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Abstract

Decisions of complex models for language un-
derstanding can be explained by limiting the
inputs they are provided to a relevant sub-
sequence of the original text — a rationale.
Models that condition predictions on a con-
cise rationale, while being more interpretable,
tend to be less accurate than models that are
able to use the entire context. In this paper,
we show that it is possible to better manage
the trade-off between concise explanations and
high task accuracy by optimizing a bound on
the Information Bottleneck (IB) objective. Our
approach jointly learns an explainer that pre-
dicts sparse binary masks over input sentences
without explicit supervision, and an end-task
predictor that considers only the residual sen-
tences. Using IB, we derive a learning objec-
tive that allows direct control of mask spar-
sity levels through a tunable sparse prior. Ex-
periments on the ERASER benchmark demon-
strate significant gains over previous work for
both task performance and agreement with hu-
man rationales. Furthermore, we find that in
the semi-supervised setting, a modest amount
of gold rationales (25% of training examples
with gold masks) can close the performance
gap with a model that uses the full input.1

1 Introduction

A rationale is a short yet sufficient part of the input
text that can explain model decisions for a range
of language understanding tasks (Lei et al., 2016).
Models can be faithful to a rationale by only us-
ing the selected text as input for end-task predic-
tion (DeYoung et al., 2019). However, there is
almost always a trade-off between interpretable
models that learn to extract sparse rationales and
more accurate models that are able to use the full

1Our code is available at https://github.com/
bhargaviparanjape/explainable_qa

Text
Homo	sapiens	is	the	binomial	nomenclature
for	the	only	extant	human	species	.	

Homo	is	the	human	genus	,	which	also	includes
Neanderthals	…	

Modern	humans	are	the	subspecies	Homo
sapiens	….

The	ingenuity	and	adaptability	of	Homo	sapiens
…	

It	is	currently	of	least	concern	on	the	Red
List	of	endangered	species	by	the	IUCN

Homo	sapiens	is	the	binomial	nomen-
clature	for	the	only	extant	human	species	

Rationale

Controlled	Sparsity	=	40%

Q:	Homo	sapiens	are	on	the	IUCN	Red	List.

Boolean maskInput Sentences

Refutes
Label

It	is	currently	of	least	concern	on	the	Red
List	of	endangered	species	by	the	IUCN

Figure 1: Our Information Bottleneck-based approach
extracts concise rationales that are minimally informa-
tive about the original input, and maximally informa-
tive about the label through fine-grained control of spar-
sity in the bottleneck (0.4 in this fact verification exam-
ple). End-task prediction is conditioned only on the
bottlenecked input.

context but provide little explanation for their pre-
dictions (Lei et al., 2016; Weld and Bansal, 2019).
In this paper, we show that it is possible to better
manage this trade-off by optimizing a novel bound
on the Information Bottleneck (Tishby et al., 1999)
objective (Figure 1).

We follow recent work in representing rationales
as binary masks over the input text (Lei et al., 2016;
Bastings et al., 2019). During learning, it is com-
mon to encourage sparsity by minimizing a norm
on the rationale masks (e.g. L0 or L1) (Lei et al.,
2016; Bastings et al., 2019). It is often challeng-
ing to control the sparsity-accuracy trade-off in
norm-minimization methods; we show that these
methods seem to push too directly for sparsity at
the expense of accuracy (Section 5.2). Our ap-
proach, in contrast, allows more control through
a prior that specifies task-specific target sparsity
levels that should be met in expectation across the
training set.

More specifically, we formalize the problem of

https://github.com/bhargaviparanjape/explainable_qa
https://github.com/bhargaviparanjape/explainable_qa
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inducing controlled sparsity in the mask using the
Information Bottleneck (IB) principle. Our ap-
proach seeks to extract a rationale as an optimal
compressed intermediate representation (the bottle-
neck) that is both (1) minimally informative about
the original input, and (2) maximally informative
about the output class. We derive a novel varia-
tional bound on the IB objective for our case where
we constrain the intermediate representation to be
a concise subsequence of the input, thus ensuring
its interpretablity.

Our model consists of an explainer that extracts a
rationale from the input, and an end-task predictor
that predicts the output based only on the extracted
rationale. Our IB-based training objective guaran-
tees sparsity by minimizing the Kullback–Leibler
(KL) divergence between the explainer mask prob-
ability distribution and a prior distribution with
controllable sparsity levels. This prior probability
affords us tunable fine-grained control over spar-
sity, and allows us to bias the proportion of the
input to be used as rationale. We show that, unlike
norm-minimization methods, our KL-divergence
objective is able to consistently extract rationales
with the specified sparsity levels.

Across five tasks from the ERASER inter-
pretability benchmark (DeYoung et al., 2019) and
the BeerAdvocate dataset (McAuley et al., 2012),
our IB-based sparse prior objective has significant
gains over previous norm-minimization techniques
— up to 5% relative improvement in task perfor-
mance metrics and 6% to 80% relative improve-
ment in agreement with human rationale annota-
tions. Our interpretable model achieves task per-
formance within 10% of a model of comparable
size that uses the entire input. Furthermore, we find
that in the semi-supervised setting, adding a small
proportion of gold rationale annotations (approxi-
mately 25% of the training examples) bridges this
gap — we are able to build an interpretable model
without compromising performance.

2 Method

2.1 Task and Method Overview

We assume supervised text classification or regres-
sion data that contains tuples of the form (x, y).
The input document x can be decomposed into a
sequence of sentences x = (x1, x2, . . . , xn) and y
is the category, answer choice, or target value to
predict. Our goal is to learn a model that not only
predicts y, but also extracts a rationale or explana-

tion z—a latent subsequence of sentences in x with
the following properties:

1. Model prediction y should rely entirely on z
and not on its complement x\z — faithfulness
(DeYoung et al., 2019).

2. z must be concise, i.e., it should contain as
few sentences as possible without sacrificing
the ability to correctly predict y.

Following Lei et al. (2016), our inter-
pretable model learns a boolean mask m =
(m1,m2, . . . ,mn) over the sentences in x, where
mj ∈ {0, 1} is a discrete binary variable. To
enforce (1), the masked input z = m � x =
(m1 · x1,m2 · x2, . . . ,mn · xn) is used to predict
y. Conciseness is attained using an information
bottleneck.

