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Abstract

Multimodal summarization for open-domain
videos is an emerging task, aiming to gen-
erate a summary from multisource informa-
tion (video, audio, transcript). Despite the
success of recent multiencoder-decoder frame-
works on this task, existing methods lack fine-
grained multimodality interactions of multi-
source inputs. Besides, unlike other multi-
modal tasks, this task has longer multimodal
sequences with more redundancy and noise.
To address these two issues, we propose a
multistage fusion network with the fusion for-
get gate module, which builds upon this ap-
proach by modeling fine-grained interactions
between the multisource modalities through a
multistep fusion schema and controlling the
flow of redundant information between mul-
timodal long sequences via a forgetting mod-
ule. Experimental results on the How2 dataset
show that our proposed model achieves a new
state-of-the-art performance. Comprehensive
analysis empirically verifies the effectiveness
of our fusion schema and forgetting module on
multiple encoder-decoder architectures. Spe-
cially, when using high noise ASR transcripts
(WER>30%), our model still achieves per-
formance close to the ground-truth transcript
model, which reduces manual annotation cost.

1 Introduction

With the popularity of video platforms, personal
videos abound on the Internet. Multimodal sum-
marization for open-domain videos, first organized
as a track of the How2 Challenge at the ICML
2019 workshop, aims to integrate multisource in-
formation of videos (video, audio, transcript) into
a fluent textual summary. An example can be seen
in Figure 1. This study, which uses compressed
text description to reflect the salient parts of videos,
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is of considerable significance for helping users
better retrieve and recommend videos.

Existing approaches have obtained promising
results. For example, Libovickỳ et al. (2018) and
Palaskar et al. (2019) utilize multiple encoders to
encode videos and audio transcripts and a joint de-
coder to decode the multisource encodings, which
acquire better performance than single modality
structures. Despite the effectiveness of these ap-
proaches, they only perform multimodal fusion
during the decoding stage to generate a target se-
quence, lacking fine-grained interactions between
multisource inputs to complete the missing infor-
mation of each modality. For example, as shown
in Figure 1, text context representations contain-
ing birds should be associated with visual semantic
information containing parrots to build thorough
multimodal representations.

Besides, unlike other multimodal tasks such as
visual question answering (Antol et al., 2015; Gao
et al., 2015) and multimodal machine translation
(Elliott et al., 2015; Specia et al., 2016), a ma-
jor challenge is that this task has longer input se-
quences with more noise and redundancy. The
flow of noise information during multimodal fu-
sion, such as redundant frames in video and noisy
words in transcription, interferes with the interac-
tion and complementarity of the effective informa-
tion between modalities, which leads to a signifi-
cant negative effect on the model. Moreover, when
using an automatic speech recognition (ASR) sys-
tem to transform audio to transcription instead of
ground-truth transcription, high noise ASR-output
transcripts further reduce model performance.

To address these two issues, we propose a mul-
tistage fusion network with the fusion forget gate
module for multimodal summarization in videos.
The model involves multiple information fusion
processes to capture the correlation between multi-
source modalities spontaneously, and a fusion for-
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in this clip we 're going to file allister 's nails down with a drill . that will help smooth out the nails once again 
making it comfortable for you to hold your bird as well as comfortable for him . you do n't want any sharp 
edges on there . it just files it down . you want to use a medium speed on the drill so that you have control 
over it and it 's not going too fast . and all we 're doing with this is taking off the very tip of the nail after we 've 
trimmed it just to smooth it out . we 're not going to need to do much with it other than to make it smooth so 
it 's comfortable to hold him . the bird does not get hurt by the drill but you do want to make sure that the 
other toes are out of the way of the drill so that the drill piece is not going against their skin . once again , that 
can be difficult to do , you have to pry their toes apart to get them opened to drill them .

Video Audio Transcript

Summary

after trimming your parrot 's nails , file them with a dremel to make the nail smooth ; learn more pet parrot care in this free pet care 
video about parrots .

