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Abstract

Inducing a meaningful structural representa-
tion from one or a set of dialogues is a cru-
cial but challenging task in computational lin-
guistics. Advancement made in this area is
critical for dialogue system design and dis-
course analysis. It can also be extended to
solve grammatical inference. In this work,
we propose to incorporate structured atten-
tion layers into a Variational Recurrent Neu-
ral Network (VRNN) model with discrete la-
tent states to learn dialogue structure in an
unsupervised fashion. Compared to a vanilla
VRNN, structured attention enables a model
to focus on different parts of the source sen-
tence embeddings while enforcing a structural
inductive bias. Experiments show that on
two-party dialogue datasets, VRNN with struc-
tured attention learns semantic structures that
are similar to templates used to generate this
dialogue corpus. While on multi-party dia-
logue datasets, our model learns an interac-
tive structure demonstrating its capability of
distinguishing speakers or addresses, automat-
ically disentangling dialogues without explicit
human annotation.'

1 Introduction

Grammatical induction for capturing a structural
representation of knowledge has been studied for
some time (De la Higuera, 2010). Given the
achievement in related areas like learning Hid-
den Markov acoustic models in speech recognition
(Bahl et al., 1986) and sentence dependency pars-
ing in language understanding (Covington, 2001),
our work aims to explore a more sophisticated
topic: learning structures in dialogues. Figure 1
shows the underlying semantic structure of conver-
sations about bus information request from Sim-
Dial dataset (Zhao and Eskenazi, 2018), with one

'The code is released at https://github.com/
Liang-Qiu/SVRNN-dialogues.

example dialogue as shown in Table 1. Another
interesting type of dialogue structure is the inter-
active structure in multi-party dialogues. Figure 2
illustrates the interactive structure we learned from
a dialogue sample in Ubuntu Chat Corpus (Lowe
et al., 2015). Each node represents an utterance
from different speakers in the dialogue with darker
linkages represent stronger dependency relations
between utterances. When speaker/addressee in-
formation is unavailable in the corpus, learning
such a structure allows disentangling the conver-
sation (Serban and Pineau, 2015) and estimating
the speaker labels. Discovering dialogue structures
is crucial for various areas in computational lin-
guistics, such as dialogue system building (Young,
2006), discourse analysis (Grosz and Sidner, 1986),
and dialogue summarization (Murray et al., 2005;
Liu et al., 2010). Through looking into this topic,
we can further improve the capability of machines
to learn more generalized, interpretable knowledge
representation from data.
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Figure 1: Original dialogue structure of the bus infor-
mation request domain in SimDial (Zhao and Eskenazi,
2018). User intents are marked in bold.
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However, capturing structure from the conver-
sation is still much under-explored. The complex-
ity of dialogues could range from several-round
task-oriented dialogues to tens-round multi-party
chitchat. It is unclear that for these different cate-
gories of dialogues, what types of inductive biases
or constraints we could add to reduce the search
space. It also remains an unsolved question for
formally evaluating the performance of dialogue
structure induction algorithms. In this paper, we
propose to use a combination of structured atten-
tion and unsupervised generative model to infer the
latent structure in a dialogue.

Z

Figure 2: Learned interactive structure from a multi-
party dialogue sample in Ubuntu Chat Corpus (Uthus
and Aha, 2013).

Specifically, instead of simply applying a soft-
max function on potentials between a decoder
query and encoder hidden states, dynamic program-
ming algorithms like Forward-Backward (Devijver,
1985) and Inside-Outside (Lari and Young, 1990)
could be used to efficiently calculate marginal prob-
abilities from pairwise potentials with a structural
constraint. Through embedding such structured
attention layers in a Variational Recurrent Neural
Network (VRNN) model, we can learn latent struc-
tures in dialogues by jointly re-generating training
dialogues. Such a process requires no human an-
notation and is useful for dialogue analysis. In
addition, by selecting appropriate structural biases
or constraints, we can learn not only semantic struc-
tures but also interactive structures. A linear Condi-
tional Random Field (CRF) attention layer is used
in two-party dialogues to discover semantic struc-
tures. A non-projective dependency tree attention
layer is embedded to learn an interactive structure
that could help identify speaker/addressee infor-
mation in multi-party dialogues that have tangled
conversation threads, such as forum discussions.