2.2 Formalizing Interpretability Using
Information Bottleneck

Background The Information Bottleneck (IB)
method is used to learn an optimal compression
model that transmits information from a random
variable X to another random variable Y through
a compressed representation Z. The IB objective
is to minimize the following:

LIB = I(X,Z)− βI(Z, Y ), (1)

where I(·, ·) is mutual information. This objective
encourages Z to only retain as much information
about X as is needed to predict Y . The hyperpa-
rameter β controls the trade-off between retaining
information about either X or Y in Z. Alemi et al.
(2016) derive the following variational bound on
Equation 1:2

LV IB = Ez∼pθ(z|x)[− log qφ(y|z)]︸ ︷︷ ︸
Task Loss

+

βKL[pθ(z|x), r(z)],︸ ︷︷ ︸
Information Loss

(2)

where qφ(y|z) is a parametric approximation to the
true likelihood p(y|z); r(z), the prior probability
of z, approximates the marginal p(z); and pθ(z|x)
is the parametric posterior distribution over z.

The information loss term in Equation 2 reduces
I(X,Z) by decreasing the KL divergence3 be-

2For brevity and clarity, objectives are shown for a sin-
gle data point. More details of this bound can be found in
Appendix A.1 and Alemi et al. (2016).

3To analytically compute the KL-divergence term, the
posterior and prior distributions over z are typically K-
dimensional multivariate normal distributions. Compression
is achieved by setting K << D, the input dimension of X .
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tween the posterior distribution pθ(z|x) that de-
pends on x and a prior distribution r(z) that is
independent of x. The task loss encourages predict-
ing the correct label y from z to increase I(Z, Y ).

Our Variational Bound for Interpretability
The learned bottleneck representation z, found
via Equation 2, is not human-interpretable as z
is typically a compressed continuous vector rep-
resentation of input x.3 To ensure interpretabil-
ity of z, we define the interpretable latent repre-
sentation as z := m � x, where m is a boolean
mask on the input sentences in x. We assume that
the mask variables mj over individual sentences
are conditionally independent given the input x,
i.e. the posterior pθ(m|x) =

∏
j pθ(mj |x), where

pθ(mj |x) = Bernoulli(θj(x)) and j indexes sen-
tences in the input text.4 Because z := m � x,
the posterior distribution over z is a mixture of
dirac-delta distributions:

pθ(zj |x) = (1− θj(x))δ(zj) + θj(x)δ(zj − xj),

where δ(x− c) is the dirac-delta probability distri-
bution that is zero everywhere except at c.

For the prior, we assume a fixed Bernoulli distri-
bution over mask variables. For instance, r(mj) =
Bernoulli(π) for some constant π ∈ (0, 1). This
also induces a fixed distribution on z via the defini-
tion z := m�x. Instead of using an expressive r(z)
to approximate p(z), we use a non-parametric prior
r(z) to force the marginal p(z) of the learned distri-
bution over z to approximately equal π. Our char-
acterization of the prior and the posterior achieves
compression of the input via sparsity in the latent
representation, in contrast to compression via di-
mensionality reduction (Alemi et al., 2016).

For the intermediate representation z := m� x,
we can decompose KL(pθ(zj |x), r(zj)) as:

KL(pθ(mj |x), r(mj)) + πH(x)

Since the entropy of the input, πH(x), is a constant
with respect to θ, it can be dropped. Hence, we
obtain the following variational bound on IB with
interpretability constraints over z, derived in more
detail in Appendix A.2:

LIV IB = Em∼pθ(m|x)[− log qφ(y|m� x)]+

β
∑
j

KL[pθ(mj |x)||r(mj)] (3)

4We use Bernoulli distribution formj in this work, but any
binary distribution for which KL divergence can be analyti-
cally computed can be used.
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Figure 2: Architecture: The explainer extracts a ratio-
nale from the input using a binary mask, and an end-
task predictor predicts the output based only on the ex-
tracted rationale.

The first term is the expected cross-entropy term
for the task which can be computed by drawing
samples m ∼ pθ(m|x). The second information-
loss term encourages the maskm to be independent
of x by reducing the KL divergence of its posterior
pθ(m|x) from a prior r(m) that is independent of
x. However, this does not necessarily remove in-
formation about x in z = x �m. For instance, a
mask consisting of all ones is independent of x, but
in this case z = x and the rationale is no longer
concise. In the following section, we present a sim-
ple way to avoid this degenerate case in practice by
appropriately fixing the value of π.

2.3 The Sparse Prior Objective
The key to ensuring that z = m � x is strictly a
subsequence of x lies in the fact that r(mj) = π is
our prior belief about the probability of a sentence
being important for prediction. For instance, if hu-
mans annotate 10% of the input text as a rationale,
we can fix our prior belief that a sentence should
be a part of the mask as r(mj) = π = 0.1 ∀j. IB
allows us to control the amount of sparsity in the
mask that is eventually sampled from the learned
distribution pθ(m|x) in several ways. π can be esti-
mated as the expected sparsity of the mask from ex-
pert rationale annotations. If such a statistic is not
available, it can be explicitly tuned for the desired
trade-off between end task performance and ratio-
nale length. In this work, we assume π ∈ (0, 0.5)
so that the sampled mask is sparse. We refer to this
training objective with tunable r(m) = π as the
sparse prior (Sparse IB) method in our experiments.
In Appendix C, we also discuss explicitly learning
the value of π.

3 Model

To optimize for objective 3, the posterior distribu-
tion estimator pθ() and label likelihood estimator
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qφ() are instantiated as the explainer and end-task
predictor neural models respectively. Two different
pre-trained transformers (Devlin et al., 2019) are
used to initialize both models.

3.1 Architecture

Explainer pθ(z|x): Given an input x =
x1, x2, . . . , xn consisting of n sentences, the ex-
plainer produces a binary mask m ∈ {0, 1}n over
the input sentences which is used to derive a ra-
tionale z = m � x. It maps every sentence xj to
its probability, pθ(mj |x) of being selected as part
of z where p(·) is a binary distribution. The ex-
plainer contextualizes the input sequence x at the
token level, and produces sentence representations
x = (x1,x2, . . . ,xn) where xj is obtained by
concatenating the contextualized representations
of the first and last tokens in sentence xj . A lin-
ear layer is used to transform these representations
into logits (log probabilities) of a Bernoulli distri-
bution. We choose the Bernoulli distribution since
its sample can be reparameterized as described in
Section 3.2, and we can analytically compute the
KL-divergence term between two Bernoulli distri-
butions. In Appendix C, we also experiment with
the Kumaraswamy distribution (Fletcher and Pon-
nambalam, 1996) used in (Bastings et al., 2019).
The mask m ∈ {0, 1}n is constructed by indepen-
dently sampling each mj from p(mj |x).

