to-object localization problem under var-
ious training scenarios, including supervised learn-
ing (Rohrbach et al., 2016; Yu et al., 2018; Liu
et al., 2020; Plummer et al., 2015; Li et al., 2019)
and weakly-supervised learning (Rohrbach et al.,
2016; Yeh et al., 2018; Chen et al., 2018). Be-
sides the standard phrase-object matching setup,
previous works (Xiao et al., 2017; Akbari et al.,
2019; Datta et al., 2019) have also explored a pixel-
level “pointing-game” setting, which is easier to
model and evaluate but less realistic. Unsuper-
vised learning was studied by Wang and Specia
(2019), who directly use word similarities between
object labels and query phrases to tackle phrase
localization without paired examples. Similar to
the phrase-localization task, Hessel et al. (2019)
leverages document-level supervision to discover
image-sentence relationships over the web.

3 Methodology

3.1 Fine-grained Visual/Textual Features

Visual Feature Representations. Previous
works usually use only one specific output of
the PreDet as the visual feature representation
(VFR). For example, Kim et al. (2018) uses the
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Figure 3: Overview of our proposed Multimodal Alignment Framework (MAF). A dataset of images and their
captions is the input to our model. PreDet predicts bounding boxes for objects in the image and their labels,
attributes, and features, which are then integrated into visual feature representations. Attention is applied between
word embedding and visual representations to compute the visually-aware language representations for phrases.
Finally, a multi-modal similarity function is used to measure the caption-image relevance based on the phrase-

object similarity matrix.

final output feature of PreDet (denoted as f,,) as
the VFR, and Wang and Specia (2019) uses the
label embedding (denoted as 1,,,) of the predicted
label from PreDet as the VFR. This unitary VFR
usually lacks the counter-side information. Hence,
we exploit different aspects of features extracted
from PreDet for each object o,, in the image. In
particular, we consider the output feature f,,, the
label embedding [,,,, and the attribute embedding
t, of the object o, as the VFR,

Um :lm+thm+Wffma (D

where W; and Wy are two projection matrices.
Naively initializing W; and W will lead the model
to a sub-optimal solution. In Section 4, we discuss
the effectiveness of different initializations.

Textual Feature Representations. Exist-
ing works for ftextual feature representation
(TFR) (Kim et al., 2018; Yu et al., 2018; Wang and
Specia, 2019) commonly treat it independently
of the VFR. From a different angle, we use the
attention between the textual feature and the
VFR v,, to integrate the visual information from
the object into TFR. In more detail, we first use
the GloVe embedding (Pennington et al., 2014)
to encode the K, words in the phrase p, to
{hn,k}fila where b, 1, € R?. Here, the dimension
of h,} is the same as v,,. We then define a
word-object matching score "', for each h,,  in
the phrase to all object features Um. In particular,

for each word h,, . in the phrase, we select the
object with the highest matching score,

m, = soft i
al, = softmax ¢ ——— 5,
" m| Vi @)

oy = max{a, .}
m 9

Finally, we normalize the attention weights for each
word in the phrase p,, to obtain the final TFR, e,,:

B, = soft m]?x {an i},

€n = Wp (Z Bn,khn,k> .
k

where W, is a projection matrix. In Section 4,
we study the (superb) performance of the weight
Bn,k over simply the average h,, ;, as well as the
importance of the initialization of W),

3)

3.2 Training Objective and Learning Settings

Contrastive loss. For the weakly-supervised set-
ting, we use a contrastive loss to train our model,
due to the lack of phrase-object annotations. The
contrastive objective £ aims to learn the visual and
textual features by maximizing the similarity score
between paired image-caption elements and mini-
mizing the score between the negative samples (i.e.,
other irrelevant images). Inspired by the previous
work in caption ranking (Fang et al., 2015), we use
the following loss,
esim(1,S)

L=—log — - “4)
leebatch esim(17.5)
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Here, sim(/, S) is the similarity function defined
below. Particularly, for each caption sentence, we
use all the images 1 " in the current batch as candi-
date examples.