This paper makes the following contributions.
We propose to incorporate a structured attention
layer in VRNN to learn latent structures in dia-
logues. To our knowledge, no work connecting

structured attention with unsupervised dialogue
structure learning has been done. We prove our pro-
posed VRNN-LinearCRF learns better structures
than the baseline VRNN on the SimDial dataset for
semantic structure learning in two-party dialogues.
For interactive structure learning in multi-party di-
alogues, we combine VRNN with a non-projective
dependency tree attention layer. It achieves sim-
ilar generation performance as the baseline GSN
model (Hu et al., 2019) on Ubuntu Chat Corpus
(Uthus and Aha, 2013; Lowe et al., 2015), while
our model can identify the speaker/addressee in-
formation without trained on explicit labels. We
release our code as well as the processed datasets
to help stimulate related researches.

2 Related Work

Attention mechanism (Vaswani et al., 2017) has
been widely adopted as a way for embedding cat-
egorical inference in neural networks for perfor-
mance gain and interpretability (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). However, for
many tasks, we want to model richer structural
dependencies without abandoning end-to-end train-
ing. Structured Attention Networks (Kim et al.,
2017) can extend attention beyond the standard
soft-selection approach by attending to partial seg-
ments or subtrees. People have proven its effec-
tiveness on a variety of synthetic and real tasks:
tree transduction, neural machine translation, ques-
tion answering, and natural language inference
(Rush, 2020). In this paper, we propose to uti-
lize structured attention to explore dialogue struc-
tures. Specifically, we work on two types of di-
alogue structures, semantic structures (dialogue
intent transitions), and interactive structures (ad-
dressee/speaker changes).

Semantic structures have been studied exten-
sively. Some previous works, such as (Juraf-
sky, 1997), learned semantic structures relying on
human annotations, while such annotations are
costly and can vary in quality. Other unsuper-
vised studies used Hidden Markov Model (HMM)
(Chotimongkol, 2008; Ritter et al., 2010; Zhai and
Williams, 2014). Recently, Variational Autoen-
coders (VAEs) (Kingma and Welling, 2013) and
their recurrent version, Variational Recurrent Neu-
ral Networks (VRNNSs) (Chung et al., 2015), con-
nects neural networks and traditional Bayes meth-
ods. Because VRNNs apply a point-wise non-
linearity to the output at every timestamp, they are
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also more suitable to model highly non-linear dy-
namics over the simpler dynamic Bayesian network
models. Serban et al. (2017) proposed the VHRED
model by combining the idea of VRNNs and Hi-
erarchical Recurrent Encoder-Decoder (HRED)
(Sordoni et al., 2015) for dialogue generation. Sim-
ilarly, Zhao et al. (2018) proposed to use VAEs to
learn discrete sentence representations. Shi et al.
(2019) used two variants of VRNNSs to learn the
dialogue semantic structures and discussed how
to use learned structure to improve reinforcement
learning-based dialogue systems. But none of the
previous work has tried to incorporate structured
attention in VRNNSs to learn dialogue structure.

Compared to semantic structures, the interactive
structure of dialogues is not clearly defined. Elsner
and Charniak (2008) initiated some work about dia-
logue disentanglement, which is defined as dividing
a transcript into a set of distinct conversations. Ser-
ban and Pineau (2015) tested standard RNN and
its conditional variant for turn taking and speaker
identification. Both of the tasks are highly related
to understanding the interactive structure but not
identical. Our task, different from both of them,
aims to construct an utterance dependency tree to
represent a multi-party dialogue’s turn taking. The
tree can not only be used to disentangle the conver-
sations but also label each utterance’s speakers and
addressees. We compare our model with Graph
Structured Network (GSN), recently proposed by
Hu et al. (2019). GSN builds a conversation graph
utilizing explicit speaker/addressee information in
Ubuntu Chat Corpus (Uthus and Aha, 2013) to im-
prove the dialogue generation performance. Our
model shows similar generation performance as
them while demonstrating its capability of learning
the utterance dependency tree.

3 Problem Formulations

We discuss the semantic and interactive dialogue
structure learning separately. In task-oriented two-
party dialogues (between system and user), we
want to discover a semantic probabilistic grammar
shared by dialogues in the same domain. While
for multi-party dialogues, e.g., conversations in
a chatroom, which may have multiple conversa-
tions occur simultaneously, we are more interested
in finding an interactive structure that could help
disentangle the conversation and identify the speak-
ers/addressees. Our method of structure learning is
flexible to handle both problems with the formula-

tions as shown below.