End-task Predictor qφ(y|z): We define z as the
rationale representation z = m � x, an element-
wise dot product between mj and the correspond-
ing sentence representation xj. The end-task pre-
dictor uses z to predict the output variable y. The
same hard attention mask m is applied to all end-
task transformer layers at every head to ensure
prediction relies only on m � x. The predic-
tor further consists of a log-linear classifier layer
over the [CLS] token, similar to Devlin et al.
(2019). When an optional query sequence is avail-
able for datasets like BoolQ, we do not mask it
as it is assumed to be essential to predict y (see
Appendix B.2 for implementation details).

3.2 Training and Inference

The sampling operation of the discrete binary vari-
able mj ∈ {0, 1} in Section 3.1 is not differen-
tiable. Lei et al. (2016) use a simple Bernoulli
distribution with REINFORCE (Williams, 1992)
to overcome non-differentiability. We found RE-
INFORCE to be quite unstable with high variance

in results. Instead, we employ reparameterization
(Kingma et al., 2015) to facilitate end-to-end dif-
ferentiability of our approach. We use the Gumbel-
Softmax reparameterization (Jang et al., 2017) for
categorical (here, binary) distributions to reparam-
eterize the Bernoulli variables mj . The reparame-
terized binary variable m∗j is generated as follows:

m∗j = σ

(
log p(mj |x) + gj

τ

)
,

where σ is the Sigmoid function, τ is a hyperpa-
rameter for the temperature of the Gumbel-Softmax
function, and gj is a random sample from the Gum-
bel(0,1) distribution (Gumbel, 1948). m∗j ∈ (0, 1)
is a continuous and differentiable approximation to
mj with low variance.

During inference, we extract the top π% sen-
tences with largest pθ(mj |x) values, where π
corresponds to the threshold hyperparameter de-
scribed in Section 2.3. Previous work (Lei et al.,
2016; Bastings et al., 2019) samples from p(m|x)
during inference. Such an inference strategy is
non-deterministic, making comparison of different
masking strategies difficult. Moreover, it is possi-
ble to appropriately scale p(mj |x) values to obtain
better inference results, thereby not reflecting if
p(mj |x) ∀j are correctly ordered. By allowing a
fixed budget of π% per example, we are able to
fairly compare approaches in Section 4.3.

3.3 Semi-Supervised Setting

As we will show in Section 5, despite better control
over the sparsity-accuracy trade-off, there is still a
gap in task performance between our unsupervised
approach and a model that uses full context. To
bridge this gap and better manage the trade-off
at minimal annotation cost, we experiment with a
semi-supervised setting where we have annotated
rationales for part of the training data.

For input example x = (x1, x2, . . . , xn) and a
gold mask m̂ = (m̂1, m̂2, . . . , m̂n) over sentences,
we use the following semi-supervised objective:

Lsemi = Em∼pθ(m|x)[− log q(y|m� x)]+

γ
∑
j

−m̂j log p(mj |x) (4)

While we still sample from p(m|x) and train end-
to-end using reparameterization, the information
loss over p(m|x) is replaced with the supervised
rationale loss.
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4 Experimental Setup

4.1 End Tasks
We evaluate our Sparse IB approach on five text
classification tasks from the ERASER benchmark
(DeYoung et al., 2019) and the BeerAdvocate re-
gression task (McAuley et al., 2012) used in Lei
et al. (2016).

ERASER: The ERASER tasks we evaluate on in-
clude the Movies sentiment analysis task (Pang
and Lee, 2004), the FEVER fact extraction and
verification task (Thorne et al., 2018), the Mul-
tiRC (Khashabi et al., 2018) and BoolQ (Clark
et al., 2019) reading comprehension tasks, and
the Evidence Inference classification task (Lehman
et al., 2019) over scientific articles for results of
medical interventions.

BeerAdvocate (McAuley et al., 2012): The Beer-
Advocate regression task for predicting 0-5 star
ratings for multiple aspects like appearance, smell,
and taste based on reviews.

All these datasets have sentence-level rationale an-
notations for validation and test sets. We do not
consider e-SNLI (Camburu et al., 2018) and CoS-
E (Rajani et al., 2019) in ERASER as they have
only 1-2 input sentences, rationales annotations at
word level, and often require common sense/world
knowledge. The ERASER tasks contain rationale
annotations for the training set, which we only use
for our semi-supervised experiments. We closely
follow dataset processing in the ERASER bench-
mark setup and Bastings et al. (2019) (for Beer-
Advocate). Additionally, for BoolQ and Evidence
Inference which contain longer documents, we use
a sliding window to select a single document span
that has the maximum TF-IDF score against the
question (further details in Appendix B.1).

4.2 Setup
Evaluation Metrics We adopt the metrics pro-
posed for the ERASER benchmark to evaluate both
agreement with comprehensive human rationales as
well as end task performance. To evaluate quality
of rationales, we report the token-level Intersection-
Over-Union F1 (IOU F1), which is a relaxed mea-
sure for comparing two sets of text spans. We also
report token-level F1 scores. For task accuracy, we
report weighted F1 for classification tasks, and the
mean square error for the BeerAdvocate regression
task.

Implementation Details We use BERT-base
with a maximum context-length of 512 to instanti-
ate the combined explainer and end-task predictor.
Models are tuned on the development set using the
rationale IOU F1. Appendix B.3 contains details
about hyperparameters.

4.3 Baselines

We first consider two bounding scenarios where
no rationales are predicted. In the Full Context
(Full) setting, the entire context is used to make
predictions; this allows us to estimate the loss in
performance as a result of interpretable hard atten-
tion models that only use π% of the input. In the
Gold Rationale (Gold) setting, we train a model
to only use human rationale annotations during
training and inference to estimate an upper-bound
on task and rationale performance metrics. We
compare our Sparse IB approach with the follow-
ing baselines. For fair comparison, all baselines
are modified to use BERT-based representations.

Norm Minimization (Sparse Norm) Existing
approaches (Lei et al., 2016; Bastings et al., 2019)
learn sparse masks over the inputs by minimizing
the L0 norm of the mask m as follows:

LSL0 = Em∼p(m|x)[− log q(y|z)] + λ||m|| (5)

Here, λ is the weight on the norm.

Controlled Norm Minimization (Sparse Norm-
C) For fair comparison against our approach for
controlled sparsity, we modify Equation 5 to ensure
that the norm of m is not penalized when it drops
below the threshold π.

LSL0−C = Em∼p(m|x)[− log q(y|z)]+
λmax (0, ||m|| − π) (6)

This modification has also been adopted in recent.
work (Jain et al., 2020). Explicit control over spar-
sity in the mask m through the tunable prior prob-
ability π naturally emerges from IB theory, as op-
posed to the modification adopted in norm-based
regularization (Equation 6).