Audio

Figure 1: The audio transcript does not mention “parrot”, only “bird” or “allister”. The complete summary has
to be derived from multi-source. This example is taken from the How2 dataset.

get gate is proposed to effectively suppress the flow
of unnecessary multimodal noise. As illustrated
in Figure 2, our proposed multistage fusion model
mainly consists of four modules: 1) multisource en-
coders to build representations for video and audio
(ground-truth or ASR-output transcript); 2) cross
fusion block in which cross fusion generator (CFG)
and a feature-level fusion layer are designed to gen-
erate and fuse latent adaptive streams from one
modality to another at low levels of granularity; 3)
hierarchical fusion decoder (HFD) in which hier-
chical attention networks are designed to progres-
sively fuse multisource features carrying adaptive
streams from other modalities to generate a target
sequence; 4) fusion forget gate (FFG) (detailed in
Figure 3) in which a memory vector and a forget
vector are created for the information streams in
the cross fusion block to alleviate interference from
long-range redundant multimodal information.

We build our proposed model on both RNN-
based (Sutskever et al., 2014) and transformer-
based (Vaswani et al., 2017) encoder-decoder ar-
chitectures and evaluate our approach on the large-
scale public multimodal summarization dataset,
How2 (Sanabria et al., 2018). Experiments show
that our model achieves a new state-of-the-art per-
formance. Comprehensive ablation experiments
and visualization analysis demonstrate the effec-
tiveness of our multistage fusion schema and for-
getting module.

Specially, we also evaluate the model perfor-
mances under the ASR-output transcript. We use
an automatic speech recognition (ASR) system
(Google-Speech-V2) to generate audio transcripts
(word error rate>30%) to replace the ground-truth
transcripts provided by the How2 dataset. Exper-

iments show that our model still achieves perfor-
mance close to the model trained with ground-truth
transcripts, and significantly outperforms the state-
of-the-art system, which indicates the advantage of
our model in the absence of ground-truth transcript
annotation.

The extracted ASR-output transcripts and
code will be released on https://github.com/

forkarinda/MFN.

2 Related Work

Unlike conventional summarization (Rush et al.,
2015; See et al., 2017; Narayan et al., 2018), multi-
modal summarization compresses multimedia doc-
uments. According to different tasks, the input
modalities are also different, such as text+image
(Wang et al., 2012; Bian et al., 2013, 2014; Wang
et al., 2016), and video+audio+text (Evangelopou-
los et al., 2013; Li et al., 2017), which mainly focus
on extractive approaches. With the popularity of
sequence-to-sequence learning (Sutskever et al.,
2014), the use of corpora with human-written sum-
maries for multimodal abstractive summarization
has attracted interest (Li et al., 2018; Zhu et al.,
2018, 2020).

The above abstractive summarization research
mainly focuses on text and image. Sanabria et al.
(2018) first release the How2 dataset for multi-
modal abstractive summarization for open-domain
videos. The dataset provides multisource infor-
mation, including video, audio, text transcription
and human-generated summary. This task is more
challenging due to the diversity of multimodal in-
formation in the video and the complexity of the
video feature space. The task was also added to
the How2 Challenge in the 2019 ICML workshop,

https://github.com/forkarinda/MFN
https://github.com/forkarinda/MFN
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Figure 2: The structure of our full model. It is built on RNN-based and Transformer-based frameworks, respec-
tively.
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Figure 3: Detail of fusion forget gate. A memory vector
and a forgetting vector are created for the information
stream flowing through it, and then we get the product
of two vectors as the final noise-filtered representation.

which we focus on in this paper. A similar task
is video captioning (Venugopalan et al., 2015a,b),
which mainly places emphasis on the use of visual
information to generate descriptions, but this task
focuses on how to make full use of multisource
and multimodal long inputs to obtain a summary
and additionally needs ground-truth transcripts. Re-
cent methods use multiencoder-decoder RNNs to
process multisource inputs but lack the interaction
and complementarity between multisource modali-
ties and the ability to resist the flow of multimodal
noise. To handle above two challenges, our multi-
stage fusion model is introduced.