Multimodal Similarity Functions. Following
the document-level dense correspondence function
in Hessel et al. (2019), our multimodal similarity
function is defined as:

1
sim(1,S) = N Z max Ay . 5

Here, A € RV*M s the phrase-object similarity
matrix, and its component is computed as

An,m = ezvmv (6)

and sim(/, S) measures the image-caption similar-
ity. It is calculated based on the similarity score
between each phrase in the caption and each ob-
ject in the image. Note that the maximum function
max,, Ay, directly connects our training objec-
tive and inference target, which alleviates the dis-
crepancy between training and inference.

Weakly-supervised setting. During training,
our PreDet model is frozen. The word embeddings,
Wi, Wy, and W), are trainable parameters. Here,
the word embedding is initialized with GloVe (Pen-
nington et al., 2014). We study the different initial-
ization methods for the rest in Section 4. During in-
ference, for the n-th phrase p,, in an image-caption
pair, we choose the localized object by

red T
mb* = arg max Apm = arg max e;, vy, @)

Unsupervised setting. In the unsupervised set-
ting, the localized object is determined by

m%red = arg max (Z ,Bn,khik) L. (8)
k

We drop the parameters W;, Wy, and W), here,
because there is no training in the unsupervised
setting. (3, 1, is only calculated based on [,,, (instead
of v,,).

4 Empirical Results

Dataset details. The Flickr30k Entities dataset
contains 224k phrases and 31k images in total,
where each image will be associated with 5 cap-
tions and multiple localized bounding boxes. We
use 30k images from the training set for training

and 1k images for validation. The test set consists
of 1k images with 14,481 phrases. Our evaluation
metric is the same as Plummer et al. (2015).2 We
consider a prediction to be correct if the IoU (In-
tersection of Union) score between our predicted
bounding box and the ground-truth box is larger
than 0.5. Following Rohrbach et al. (2016), if
there are multiple ground-truth boxes, we use their
union regions as a single ground-truth bounding
box for evaluation.

Weakly-supervised Results. We report our
weakly-supervised results on the test split in Ta-
ble 1. We include here upper bounds (UB), which
are determined by the correct objects detected
by the object detectors (if available). Our MAF
with ResNet-101-based Faster R-CNN detector pre-
trained on Visual Genome (VG) (Krishna et al.,
2017) can achieve an accuracy of 61.43%. This
outperforms previous weakly-supervised methods
by 22.71%, and it narrows the gap between weakly-
supervised and supervised methods to 15%. We
also implement MAF with a VGG-based Faster
R-CNN feature extractor pretrained on PASCAL
VOC 2007 (Everingham et al., 2010), following
the setting in KAC (Chen et al., 2018), and we use
the same bounding box proposals as our ResNet-
based detector. We achieve an accuracy of 44.39%,
which is 5.68% higher than existing methods, show-
ing a solid improvement under the same back-
bone model.

Table 1: Weakly-supervised experiment results on
Flick30k Entities. (We abbreviate backbone visual
feature model as “Vis. Feature,” and upper bound

as “UB.”)

Method Vis. Features Acc. (%) UB
Supervised

GroundeR (Rohrbach et al., 2016) VGGyet 47.81 77.90
CCA (Plummer et al., 2015) VGGyet 50.89 85.12
BAN (Kim et al., 2018) ResNet-101 69.69 87.45
visualBERT (Li et al., 2019) ResNet-101 71.33 87.45
DDPN (Yu et al., 2018) ResNet-101 73.30 -
CGN (Liu et al., 2020) ResNet-101 76.74
Weakly-Supervised

GroundeR (Rohrbach et al., 2016) VGGyet 28.93 77.90
Link (Yeh et al., 2018) YOLOyge 36.93 -
KAC (Chen et al., 2018) VGG 38.71

MAF (Ours) VGGyet 44.39 86.29
MAF (Ours) ResNet-101 61.43 86.29

2To be specific, we use the evaluation code provided
by Wang and Specia (2019) at https://github.com/
josiahwang/phraseloceval.
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Unsupervised Results.> We report our unsuper-
vised results for the phrase localization method
(described in Section 3.2) in Table 2. For a fair
comparison, we re-implemented Wang and Specia
(2019) with a Faster R-CNN model trained on Vi-
sual Genome (Krishna et al., 2017). This achieves
49.72% accuracy (similar to 50.49% as reported in
their paper). Overall, our result (with VG detector)
significantly outperforms the previous best result
by 5.56%, which demonstrates the effectiveness of
our visually-aware language representations.