No Sparsity This method only optimizes for
the end-task performance without any sparsity-
inducing loss term, to evaluate the effect of sparsity
inducing objectives in Sparse IB, Sparse Norm, and
Sparse Norm-C.
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Approach FEVER MultiRC Movies
Task Token F1 IOU Task Token F1 IOU Task Token F1 IOU

1. Full 89.5 33.7 36.2 66.8 29.1 29.2 91.0 35.1 47.3
2. Gold 91.8 - - 76.6 - - 97.0 - -

Unsupervised

3. No Sparsity 82.8 35.7 38.1 60.1 20.8 19.8 78.2 24.6 37.9
4. Sparse Norm 83.1 40.9 44.0 59.7 19.9 20.4 78.6 23.5 34.7
5. Sparse Norm-C 83.3 41.6 44.9 61.7 21.7 21.8 81.8 22.8 34.4
6. Sparse IB (Us) 84.7 42.7 45.5 62.1 24.9 24.3 84.0 27.5 39.6

Supervised

7. Bert-To-Bert (Reported) 87.7 81.2 83.5 62.4 39.9 40.9 82.4 14.5 7.5
8. Bert-To-Bert (Oursε) 85.0 78.1 81.7 63.3 41.2 41.6 86.0 16.2 15.7
9. 25% data (Us) 88.8 63.9 66.6 66.4 54.0 54.4 85.4 28.2 43.4

BoolQ Evidence Inference BeerAdvocate
Task Token F1 IOU Task Token F1 IOU Task Token F1 IOU

1. Full 65.6 11.8 15.0 52.1 6.4 9.7 .015 38.4 37.8
2. Gold 85.9 - - 71.7 - - - - -

Unsupervised

3. No Sparsity 62.5 8.1 10.7 43.0 6.1 09.0 .018 48.2 47.3
4. Sparse Norm 62.5 8.5 12.8 38.9 3.4 6.3 .017 28.6 35.5
5. Sparse Norm-C 63.7 10.7 14.3 44.7 5.1 8.0 .018 49.3 49.0
6. Sparse IB (Us) 65.2 12.8 16.5 46.3 6.9 10.0 .016 53.1 52.3

Supervised

8. Bert-To-Bert (Reported) 54.4 13.4 5.2 70.8 46.8 45.5
7. Bert-To-Bert (Oursε) 62.3 18.4 31.5 70.8 54.8 53.9 †

9. 25% data (Us) 63.4 19.2 32.3 46.7 10.8 13.3

Table 1: Task, Rationale IOU F1 (threshold set to 0.1) and Token F1 for our hard-attention Sparse IB approach and
baselines on test sets, averaged over 5 random seeds. We report MSE for BeerAdvocate, hence lower is better. Gold
IOU and token F1 are 100.0. We use 25% training data in our semi-supervised setting (Section 3.3). Validation set
results can be found in Table 6 in the Appendix. ε We could not reproduce numbers for the Bert-to-Bert supervised
method reported in DeYoung et al. (2019). † No rationale supervision available for BeerAdvocate.

Supervised Approach (Pipeline) Lehman et al.
(2019) learn an explainer and a task predictor in-
dependently in sequence using supervision for ra-
tionales and task labels, using the output of the
explainer in the predictor during inference. We
compare our semi-supervised model (Section 3.3)
with this pipeline approach.

5 Results

5.1 Quantitative Evaluation

Table 1 compares our Sparse IB approach against
baselines (Section 4.3). Sparse IB outperforms
norm-minimization approaches (rows 4-6) in both
agreement with human rationales and task per-
formance across all tasks. We perform particu-
larly well on rationale extraction with 5 to 80%
relative improvements over the better performing
norm-minimization variant Sparse Norm-C. Sparse
IB also attains task performance within 0.5 to 10%

of the full-context model (row 1), despite using
< 50% of the input sentences. All unsupervised
approaches still obtain a lower IOU F1 compared
to the full context model for Movies and MultiRC,
primarily due to their considerably lower precision
on these benchmarks.

Our results also highlight the importance of ex-
plicit controlled sparsity inducing terms as effec-
tive inductive biases for improved task performance
and rationale agreement. Specifically, sparsity-
inducing methods consistently outperform the No
Sparsity-baseline (row 3). One way to interpret
this result is that sparsity objectives add input-
dimension regularization during training, which
results in better generalization during inference.
Moreover, Sparse Norm-C, which adds the element
of control to norm-minimization, performs consid-
erably better than Sparse Norm. Finally, we see a
positive correlation between task performance and
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Figure 3: Semi-supervised experiments showing the task performance for varying proportions of rationale annota-
tion supervision on the MultiRC, FEVER, and Movies datasets.
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Figure 4: Effect of varying the sparsity hyperparameter
π to control the trade-off between compactness of ratio-
nales and accuracy for the FEVER dataset (right). SIB
is Sparse IB and SN-C is Sparse Norm-C.

agreement with human rationales. This is impor-
tant since accurate models that also better emulate
human rationalization likely engender more trust.

Semi-supervised Setting In order to close the
performance gap with the full-context model, we
also experiment with a setup where we minimize
the task and the rationale prediction loss using ratio-
nale annotations available for a part of the training
data (Section 3.3). Figure 4 (left, center) shows
the effect of incorporating an increasing proportion
of rationale annotation supervision for the FEVER
and MultiRC datasets. Our semi-supervised model
is even able to match the performance of the full-
context models for both FEVER and MultiRC with
only 25% of rationale annotation supervision. Fur-
thermore, Figure 4 also shows that these gains can
be achieved with relatively modest annotation costs
since adding more rationale supervision to the train-
ing data seems to have diminishing returns.

Table 1 compares our interpretable model (row
9), which uses rationale supervision for 25% of

Dataset π Sparse Norm-C Sparse IB
Mean Var Mean Var

FEVER 0.20 0.17 0.94 0.21 1.24
MultiRC 0.25 0.11 1.14 0.26 1.67
Movies 0.40 0.38 2.90 0.42 3.02
BoolQ 0.20 0.04 0.84 0.22 1.91
Evidence 0.20 0.10 1.17 0.20 1.61

Table 2: Average mask length (sparsity) attained by
Sparse IB and the Sparse Norm-C baseline for a given
prior π for different tasks, averaged over 100 runs.
Mean is reported as the average proportion of sentences
to compare with expected sparsity (π) and variance is
reported in the number of sentences.

the training data, with the full-context model and
the Pipeline approach (row 8). On three (FEVER,
MultiRC, and BoolQ) out of five datasets for which
rationale supervision is available, our interpretable
models match the task performance of the full-
context models while recording large gains in IOU
(17-30 F1 absolute). Our approach outperforms the
pipeline-based approach in task performance (for
FEVER, MultiRC, Movies, and BoolQ) and IOU
(for MultiRC and Movies). These gains may result
from better exploration due to sampling and infer-
ence based on a fixed budget of π% sentences. Our
weakest results are on Evidence Inference where
the TF-IDF preprocessing often fails to select rele-
vant rationale spans and the pipeline approach uses
SciBERT (Beltagy et al., 2019).5 Our overall re-
sults suggest that a small proportion of direct super-
vision can help build interpretable models without
compromising task performance.