3 Multistage Fusion with Forget Gate

In this section, we will explain our model in detail.
The overall architecture of our proposed model is
shown in Figure 2, and the fusion forget gate inside
is illustrated in Figure 3. Specifically, multistage
fusion consists of the cross fusion block and hier-
archical fusion decoder, which aims to model the
correlation and complementarity between modal-
ities spontaneously. In addition, the fusion forget

gate is applied in the cross fusion block to filter
the flow of redundant information streams. We
build our model based on the RNN and transformer
encoder-decoder architectures, respectively.

3.1 Problem Definition
Our multimodal summarization system takes a
video and a ground-truth or ASR-output audio tran-
scription as input and generates a textual summary
that describes the most salient part of the video.
Formally, the transcript is a sequence of word to-
kens T = (t1, ..., tn) and the video representation
is denoted by V = (v1, ..., vm), where vm is the
feature vector extracted by a pretrained model. The
output summary is denoted as a sequence of word
tokens S = (s1, ..., sl) consisting of several sen-
tences. The task aims to predict the best summary
sequence S by finding:

argmax
θ

Prob(S|T, V ; θ) (1)

where θ is the set of trainable parameters.

3.2 Multisource Encoders
Encoding Video. The video encoding features are
obtained by a pretrained action recognition model:
a ResNeXt-101 3D convolutional neural network
(Hara et al., 2018) trained for recognizing 400 dif-
ferent human actions in the Kinetics dataset (Kay
et al., 2017).

V = 3DCNNResNeXt−101(Frames) (2)

The video representation features denoted by V =
(v1, ..., vm) are extracted every 16 nonoverlapping
frames, where vm is the 2048-dimensional vector.
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We add learnable position embeddings for video
features.
Encoding Transcript. For the RNN encoder, we
use a bidirectional GRU (Cho et al., 2014) to en-
code the text to obtain a contextualized representa-
tion for each word:

TRNN = BiGRU(t1, t2, ..., tn) (3)

For the transformer encoder, we employ an uni-
versal bidirectional transformer encoder (Vaswani
et al., 2017) in which each layer is composed of a
multihead self-attention layer followed by a feed-
forward sublayer with residual connections (He
et al., 2016) and layer normalizations (Ba et al.,
2016), and denoted by the following equation:

TTrm = BiTrm(t1, t2, ..., tn) (4)

We use learnable position embedding instead of
sinusoidal position embedding.

3.3 Cross Fusion Generator

The cross fusion generator (CFG) is used to cor-
relate meaningful elements across modalities. We
apply the CFG to generate the adaptive fusion infor-
mation from one modality encoding to another. The
CFG learns two cross-modal attention maps, one is
from text to video, and the other is from video to
text. It is inspired by parallel co-attention (Lu et al.,
2016), which computes an affinity matrix between
two sequences, while we apply two unidirectional
matrices instead of assigning shared parameters to
both directions, and use scaled dot-product atten-
tion (Vaswani et al., 2017). At each of the cross-
modal attention maps, the low-level signals from
the source modality are transformed to key and
value pairs to interact with the target modality as
a query. Following the two maps, CFG is divided
into the video-to-text fusion generator (V2TFG)
and text-to-video fusion generator (T2VFG), which
are detailed as follows:
Text-to-video Fusion Generator (T2VFG). The
T2VFG generates the most relevant video informa-
tion to low-level text features by a text-to-video
cross-modal attention map. The cross-modal atten-
tion consists of text queries QT = TWQT

, video
key and value pairs KT = VWKT

, VT = V . The
contextual video vector derived from the cross-

modal attention map is calculated by

VGen = CFGT←V (T, V )

= softmax(
QT (KT )