For semantic dialogue structure learning, we for-
mulate the problem as labeling the dialogue with
a sequence of latent states. Each conversational
exchange z; (a pair of system and user utterances
at time step ¢) belongs to a latent state z;, which has
an effect on the future latent states and the words
the interlocutors produce. The latent dialogue state
is defined to be discrete, i.e., z; € {1,2,..., N},
where N is the number of states predefined from
experience. Our goal is to generate the current sen-
tence pair x; that maximizes the conditional likeli-
hood of z; given the dialogue history while jointly
learning a latent state sequence z = [z1, 22, ..., 2]

x|

% = argmax Y _ log(P(z<[x<i) P(i]z<;)).
* =1
(D

Then, we can induce a probabilistic dialogue gram-
mar by estimating the state transition probabilities
through maximizing the likelihood of the parsed
latent state sequences.

A multi-party dialogue session can be for-
mulated as an utterance-level dependency tree
T(V, E), where V is the set of nodes encoding
the utterances, E' = {e; ;}i; € {0, 1} indicates
whether utterance i is the parent of utterance j, and
m is the maximum number of possible edges.

x|

X = argmax Z log(P(T|x<;)P(z;|T))

i=1
x| i—1
= argmaleog(H P(ejr = 1x<;)-
X =1 j<k
P(ziT))
x| -1
= argmax [Z Zlog(P(ej’k. =1|x<;)+
x i=1 j<k

2)
Each path of the dependency tree represents a
thread in the multi-party conversation in chrono-
logical order. Our goal is to generate the re-
sponse X that maximizes the conditional likelihood
of the response given the dialogue history while
jointly learning a latent utterance dependency tree
as shown in Equation 2. The conditional likelihood
is factorized into two parts, representing the encod-
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Figure 3: Structured-Attention Variational Recurrent Neural Network (SVRNN)

ing and decoding processes respectively. We can
further reason about the speaker/addressee labels
or disentangle the conversation by clustering the
utterances from the learned tree.

4 Variational Recurrent Neural Network
with Structured Attention

The overall architecture of Structured-Attention
Variational Recurrent Neural Network (SVRNN) is
illustrated in Figure 3. The LSTM (Hochreiter and
Schmidhuber, 2001) word-level encoder marked
in pink encodes each utterance into a sentence em-
bedding. Then an utterance-level encoder VRNN
with different structured attention layers encodes
the dialogue history into a latent state z. A decoder
marked in blue will decode the next utterances from
the latent state. We describe more details about the
key components of our model in the following sub-
sections.

4.1 Variational Recurrent Neural Network

The pursuit of using an autoencoder like Varia-
tional Recurrent Neural Network (VRNN) is to
compress the essential information of the dialogue
history into a lower-dimensional latent code. The
latent code z is a random vector sampled from
a prior p(z) and the data generation model is de-
scribed by p(z|z). The VRNN contains a Varia-
tional Autoencoder (VAE) at each time step. The
VAE consists of an encoder ¢, (z|x) for approxi-
mating the posterior p(z|z), and a decoder py(x|z)

for representing the distribution p(z|z). The varia-
tional inference attains its maximum likelihood by
maximizing evidence lower bound (ELBO):

E [log pg(x[2)] — KL (ga(2|2)[|lp(2)) < logp(z).
3)

For sequential data, the parameterization of
the generative model is factorized by the pos-
terior p (z¢|x<¢, 2<¢) and the generative model

P (ze|z<t, x<1), L€,

T
pla <T,z<T)= H[p (@tlz<t, v<t) -
t=1

P (2t|T<t, 2<t) ]

4

The learning objective function becomes maximiz-
ing the ELBO for all time steps
T
E[ > (- KL (g(zlo<r, 2<0) p(zilo<t, <)
t=1

+ log p(@¢|2<, x<t))} .
5)

In addition, to mitigate the vanishing latent vari-
able problem in VAE, we incorporate Bag-of-
Words (BOW) loss and Batch Prior Regularization
(BPR) (Zhao et al., 2017) with a tunable weight A.
By adjusting the A, the VRNN based models can
achieve a balance between clustering the utterance
surface formats and attention on the context.
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4.2 Linear CRF Attention