5.2 Analysis

Accurate Sparsity Control Table 2 compares
average sparsity rates in rationales extracted
by Sparse IB with those extracted by norm-
minimization methods. We measure the spar-

5Only 51.8% of the selected passages have gold rationales.
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Examples from Error Analysis

Prediction:Positive
Ground Truth:Negative
The original Babe gets my vote as the best family film since the princess bride, and it’s sequel has been getting rave reviews
from most internet critics, both Siskel and Ebert sighting it more than a month ago as one of the year’s finest films. So,
naturally, when I entered the screening room that was to be showing the movie and there was nary another viewer to be
found, this notion left me puzzled. It is a rare thing for a children’s movie to be praised this highly . . . Looking back, I
should have taken the hint and left right when I entered the theater. Believe me; I wanted to like Babe: Pig in the City. The
plot seemed interesting enough; . . . It is here that we meet an array of eccentric characters, the most memorable being the
family of chimps led by Steven Wright. Here is where the film took a wrong turn . . . unfortunately, the story wears thin as
we are introduced to a new set of animals that . . . the main topic of discussion . . . it just didn’t feel right and was more
painful to watch than it was funny or entertaining, and the same goes for the rest of the movie.

Statement : Unforced labor is a reason for human trafficking.
Prediction: SUPPORTS
Ground Truth: REFUTES
DOC: Human trafficking is the trade of humans, most commonly for the purpose of forced labour, sexual slavery, or
comm--ercial sexual exploitation for the trafficker or others. This may encompass providing a spouse in the context of forced
marriage, or the extraction of organs or tissues, including for surrogacy and ova removal. Human trafficking can occur within
a country or transnationally. coercion and because of their commercial exploitation . . . In 2012, the I.L.O. estimated that 21
million victims are trapped in modern-day slavery . . .

Statement: Atlanta metropolitan area is located in south Georgia.
Prediction: SUPPORTS
Ground Truth:REFUTES
DOC: Metro Atlanta , designated by the United States Office of Management and Budget as the Atlanta-Sandy Springs-
Roswell, GA Metropolitan Statistical Area, is the most populous metro area in the US state of Georgia and the ninth-largest
metropolitan statistical area (MSA) in the United States. Its economic, cultural and demographic center is Atlanta, and

it had a 2015 estimated population of 5.7 million people according to the U.S. Census Bureau. The metro area forms the
core of a broader trading area, the Atlanta – Athens-Clarke – Sandy Springs Combined Statistical Area. The Combined
Statistical Area spans up to 39 counties in north Georgia and had an estimated 2015 population of 6.3 million people. Atlanta
is considered an “ alpha world city ”. It is the third largest metropolitan region in the Census Bureau’s Southeast region
behind Greater Washington and South Florida.

Table 3: Misclassified examples from the Movies and FEVER datasets show: (a) limitations in considering more
complex linguistic phenomena like sarcasm; (b) overreliance on shallow lexical matching—unforced vs. forced;
(c) limited world knowledge—south Georgia, Southeast region, South Florida. Legend: Model evidence, Gold
evidence, Model and Gold Evidence

sity achieved by the explainer during inference
by computing the average number of one entries
in the input mask m over sentences (the ham-
ming weight) for 100 runs. Sparse IB consistently
achieves the sparsity level π used in the prior while
the norm-minimization approach (Sparse Norm-C)
converges to a lower average sparsity for the mask.

Sparsity-Accuracy Trade-off Figure 4 (right)
shows the variation in task and rationale agreement
performance as a function of the sparsity rate π
for Sparse IB and Sparse Norm-C on the FEVER
dataset. Both methods extract longer rationales
with increasing π that results in a decrease in agree-
ment with sparse human rationales, while accuracy
improves. However, Sparse IB consistently outper-
forms Sparse Norm-C in task performance.

In summary, our analysis indicates that unlike
norm-minimization methods, our IB objective is
able to consistently extract rationales with the spec-
ified sparsity rates, and achieves a better trade-off
with accuracy. We hypothesize that optimizing

the KL-divergence of the posterior p(m|x) may
be able to model input salience better than an im-
plicit regularization (through ||m||0). The sparse
prior term can learn p(m|x) adaptive to different
examples, while ||m|| encourages uniform sparsity
across examples.6 This can be seen explicitly in
Table 2, where the variance in sampled mask across
examples is higher for our objective.

Model Agnostic Behavior Our approach is ag-
nostic to choice of model architecture and word vs.
sentence level rationales. We experimented with
the word-level model in (DeYoung et al., 2019),
where masks are learned over words instead of sen-
tences. More details of the model architecture can
be found in (DeYoung et al., 2019). The results for
which are shown in Table 4

Error Analysis A qualitative analysis of the ra-
tionales extracted by the Sparse IB approach indi-

6Unlike the norm ||m||0, the derivative of KL-divergence
term is proportional to log p(m|x)
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Approach Movies MultiRC
Task IOU Task IOU

Sparse Norm-C 91.96 48.9 64.25 25.7
Sparse IB (Us) 93.46 52.1 65.63 27.0

Table 4: Task and IOU F1 for our Sparse IB approach
and best performing baseline on word-level rationales
and BERT+LSTM model.

cates that such methods struggle when the context
offers spurious—or in some cases even genuine but
limited—evidence for both output labels (Figure 3).
For instance, the model makes an incorrect positive
prediction for the first example from the Movies
sentiment dataset based on sentences that praise the
prequel of the movie or acknowledge some critical
acclaim. We also observed incorrect predictions
based on shallow lexical matching (likely equat-
ing forced and unforced in the second example)
and world knowledge (likely equating south Geor-
gia, southeastern United States, and South Florida
in the third). Overall, there is scope for improve-
ment through better incorporation of exact lexical
match, coreference propagation, and representation
of pragmatics in our sentence representations.