T

d
)VT

= softmax(
TWQT

(VWKT
)T

d
)V

= softmax(
TWQT

(WKT
)TV T

d
)V

= softmax(
TWαV

T

d
)V

(5)

where the common spatial parameter Wα is used
to simplify the calculations.
Video-to-Text Fusion Generator (V2TFG). Sim-
ilar to the T2VFG, the V2TFG aims to generate the
latent adaptive text information stream for video
modality. The difference between the V2TFG and
T2VFG is that they flow in opposite directions. We
transform the low-level video features to queries
QV = VWQV

and the text to key and value pairs
KV = TWKV

, VV = T , then calculate:

TGen = CFGV←T (T, V )

= softmax(
VWβT

T

d
)T

(6)

where Wβ is a mapping of text flowing to video.

3.4 Fusion Forget Gate
Although the CFG builds an unsupervised low-
level signal alignment between original multi-
source features, noise modality information gen-
erated by CFG is hard to be suppressed. In par-
ticular, when the whole modality cannot guide the
task at all, the forced normalization of the softmax
function in the attention structure makes the calcu-
lated fusion vector generated by the noise modality
hard to be suppressed. For this reason, we pro-
pose a fusion forget gate (FFG) to filter low-level
cross-modal adaptation information of each modal-
ity generated by the CFG.

The FFG reads the original modal signals as
well as the adaptation information derived from
other modalities, and determines whether the adap-
tation information is noise and matches the original
modality. As shown in Figure 3, we assign a video
FFG and a text FFG to receive bidirectional adap-
tion information that originated from the CFG.

Specifically, it creates a memory vector and a
forget gate to control the flow of noise and mis-
matched information. First, we project the con-
nected source and target modality embeddings and
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activate them with a sigmoid function to obtain a
forget vector:

ForgetV (VGen, T ) = σ([T ;VGen]WV +bV ) (7)

ForgetT (TGen, V ) = σ([V ;TGen]WT+bT ) (8)

Then the adaptation information passes a linear
mapping to obtain a memory vector, which pre-
vents essential information from being weighted
down due to the scaling limit of the sigmoid func-
tion ranging from 0 to 1. We apply the dot-product
to the memory vector and the forget vector to rep-
resent the cross-modal adaptive stream after FFG
filtering, which is finally calculated as follows:

T ′Gen = FFGT (TGen, V ) =

MemoryT (TGen)� ForgetT (TGen, V )

= (TGenW1 + b1)� ForgetT (TGen, V )

(9)

V ′Gen = FFGV (VGen, T ) =

MemoryV (VGen)� ForgetV (VGen, T )
= (VGenW2 + b2)� ForgetV (VGen, T )

(10)

where � represents elementwise dot production
and WV ,WT ,W1,W2, bV , bT , b1 and b2 are train-
able parameters.

3.5 Feature-Level Fusion

This module combines the low-level signal T/V
of the original modality with the matching adap-
tive stream V ′/T ′ of other modalities. The fusion
vector flowing through CFG and FFG has the same
sequence length as the original modality so that we
apply a concat&forward layer with a ReLU activa-
tion function. In addition, we specially add a resid-
ual connection inside the fusion layer to deepen the
neural network’s memory of the original modality.
The calculation formulas are below:

TF = Relu(T + [T ;V ′Gen]W1 + b1) (11)

VF = Relu(V + [V ;T ′Gen])W2 + b2) (12)

where W1,W2, b1, b2 are trainable parameters.