As we formulate the semantic structure learning
in two-party dialogues as a state tagging problem,
we find it suitable to use a linear-chain Conditional
Random Field (CRF) attention layer with VRNN.
Define & to be a random vector £ = [{1, ..., &)
with & € {0, 1}. n is the number of utterances in
a dialogue. The context vector c; given the current
sentence hidden state h; and hidden state history
h can thus be written as:

7j—1
¢; = Y _p(& = 1/h,h))h;. 6)
=1

‘We model the distribution over the latent variable
& with a linear-chain CRF with pairwise edges,

j—2
p(&la ceey €n|h7 h]) = SOfthLZC(Z Hi,i+1(§i7 §i+1))7

i=1
(7)
where 6; ;11 (k, ) is the pairwise potential for §; =
k and &;41 = . The attention layer is a two-state
CRF where the unary potentials at the j-th dialogue
turn are:

h;Wih; k=0

Oik)y =4 'L : (8)
h;Wsh; £ =1

where [hy, ..., h,] are utterance level hidden states

and W1, W5 are parameters. The pairwise poten-
tials can be parameterized as

01 (isEir1) = 05(&) + Oipr(Eig1) + ) iy
9

The marginal distribution p(§; = 1|z) can be
calculated efficiently in linear-time for all ¢ us-
ing message-passing, i.e., the forward-backward
shown in Algorithm 1.

C denotes the state space and (t) is the special
start/stop state. Typically the forward-backward
with marginals is performed in the log-space semi-
field R U {£o0} with binary operations & = lo-
gadd and ® = + for numerical precision. These
marginals allow us to calculate the context vec-
tor. Crucially, the process from vector softmax to
forward-backward algorithm is a series of differen-
tiable steps, and we can compute the gradient of the
marginals with respect to the potentials (Kim et al.,
2017). This allows the linear CRF attention layer
to be trained end-to-end as a part of the VRNN.

Algorithm 1: Forward-Backward for Lin-
earCRF Attention
Input: potential ¢
a0, (t)] «+ 0
Bln+1,(t)] + 0
fori=1,...,n;ceCdo
afi,c] < @, ali — 1,y] @ 0i—1,[y, ]
end for
fori=n,...,1;ceCdo
Bli, ] < B, Bli + 1, y] @ biiva[c,y]
end for
A<+ an+1,(t)]
fori=1,...,n;ceCdo
p(& = clr) — explali,d ® Bli, ] ® —A)
end for
return p

4.3 Non-projective Dependency Tree
Attention

For interactive structure learning in multi-party di-
alogues, we want to learn an utterance dependency
tree from each dialogue. Therefore, we propose
to use a non-projective dependency tree attention
layer with VRNN for this purpose. The potentials
0; j, which reflect the score of selecting the i-th
sentence being the parent of the j-th sentence (i.e.,
x; — xj), can be calculated by

0; ; = tanh(s" tanh (W1h; + Wsh; +b)), (10)

where s, b, W1, Wy are parameters, h;, h; are sen-
tence hidden states.

The probability of a parse tree £ given the dia-
logue =z = [x1, ..., ] is,

p(€]x) = softmax(1{¢ is valid}-
S u{g; =130, D

]

where the latent variable &; ; € {0, 1} forall i # j
indicates that the ¢-th sentence is the parent of the
j-th sentence; and 1{¢ is valid} is a special global
constraint that rules out configurations of &; ;’s that
violate parsing constraints. In our case, we specify
each sentence has one parent and that must precede
the child sentence, i.e,

Z&,j =1 &;=0(i>j). (12)
i—1

It is possible to calculate the marginal probability
of each edge p(¢;; = 1|z) for all 4, in O(n3)
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time using the inside-outside algorithm with details
explained in Appendix, which is a generalization
of the forward-backward algorithm.

Then the soft-parent or the context vector of the
j-th sentence is calculated using parsing marginals,
ie.,

n
¢; = p(&,; =1/hhy)h, (13)
=1
The original embedding is concatenated with its
context vector to form the new representation

A~

hj = [hj;Cj]. (14)

4.4 Decoder

In order to generate a response to an utterance 1,
the decoder calculates a distribution over the vo-
cabulary then sequentially predicts word wy, using
a softmax function:

[w]
pwlh) = T Pluwnlh,wo)
k=1
At
= H softmaz(M LP(h%e, cie))
k=1
h{ = h;

hi = LSTM (hi, MLP(ew,_,; ¢i))

(2
ciee = Z softmaz(hi*“W,h;)h;,
j=1

(15)
where h; is the hidden state for utterance i with
structured attention, h%ec is the hidden state of the
decoder LSTM, e,,, , is the embedding of the pre-
dicted word at decoding time stamp (k — 1), and
cgec is the attention-based context vector at decod-
ing time stamp k. Note that the context vector here
is calculated with the simple attention different
from the structured attention we described before.
W, is a matrix to learn the match degree of hgec

and ﬁj.
5 Experiments

We incorporate structured attention in VRNNSs to
explore two types of dialogue structure, semantic
structure, and interactive structure.