6 Related Work

Extractive Rationalization Methods that condi-
tion predictions on their explanations are more
trustworthy than post-hoc explanation techniques
(Ribeiro et al., 2016; Krause et al., 2017; Alvarez-
Melis and Jaakkola, 2017) and analyses of self-
attention (Serrano and Smith, 2019; Jain et al.,
2020). Extractive rationalization (Lei et al., 2016)
is one of the most well-studied of such methods
and has received increased attention with the re-
cently released ERASER benchmark (DeYoung
et al., 2019). Chang et al. (2019) and Yu et al.
(2019); Chang et al. (2019) have complementary
work on class-wise explanation extraction. Bast-
ings et al. (2019) employ a reparameterizable ver-
sion of the bi-modal beta distribution (instead of
Bernoulli) for the binary mask. While our method
has focused on unsupervised settings due to the
considerable cost of obtaining reliable rationale
annotations, recent work (Lehman et al., 2019)
has also attempted to use direct supervision from
rationale annotations for critical medical domain
tasks. Finally, Latcinnik and Berant (2020) and
Rajani et al. (2019) focus on generating explana-
tions (rather than extracting them from the input).
The extractive paradigm can be unfavourable for

certain ERASER tasks like commonsense question
answering, where the given input provides limited
context for the task.

Information Bottleneck Information Bottle-
neck (IB) (Tishby et al., 1999) has recently been
adapted in a number of downstream applications
like parsing (Li and Eisner, 2019), extractive sum-
marization (West et al., 2019), and image classifi-
cation (Alemi et al., 2016; Zhmoginov et al., 2019).
Alemi et al. (2016) and Li and Eisner (2019) use
IB for optimal compression of hidden representa-
tions of images and words respectively. We are
interested in compressing the number of cognitive
units (like sentences) to ensure interpretability of
the bottleneck representation, similar to West et al.
(2019). However, while West et al. (2019) use
brute-force search to optimize IB for summariza-
tion, we directly optimize a parametric variational
bound on IB for rationales. IB has also been previ-
ously used for interpretability—Zhmoginov et al.
(2019) use a VAE to estimate the prior distribution
over z for image classification. Bang et al. (2019)
use IB for post-hoc explanation of sentiment clas-
sification. They do not enforce a sparse prior, and
as a result, cannot guarantee that the rationale is
strictly smaller than the input. Controlling sparsity
to manage the accuracy-conciseness trade-off is
also not possible in their model.

7 Conclusion

We introduce a novel sparsity-inducing objective
derived from the Information Bottleneck principle
to extract rationales of desired conciseness. Our
approach outperforms existing norm-minimization
techniques in task performance and agreement with
human rationales for tasks in the ERASER bench-
mark. Our objective obtains a better trade off of
accuracy vs. sparsity. We are also able to close the
gap with models that use the full input with < 25%
rationale annotations for a majority of the tasks. In
future work, we would like to apply our approach
on document-level and multi-document NLU tasks.
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Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In Advances in Neural Information Process-
ing Systems, pages 9539–9549.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi
Jaakkola. 2019. A game theoretic approach to class-
wise selective rationalization. In Advances in Neu-
ral Information Processing Systems, pages 10055–
10065.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C Wallace. 2019. Eraser: A benchmark to
evaluate rationalized nlp models. arXiv preprint
arXiv:1911.03429.

SG Fletcher and K Ponnambalam. 1996. Estimation
of reservoir yield and storage distribution using mo-
ments analysis. Journal of Hydrology(Amsterdam),
182(1):259–275.

Emil Julius Gumbel. 1948. Statistical theory of ex-
treme values and some practical applications: a se-
ries of lectures, volume 33. US Government Print-
ing Office.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and
Byron C Wallace. 2020. Learning to faith-
fully rationalize by construction. arXiv preprint
arXiv:2005.00115.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparametrization with gumble-softmax. In
International Conference on Learning Representa-
tions (ICLR 2017). OpenReview. net.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking be-
yond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

Durk P Kingma, Tim Salimans, and Max Welling.
2015. Variational dropout and the local reparame-
terization trick. In Advances in neural information
processing systems, pages 2575–2583.

Josua Krause, Aritra Dasgupta, Jordan Swartz, Yin-
dalon Aphinyanaphongs, and Enrico Bertini. 2017.
A workflow for visual diagnostics of binary clas-
sifiers using instance-level explanations. In 2017
IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 162–172. IEEE.

Veronica Latcinnik and Jonathan Berant. 2020. Ex-
plaining question answering models through text
generation. arXiv preprint arXiv:2004.05569.

Eric Lehman, Jay DeYoung, Regina Barzilay, and By-
ron C Wallace. 2019. Inferring which medical treat-
ments work from reports of clinical trials. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 3705–3717.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 107–117.

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information bot-
tleneck. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2744–2754.

Julian McAuley, Jure Leskovec, and Dan Jurafsky.
2012. Learning attitudes and attributes from multi-
aspect reviews. In 2012 IEEE 12th International
Conference on Data Mining, pages 1020–1025.
IEEE.



1948

Eric Nalisnick and Padhraic Smyth. 2017. Stick-
breaking variational autoencoders. In International
Conference on Learning Representations (ICLR).

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics, page 271. Association for Com-
putational Linguistics.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932–4942.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. ” why should i trust you?” explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931–2951.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

Naftali Tishby, Fernando C. Pereira, and William
Bialek. 1999. The information bottleneck method.
In Proc. of the 37-th Annual Allerton Conference
on Communication, Control and Computing, pages
368–377.

Daniel S Weld and Gagan Bansal. 2019. The chal-
lenge of crafting intelligible intelligence. Commu-
nications of the ACM, 62(6):70–79.

Peter West, Ari Holtzman, Jan Buys, and Yejin Choi.
2019. Bottlesum: Unsupervised and self-supervised
sentence summarization using the information bot-
tleneck principle. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3743–3752.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Mo Yu, Shiyu Chang, Yang Zhang, and Tommi
Jaakkola. 2019. Rethinking cooperative rationaliza-
tion: Introspective extraction and complement con-
trol. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4085–4094.

Andrey Zhmoginov, Ian Fischer, and Mark Sandler.
2019. Information-bottleneck approach to salient re-
gion discovery. arXiv preprint arXiv:1907.09578.



1949

A Information Bottleneck Theory

We first present an overview of the variational
bound on IB introduced by (Alemi et al., 2016)
and then derive a modified version amenable to
interpretability.