Table 2: Unsupervised experiment results on Flick30k
Entities. w2v-max refers to the similarity algorithm
proposed in (Wang and Specia, 2019); Glove-att refers
to our unsupervised inference strategy in Section 3.2;
CC, OI, and PL stand for detectors trained on MS
COCO (Lin et al., 2014), Open Image (Krasin et al.,
2017), and Places (Zhou et al., 2017).

Method TFR Detector Acc. (UB) (%)
Whole Image None None 21.99
(Wang and Specia, 2019) w2v-max Faster R-CNN  49.72 (86.29)

(Wang and Specia, 2019) w2v-max  CC+OI+PL 50.49 (57.81)

MAF (Ours) Glove-att Faster R-CNN  56.05 (86.29)

Ablation Experiments. In this section, we study
the effectiveness of each component and learning
strategy in MAF. The comparison of different fea-
ture representations is shown in Table 3. Replac-
ing the visual attention based TFR with an average
pooling based one decreases the result from 61.43%
to lower than 60%. For the VFR, using only object
label 1,,, or visual feature f,, decreases the accu-
racy by 4.20% and 2.94%, respectively. One inter-
esting finding here is that the performance with all
visual features (last row) is worse than the model
with only [, and f,,,. Actually, we can infer that
attributes cannot provide much information in lo-
calization (24.08% accuracy if used alone), partly
because attributes are not frequently used to differ-
entiate objects in Flickr30k captions.

We then investigate the effects of different ini-
tialization methods for the two weight matrices,
W and W,,. The results are presented in Table 4.
Here ZR means zero initialization, RD means ran-
dom initialization with Xavier (Glorot and Ben-
gio, 2010), and ID+RD means identity with small
random noise initialization. We run each exper-
iment for five times with different random seeds
and compute the variance. According to Table 4,
the best combination is zero initialization for Wy
and identity+random initialization for W),. The

3More unsupervised results are available in Appendix B.

Table 3: Ablation experiment results of different visual
and textual features. TFR and VFR denotes textual and
visual feature representation respectively.

TFR VER Accuracy(%)
Average 55.73
Average 56.18
Average 59.51
Attention 57.23
Attention 58.49
Attention 24.08
Attention 53.20
Attention 57.98
Attention 61.43
Attention 60.86

Table 4: Ablation results of different initialization. (ZR:
zero initialization; RD: random initialization; ID+RD:
noisy identity initialization.)

Wf Wy
ZR RD ‘ ID+RD RD
‘ 58.54 £+ 0.26

60.05 £ 0.31
59.68 £0.35

| 61.28 +£0.32

Accuracy + Var.(%)

intuitions here are: (i) For W, the original label
feature ,,, can have a non-trivial accuracy 57.23%
(see Table 3), thus using RD on initializing W
will disturb the feature from [,,; (ii) For W), an
RD initialization will disrupt the information from
the attention mechanism, while ID+RD can both
ensure basic text/visual feature matching and intro-
duce a small random noise for training.

5 Conclusions

We present a Multimodal Alignment Framework, a
novel method with fine-grained visual and textual
representations for phrase localization, and we train
it under a weakly-supervised setting, using a con-
trastive objective to guide the alignment between
visual and textual representations. We evaluate our
model on Flickr30k Entities and achieve substan-
tial improvements over the previous state-of-the-art
methods with both weakly-supervised and unsuper-
vised training strategies. Detailed analysis is also
provided to help future works investigate other crit-
ical feature enrichment and alignment methods for
this task.
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A Implementation Details

For GloVE word embeddings, we use the one with
the hidden dimension 300. Phrases are split into
words by space. We replace all out-of-vocabulary
words with the introduced (UNK) token. For ob-
ject proposals, we apply an off-the-shelf Faster R-
CNN model (Ren et al., 2015) as the object detec-
tor* for object pseudo-labels. The backbone of the
detector is ResNet-101 (He et al., 2016), and it is
pre-trained on Visual Genome with mAP=10.1. We
keep all bounding boxes with a confidence score
larger than 0.1. For ResNet-based visual features,
we use the 2048-dimensional feature from Bottom-
up attention (Anderson et al., 2018a), which is pre-
trained with 1600 object labels and 400 attributes.