5.1 Semantic Structure Learning in
Two-party Dialogues
5.1.1 Datasets

We test the VRNN with Linear CRF Attention on
the SimDial dataset (Zhao and Eskenazi, 2018)

From  Utterance

SYS:  Ask me about bus information. How can I help?
USR: Hi. I need a bus.

SYS:  Where do you want to take off?

USR:  Going to Lawrance.

SYS:  What time do you need the bus?

USR:  Departure time is 9.

SYS: Bus 137 can take you there. What else can I do?
USR:  Not done yet. How long will it take?

SYS:  The ride is 45 minutes long. What else can I do?
USR:  No more questions. Thank you.

SYS:  Goodbye.

Table 1: An example two-party bus information request
dialogue in SimDial (Zhao and Eskenazi, 2018).

of simulated conversations. Dialogues are gener-
ated for information requests in four domains: bus,
restaurant, weather, and movie. Table 1 shows
an example dialogue in bus schedule request do-
main. Despite significant variations exist between
dialogues of the same domain, we aim to explore
a shared semantic structure among each dialogue
domain. We validate our algorithm on this simu-
lated dataset because these dialogues are generated
using pre-defined templates that make recovering
ground truth structures much easier. One recovered
ground truth structure with transition probabilities
is shown in Figure 1. We have 800 dialogue sam-
ples for training, 100 for validation, and 100 for
testing in each dialog domain. The length of the
dialogues ranges from 6 to 13 utterances. The max-
imum length of an utterance is 33 words.

5.1.2 Evaluation Metrics

Since the number of states is unknown during un-
supervised training, we set the state number em-
pirically to 10. Then the learned structure is es-
sentially a state transition matrix of size 10 x 10.
However, the original structure could be another
state transition matrix of any size depending on
the domain complexity. This makes the model
evaluation on the ground truth a problem because
it requires us to measure the difference between
two state transition matrices of different sizes.
To alleviate this problem, we define two metrics:
Structure Euclidean Distance (SED) and Structure
Cross-Entropy (SCE). We first estimate a proba-
bilistic mapping P, .- between the learned states
{sl,1 =1,2,..., M} and the true states {si,i =
1,2, ..., N}, through dividing the number of utter-
ances that have the ground truth state s; and learned
state s; by number of utterances with the ground
truth state s;. And we let the reversed mapping
probability PS; s, be the normalized transpose of

1894



P, 5. Then SED and SCE are defined as:
TS’a,Sb = Z Psa,SQ ' TSQ,SQ ) PS},Sb
i,5€{1,2,...M}
1
SED = Z (T4, oy — Tsusy)?
a,be{1,2,...,N}
1
SCE = v Z —10g(T%, o) Tsusys
a,be{1,2,...,N}
(16)
where T . is the learned transition probability

Sa,Sh
from state s, to state s, and T g, is the true tran-

sition probability.

5.1.3 Results and Analysis

We compare the proposed VRNN-LinearCRF
against other unsupervised methods: K-means clus-
tering, Hidden Markov Model, D-VRNN (Shi et al.,
2019) and VRNN with vanilla attention. D-VRNN
is similar to our work but without structured at-
tention. We use a bidirectional LSTM with 300
hidden units as the sentence encoder and a for-
ward LSTM for decoding. 300-dimensional word
embeddings are initialized with GloVe word em-
bedding (Pennington et al., 2014). A dropout rate
of 0.5 is adopted during training. We set the BOW-
loss weight A\ to be 0.5. The whole network is
trained with the Adam optimizer with a learning
rate of 0.001 on GTX Titan X GPUs for 60 epochs.
The training takes on average 11.2 hours to finish.

greeting
request a bus

0.93

request #from_loc
inform #from_loc

0.95

request #to_loc
inform #to_loc

0.93

request #datetime
inform #datetime

‘/0.264 $0.64 T010——

inform default inform default inform default
request #duration goodbye request #arrival
0.84 04— 097 0.16 0.78
inform duration goodbye inform arrival
0.96: . 0.95
goodbye silence goodbye

Figure 4: Learned semantic structure of SimDial bus
domain (Zhao and Eskenazi, 2018). User intents are
marked in bold. Transitions with P < 0.1 are omitted.