A.1 Variational Information Bottleneck
(Alemi et al. (2016))

The objective is to parameterize the information
bottleneck objective LIB = I(X,Z) − βI(Z, Y )
using neural models and use SGD to optimize.
Consider the joint distribution: p(X,Y, Z) =
p(Z|X,Y )p(Y |X)p(X) = p(Z|X)p(Y |X)p(X)
under the Markov chain Y ↔ X ↔ Z. As mutual
information is hard to compute, the following
bounds are derived on both MI terms:

First Term:

I(Z,X) := Ex

[
E

z∼pθ(z|x)

[
log

pθ(z|x)

p(z)

]]
where,

p(z) :=

∫
dxpθ(z|x)p(x)

This marginal is intractable. Let r(z) be a vari-
ational approximation to this marginal. Since
KL[p(z), r(z)] ≥ 0,

I(Z,X) ≤ Ex

[
E

z∼pθ(z|x)

[
log

pθ(z|x)

r(z)

]]

If pθ(z|x) and r(z) are of a form that KL diver-
gence can be analytically computed, we get:

I(Z,X) ≤ Ex [KL[pθ(z|x), r(z)]

Typically, the distributions pθ(z|x) and r(z) are
instantiated as multivariate Normal distributions to
analytically compute the KL-divergence term.

r(z) = N (z|0, I), p(z|x) = N (z|µ(x),Σ(x));

where µ is a neural network which outputs the
K-dimensional mean of z and Σ outputs the
K ×K covariance matrix Σ. This also allows us
to reparameterize samples drawn from pθ(z|x).

Second Term:

I(Z, Y ) := E
y,z∼pθ

[
log

p(y|z)
p(y)

]

where,

p(y|z) :=

∫
dx
p(y|x)p(z|x)p(x)

p(z)

Again, as this is intractable, qφ(y|z) is used as a
variational approximation to p(y|z) and is instan-
tiated as a transformer model with its own set of
parameters φ. As Kullback Leibler divergence is
always positive:

KL[p(y|z), qφ(y|z)] ≥ 0→

I(Z, Y ) ≥ E
y,z∼pθ

[
log

qφ(y|z)
p(y)

]
The term p(y) can be dropped as it is constant
with respect to parameters φ. Thus, we minimize
Ey,z∼pθ [− log qφ(y|z)] Thus the IB objective is
bounded by the loss function:

Lvib ≥ Ey,z∼pθ [− log qφ(y|z)]+βKL[pθ(z|x), r(z)]

A.2 Deriving the Sparse Prior Objective
The latent space learned in Appendix A.1 is not
easy to interpret. Instead we consider a masked
representation of the form z = m�x, where mj ∈
{0, 1} is a binary mask sampled from a distribution
pθ(mj |x) = Bernoulli(θj(x)). This is an adaptive
masking strategy, defined by data-driven relevance
estimators θj(x). The distributions over x and m
induce a distribution on z = m� x defined by the
conditionals

pθ(zj |x) = (1− θj(x))δ(zj) + θj(x)δ(zj − xj).

Our prior, based on human annotations, is that
rationale needed for a prediction is sparse; we
encode this prior as a distribution over masks
r(mj) = Bernoulli(π). The prior also induces
a distribution on z = m� x given by

r(zj |x) = (1− π)δ(zj) + πδ(zj − xj).

We want to enforce a constraint pθ(zj) = r(zj);
i.e. that the marginal distribution pθ(zj) =∫
pθ(zj |x)p(x) dx matches our prior r(zj). This is

difficult to do directly, but as in Appendix A.1, we
can construct an upper bound the mutual informa-
tion between x and z:

I(Z,X) ≤ E
x∼p

[KL[pθ(z|x), r(z)]] .

The inequality is tight if r(z) = pθ(z). By optimiz-
ing to minimize mutual information I(Z,X), we
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Hyperparameter Movie FEVER MultiRC BoolQ Evidence Inference BEER

NS 36 10 15 25 20 10
π (Sparsity threshold (%)) .40 .20 .25 .20 .20 .20

γ (weight on SR) 0.5 0.05 1.00E-04 0.01 0.001 0.01

Table 5: Hyperparameters used to report results.

Approach FEVER MultiRC Movies BoolQ Evidence
Task IOU Task IOU Task IOU Task IOU Task IOU

Full 90.54 - 68.18 - 88.0 - 63.16 - 47.51 -
Gold 92.52 - 78.20 - 1.0 - 71.65 - 85.39 -

No Sparsity 83.01 35.50 59.17 22.42 81.46 20.63 61.82 10.39 47.51 9.87
Sparse Norm 84.30 45.44 58.40 20.41 79.35 19.23 59.04 12.40 44.52 9.4

Sparse Norm-C 84.42 44.90 60.77 23.25 82.43 18.91 62.24 09.72 48.97 09.40
Sparse IB 85.64 45.46 61.11 25.55 86.50 22.33 63.07 16.63 49.09 11.09

Table 6: Final results of our unsupervised models on ERASER Dev Set

will implicitly learn parameters θ that approximate
the desired constraint on the marginal.

In contrast to Alemi et al. (2016), our prior r(z)
has no parameters; rather than using an expres-
sive model r(z) to approximate the pθ(z), we in-
stead use the fixed prior r(z) to force the learned
conditionals pθ(z|x) to assume a form such that
the marginal pθ(z) approximately matches the
marginal of the prior, π. Average mask sparsity
values in Table 2 corroborate this.

By a limiting argument, we can compute the
divergence between pθ(z|x) and r(z):

KL(pθ(zj |x), r(zj))

= (1− θj(x))

∫
δ(zj) log

pθ(zj |x)

r(zj)
dzj

+ θj(x)

∫
δ(zj − xj) log

pθ(zj |x)

r(zj)
dzj

= (1− θj(x)) log
1− θj(x)

1− π
+ θj(x) log

θj(x)

πp(x)

= KL(pθ(mj |x), r(mj))− θj(x) log p(x).

The term KL[pθ(mj |x), r(mj)] is a divergence be-
tween two Bernoulli distributions and has a simple
closed form. If θj(x) and log p(x) are uncorrelated
then

E
x∼q

[−θj(x) log p(x)] = πH(X).

The term πH(X) is constant with respect to the
parameters θ and can be dropped.

We use the same, standard cross-entropy bound
discussed in Appendix A.1 to estimate I(Z, Y ),

leading us to our variational bound on IB with in-
terpretability constraints

LIV IB = Em∼p(m|x)[− log q(y|m� x)]

+ β
∑
j

KL[pθ(mj |x)||r(mj)].