The extracted visual features are frozen during
training, and we use a batch size of 64 during train-
ing. Our optimizer is Adam with learning rate
Ir = 1le=5. Except for word embeddings, trainable
parameters include W; € RIT*47 1/, € R >dr,
and W, € RiT*dr \where dp = 300, dy = 2048
for ResNet-101 backbone and dyy = 4096 for VGG
backbone. During training, it takes around 350 sec-
onds to train an epoch using a single Tesla K80.
We train our model for 25 epochs and report the
results at the last epoch.

*https://github.com/jwyang/faster-rcnn.pytorch
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B Baselines

In Table 5, we report the results of different unsu-
pervised methods:

e Random: Randomly localize to a detected
object.

e Center-obj: Localize to the object which is
closest to the center of image, where we use
an L distance D = |2 — Zcenter| + |Y — Ycenter|-

e Max-obj: Localize to the object with the max-
imal area.

e Whole Image: Always localize to the whole
image.

e Direct Match: Localize with the direct match
between object labels and words in the phrase,
e.g., localize “a red apple” to the object
with the label “apple.” If multiple labels are
matched, we choose the one with the largest
bounding box.

e Glove-max: Consider every word-label simi-
larity independently and select the object la-
bel with the highest semantic similarity with
any word.

e Glove-avg: Represent a phrase using an aver-
age pooling over Glove word embeddings and
select the object label with highest the seman-
tic similarity with the phrase representation.

e Glove-att: Use our visual attention based
phrase representation, as is described in the
Methodology 3.1.

Note that in all label-based methods (Direct
Match (Wang and Specia, 2019), and our unsuper-
vised method), if multiple bounding boxes share
the same label, we choose the largest one as the
predicted box.

C Qualitative Analysis

To analyze our model qualitatively, we show some
visualization results in Figure 4 and Figure 5.
Figure 4 shows examples with consistent predic-
tions between supervised and unsupervised mod-
els. In these cases, both methods can successfully
learn to localize various objects, including persons
(“mother”), clothes (“shirt”), landscapes (“wave”),
and numbers (“56”). Figure 5 shows examples

Table 5: Baseline results of unsupervised methods on
Flick30k Entities. Abbreviations are explained above.

Method Detector Acc. (%)
Random Faster R-CNN 7.19
Center-obj Faster R-CNN 18.24
Whole Image None 21.99
Max-obj Faster R-CNN 24.51
Direct match ~ Faster R-CNN 26.42
Glove-max Faster R-CNN 26.28
Glove-avg Faster R-CNN 54.51
Glove-att Faster R-CNN 56.05

A young boy in a green shirt is holding a
red and blue soccer ball

A mother and children is fishing on a
boardwalk at night .

A surfer wearing a black and green
wetsuit riding a wave.

A number 56 red racing car is speeding
left past the frame .

Figure 4: Example of predictions on Flickr30k. (Red
box: ground truth, blue box: our prediction).

7 S,

A woman and a young girl sharing
smiles at a table with a glass of
water on it .

A women is pointing down the
street to her friend in front of an
entrance.

(o} ~

A boy hitting a girl on a skateboard
with a plushie snake .

AN
Near seats , woman has spread
out green blanket to sit on floor
with baby .

Figure 5: Example of predictions on Flickr30k. (Red
box: ground truth, blue box: supervised prediction, yel-
low box: unsupervised prediction)

where supervised and unsupervised methods local-
ize to different objects. In the first image, they
both localize the phrase “entrance” incorrectly. In
the remaining three images, the supervised method
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learns to predict a tight bounding box on the correct
object, while the unsupervised method localizes to
other irrelevant objects. For example (bottom left
figure for Figure 5), if the object detector fails to
detect the “blanket,” then the unsupervised method
can never localize “green blanket” to the right ob-
ject. Still, the supervised method can learn from
negative examples and obtain more information.
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