To evaluate the learned structure, we compare
VRNN-LinearCRF’s output in Figure 4 with the

ground truth dialogue structure in Figure 1. A di-
alogue structure learned by VRNN without struc-
tured attention is also shown in the Appendix. We
find our method generates similar structure com-
pared to ground truth in the bus domain. Figure 5
shows all models’ quantitative results. Having a
lower value in SED and SCE indicates the learned
structure is closer to the ground truth and better.
Our method with BERT, VRNN-LinearCRF-BERT
performs the best. K-means clustering performs
worse than VRNN-based models because it only
considers utterances’ surface format and ignores
the context information. Hidden Markov Model is
similar to VRNN but lacks a continuous propagat-
ing hidden state layer. VRNN-LinearCRF observes
the entire history of latent states but ignores the
redundant transitions due to the structure attention.
The model’s performance further improves when
replacing the vanilla LSTM encoder with a large
scale pre-trained encoder like BERT (Devlin et al.,
2019), as BERT provides better representations.
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Figure 5: All models’ performance in (a) Structure
Euclidean Distance (SED) and (b) Structure Cross-
Entropy (SCE) in four dialogue domains.

5.2 Interactive Structure Learning in
Multi-party Dialogues

We extend our method to learn interactive struc-
ture in multi-party dialogues. Specifically, we de-
tect each utterance’s speaker and addressee by con-
structing an utterance dependency tree.

5.2.1 Datasets

We use Ubuntu Chat Corpus (Uthus and Aha, 2013)
as the dataset to study interactive structure since
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Model BLEU1 BLEU2 BLEU3 BLEU4 | METEOR | ROUGEL
HRED 10.54 4.63 2.67 1.53 4.22 10.14
GSN No-speaker (1-iter) | 9.23 3.32 1.89 1.24 3.57 8.12
GSN No-speaker (2-iter) | 11.32 4.89 2.94 1.54 4.12 10.15
GSN No-speaker (3-iter) | 11.42 4.81 3.11 1.87 4.51 10.29
GSN W-speaker (1-iter) 10.11 3.75 1.93 1.31 3.56 9.89
GSN W-speaker (2-iter) 11.43 4.90 2.99 1.63 4.32 10.34
GSN W-speaker (3-iter) 11.52 4.93 3.23 1.91 4.77 11.21
VRNN-Dependency-Tree | 11.23 4.92 3.24 1.92 4.69 10.88

Table 2: Different methods’ experiment results on Ubuntu dataset.

From To Utterance

p1 p2 I know upgrading always got hardon
settings to new system..

3 — And the description of the settings is even
wrong

p1 p2  So these days i always clean install

P2 p1 Yeah, i think i will end up doing it

D2 p1 Do you happen to know if 12.10 install
will let me install grub2 to partition instead
of mbr without any extra tweaks?

p1 p2 I think default clean install will install

grub2 on first section of your hd
P4 p2  No

Table 3: Multi-party dialogue example in Ubuntu Chat
Corpus (Uthus and Aha, 2013).

it provides the ground-truth of speaker/addressee
information for evaluation. Though every record
of Ubuntu Chat Corpus contains clear speaker ID,
only part of the data has implicit addressee 1D,
coming as the first word in the utterance. We select
addressee ID that appeared in a limited context and
extract dialogue sessions with all utterances having
verified speaker ID and addressee ID. We extract
20k dialogues with length ranging from 7 to 8 turns.
Table 3 shows an example dialogue.

5.2.2 Results and Analysis

Considering Ubuntu Chat Corpus have a large num-
ber of technical terminologies, we use a relatively
larger vocabulary size of 30k. We use LSTMs and
BERT as the sentence embedding encoder and two
GRU (Chung et al., 2014) layers with 300 hidden
units each as the decoder. The model converges af-
ter 100 epochs on GTX Titan X GPUs. The training
procedure takes about 54 hours.