B Experimental Details

B.1 Data Processing
The train, test and validation splits are the same as
used in the ERASER benchmark (DeYoung et al.,
2019) and for the Beer Advocate dataset (Bast-
ings et al., 2019). In order to batch operations, we
process the data so that each example has at most
NS sentences. NS is fixed based on the average
number of sentences in the development set of the
respective task (see Table 5). Some dataset specific
processing details are highlighted below:

FEVER: ERASER adapts the original fact verifi-
cation task as a binary classification of whether the
given evidence supports or refutes a given claim.

MultiRC: The reading comprehension task with
multiple correct answers is modified into a binary
classification task for ERASER, where each (ra-
tionale, question, answer) triplet has a true/false
label.

BoolQ: A Boolean (yes/no) question answering
dataset over Wikipedia articles. Since most docu-
ments are considerably longer than BERT’s maxi-
mum context window length of 512 tokens (3.3K
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tokens on average), we use a sliding window to se-
lect a single document span that has the maximum
TF-IDF score against the question.

Evidence Inference: A three-way classification
task over full-text scientific articles for inferring
whether a given medical intervention is reported to
either significantly increase, significantly decrease,
or have no significant effect on a specified outcome
compared to a comparator of interest. We again
apply the TF-IDF heuristic as the average number
of tokens is a document is 4.6K.

BEER: The Beer Advocate regression task for pre-
dicting 0-5 star ratings for multiple aspects like
appearance, smell, and taste based on reviews. We
report on the appearance aspect.

B.2 Modeling

For question answering tasks in ERASER. s and x
are encoded together in the sequence s[SEP]x
while assuming that s is fully unmasked i.e.
pθ(ms|x) = 1. Once again, the sequence
s[SEP]m� x is used if query s is available, i.e.,
we assume no masking over s as it is assumed to
be essential to predict y.

Semi-supervised: Whenever train loss is not
available, only task loss is used. Evaluation is still
done based on π% sentences, to fairly compare
with unsupervised models.

B.3 Hyperparameters

We use a sequence length of 512, batch size of 16
7 and Adam optimizer with a learning rate of 5e-5.
We do not use warm-up or weight decay. We run
all model for 20 epochs and set patience to 10 (over
iterations). Hyper-parameter tuning is done on the
validation set for the rationale performance metric
(IOU F18) on the development sets for ERASER
tasks and on the test set for BEER (only test set
contains rationale annotations). We tune the value
of π ∈ {0.05, 0.1, 0.15, ...0.50}. We found that
Sparse IB approach is not as sensitive to the param-
eter β and fix it to 1 to simplify experimental design.
For baselines, we tune the values of the Lagrangian
multipliers, λ ∈ {1e-4, 5e-4, 1e-3, . . . , 1} as norm-
based techniques are more sensitive to λ. The value

7We used 2 GeForce GTX TITAN X GPUs and Cuda 10.1
8Calculated as per the definition in https://github.

com/jayded/eraserbenchmark/blob/master/
rationale_benchmark/metrics.py for threshold
0.1

of the γ hyperparameter in the semi-supervised
setup was set to 1.0 to simplify design. Instead of
explicitely tuning or annealing the Gumbel softmax
parameter, we fix it to 0.7 across all our experi-
ments (including baselines). Hyperparameters for
each dataset used for the final results are presented
in Table 5.9

C Analysis

Learning the Value of π Instead of tuning the
value of π, we can alternately learn an appropriate
value by allowing π to be a learnable parameter in
our implementation. In our experiments (see Table
7, we found that that the norm-minimization com-
pletely degenerates and learns a very high value of
π, as the norm-loss in Equation 6 (Section 4.3) can
still be minimized if both ||m|| and π are driven
close to 1.0. In our case, since pi is now a learn-
able parameter, we have to minimize the following
objective.

LIV IB = Em∼pθ(m|x)[− log qφ(y|m� x)]+

β
∑
j

KL[pθ(mj |x)||r(mj)] + πH(x) (7)

The caveat here is that it requires another hyperpa-
rameter, namely the constant H(x) = λ 10. This
is not unlike Sparse Normor Sparse Norm-Cwhere
sparsity is controlled through the hyperparameter
λ. In Table 7, we compare the Sparse IBobjective
with Equation 7 for Movies and FEVER. We find
that optimizing Equation 7 actually allows us to
control the trade-off because of the presence of the
term πH(x) that enforces a smaller value for π.
The learned value of π is close the tuned value in
Table 5, thus we choose to report our main results
across all models on tuned π.

A More Expressive Distribution Bastings et al.
(2019) compare against the best-known previous
work on norm regularization Lei et al. (2016) by
exploring the bi-modal Kumaraswamy distribution
(Fletcher and Ponnambalam, 1996) to replace the
Bernoulli distribution. This more expressive distri-
bution may be able to complement our approach,
as KL-divergence for it can be analytically com-
puted (Nalisnick and Smyth, 2017) (Appendix C).

9We observed some variation (<0.50 F1) in results across
across GPUs, well within the difference observed between
Sparse IB and baselines.

10We could alternately estimate this using a VAE, as done
in Zhmoginov et al. (2019)

https://github.com/jayded/eraserbenchmark/blob/master/rationale_benchmark/metrics.py
https://github.com/jayded/eraserbenchmark/blob/master/rationale_benchmark/metrics.py
https://github.com/jayded/eraserbenchmark/blob/master/rationale_benchmark/metrics.py
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Approach Movies Fever
Task F1 IOU F1 Sparsity Task F1 IOU F1 Sparsity

Sparse Norm-Cwith learned π 89.86 24.18 0.99 89.0 36.2 0.98
Sparse IB 91.0 24.18 0.98 88.50 36.2 0.96

Sparse IBwith learned π 86.97 25.63 0.45 85.64 45.71 0.14

Table 7: Evaluation of learnable π. Results on Dev set

Distribution/Approach Movies Fever
Task IOU Task IOU

Bernoulli (Sparse Norm-C) 79.4 18.3 83.3 44.9
Bernoulli Sparse IB 81.5 21.8 84.7 45.5

Kuma Sparse Norm-C 81.8 21.0 84.9 43.0
Kuma Sparse IB 83.4 21.5 85.6 45.5

Table 8: Results on the Kumaraswamy distribution
from (Bastings et al., 2019) on Dev set

The KL divergence between the Kumaraswamy and
Beta distribution can be analytically computed, as
done in this work (Nalisnick and Smyth, 2017). In
Table 8, we show results on Movies and FEVER
datasets for this distribution, comparing Sparse IBa-
gainst the Sparse Norm-Cbaseline. We find that the
superior performance of the KL-divergence loss
term persists.