To evaluate the learned utterance dependency
tree, we compare it with the annotated speaker-
addressee relation and find 68.5% utterances are
assigned the correct parents. This is a reasonable
number because the dependency relationship does
not fully rely on the speaker/addressee informa-

tion in a chatroom. A different interlocutor could
answer others’ questions even when the questions
were not addressed to him/her. Figure 2 visualizes
the learned interactive structure from the example
in Table 3. Specifically, utterance 4 largely de-
pends on utterance 3, while utterance 6 and 7 are
answering the question from utterance 5.

We also compare the model’s generation per-
formance with Hierarchical Recurrent Encoder-
Decoder (HRED) and Graph-Structured Network
(GSN) (Hu et al., 2019). The GSN model uses the
annotated speaker/addressee information to con-
struct a dialogue graph for utterance encoding iter-
ation. However, this is not required by our VRNN-
Dependency-Tree since we generate the original di-
alogues while learning a dependency structure. For
consistent comparison with previous work, we eval-
uate all models with BLEU 1 to 4, METEOR, and
ROUGE], with the package in (Chen et al., 2015).
All results are shown in Table 2. We observe that
the proposed VRNN-Dependency-Tree model with-
out using any speaker annotation achieves similar
generation performance compared to the state-of-
the-art method, GSN with speaker annotation.

6 Conclusion

This paper proposed to inject structured attention
into variational recurrent neural network models
for unsupervised dialogue structure learning. We
explored two different structure inductive biases:
linear CRF for utterance-level semantic structure in-
duction in two-party dialogues; and non-projective
dependency tree for interactive structure learning
in multi-party dialogues. Both models are proved
to have a better structure learning performance over
the state of the art algorithms. In the future, we
will further explore how to explicitly incorporate
linguistics information, such as named entities into
the latent states.
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A Appendices

A.1 Learned Structures of SimDial
greeting
request a bus

request #from_loc
inform #from_loc

request #to_loc

inform #to_loc

request #datetime
inform #datetime

inform default inform default inform default
request #duration goodbye request #arrival
075 02— 083 o026 073

goodbye

inform duration
silence

inform arrival ]
goodbye

goodbye

ol o

Figure 6: Learned dialogue structure from VRNN with-
out structured attention in SimDial bus domain.

A.2 Inside-Outside Algorithm
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Algorithm 2: Inside-Outside for Non-projective Dependency Tree Attention

Input: potential 6;;
a,f ¢ —o0
fori=1,...,ndo
ali,i, L,1] <0
ali,i,R,1] + 0
end for
Bll,n,R,1] + 0
fork=1,...,ndo
fors=1,...n—kdo
t+—s+k
afs,t, R, 0] < @ue[st 1] als,u, R,1] @ afu+ 1,t, L, 1] ® O
afs, 1, L,0] <= @ es -1y s u, B, 1] @ afu+ 1,t, L, 1] ® bt
afs,t, R, 1] < ®u6[s+1 1l als,u, R,0] ® afu,t, R, 1]
afs,t,L,1] + @ue st1] als,u, L, 1] ® afu,t, L,0]
end for
end for
fork=n,..,1do
fors=1,...n—kdo
t+—s+k
foru=s+1,...,tdo
Bls,u, R,0] <—g Bls,t, R, 1] ® afu,t, R, 1]
Blu, t, R, 1] ¢ B[s,t, R, 1] ® a[s, u, R, 0]
end for
if s > 1 then
foru=s,....,t —1do
Bls,u, L, 1] +g B[s,t, L, 1] ® afu,t, L,0]
Blu,t, L,0] +g Bls,t, L,1] @ a[s,u, L, 1]
end for
end if
foru=s,....,t —1do
Bls,u, R, 1] g B[s,t, R, 0] @ afu+ 1,t, L, 1] ® O
Blu+ 1,t, L, 1] ¢ B[s,t, R,0] @ als,u, R, 1] ® O
end for
if s > 1 then
foru=s,....,t —1do
Bls,u, R, 1] g B[s,t, L,0] ® au+ 1,¢, L, 1] @ Oy
Blu+1,t,L,1] g Bls,t, L,0] @ a[s,u, R, 1] ® Oy
end for
end if
end for
end for
A« a[l,n, R,1]
fors=1,....,n—1do
fort=s5+1,...,ndo
pls,t] < exp(als,t, R,0] ® B[s,t, R,0] ® —A)
if s > 1 then
plt, s| «+ exp(als,t, L,0] ® B[s,t,L,0] @ —A)
end if
end for
end for

1899