3.6 Hierarchical Fusion Decoder

The HFD receives multimodal information of dif-
ferent granularity from multisource inputs and gen-
erates a target sequence. Inspired by hierarchical

attention (Libovickỳ and Helcl, 2017), HFD trans-
forms the decoder hidden states and multisource
encodings into a context vector by three attention
maps: video attention, text attention, and attention
over multimodal attention (AoMA). At each decod-
ing time step t, the decoder hidden state ht attends
to video/text encodings VF /TF carrying aligned
multimodal information separately via video/text
attention to calculate the video/text context vector:

CV = Attn(ht, VF ) (13)

CT = Attn(ht, TF ) (14)

Then, a second attention mechanism is constructed
over the two context vectors, and a higher-level
context vector is computed. We concatenate the
two contexts and apply a new MLP attention:

Cc =AoMA(ht, CV , CT )

=softmax(W1 tanh(W2ht+

W3[CV ;VT ])) · [CV ;VT ]
(15)

The context vector of hierarchical multimodal fu-
sion is finally obtained and combined with the de-
coder hidden state vector to compute an output for
attending the next decoder layer or caculating the
vocabulary distribution.

yt+1 = DecoderRNN/Trm(xt, ht, Cc) (16)

Corresponding to the two encoders introduced in
section 3.2, we design RNN-based and transformer-
based decoding strategies. The formula expression
and model diagram of the two structures are de-
tailed in Appendix A.1.

4 Experimental Setup

4.1 How2 Dataset
We evaluate our method on the How2 dataset
(Sanabria et al., 2018). The How2 dataset is a
large-scale dataset of open-domain videos, span-
ning different topics, such as cooking, sports, in-
door/outdoor activities, and music. It consists of
79,114 how-to instructional videos with an average
length of 1.5 minutes and a total of 2,000 hours,
accompanied by corresponding ground-truth En-
glish transcripts with an average length of 291
words, crowdsourced Portuguese translations of
transcripts and user-generated summaries with an
average length of 33 words. The statistics are
shown in Figure 4 and Table 1.
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Figure 4: LDA topic distributions of the How2 dataset.

train val test

Videos 73,993 2,965 2,156
Hours 1,766.6 71.3 51.7

Table 1: Statistics of How2 dataset.

4.2 Audio Recognition

We also extract audio transcripts by a speech recog-
nition system (Google-Speech-V2). The word error
rate (WER) of the speech-recognition output on the
How2 test data is 32.9%.

4.3 Baseline Models

We compare our model with the following baseline
models of single or multiple modalities:

S2S (Luong et al., 2015): a standard sequence-
to-sequence architecture using an RNN encoder-
decoder with a global attention mechanism.

PG (See et al., 2017): a commonly used encoder-
decoder summarization model with attention (Bah-
danau et al., 2015), which combines copying words
from source documents and outputting words from
a vocabulary.

FT: a strong baseline that applies a transformer-
based encoder-decoder model to a flat sequence.

VideoRNN (Palaskar et al., 2019): a baseline of
the video-only model implemented on the How2
dataset.

MT (Zhou et al., 2018): a transformer-based
encoder-decoder architecture receiving sequence
features of video for end-to-end dense video cap-
tions.

HA (RNN/Transformer) (Palaskar et al., 2019):
a multisource sequence-to-sequence model with a
hierarchical attention approach to combine textual
and visual modalities, which is currently the state-
of-the-art method for the multimodal summariza-
tion task on the How2 dataset.

4.4 Implement Details
For the RNN-based models, we uniformly use a
2-layer GRU with 128-dimensional word embed-
dings and 256-dimensional hidden states for each
direction. We truncate the maximum text sequence
length to 600.

For the transformer-based models, we uniformly
use a 4-layer transformer of 512 dimensions with
8 heads. We truncate the maximum text sequence
length to 800, and the maximum video sequence
length to 1024.

For both the two architectures, we use the cross-
entropy loss and Adam optimizer (Kingma and Ba,
2015). The initial learning rate is set to 1.5e−4. All
trainable parameters are randomly initialized with
the Kaiming initialization (He et al., 2015). The
training of the proposed models are conducted on
{1, 2} GeForce RTX 2080 Ti GPUs for 50 epochs
with a batch size of {4, 16}. During decoding for
prediction, we use beam search with a beam size
of 6 and a length penalty with α = 1 (Wu et al.,
2016).

For a fair comparison, following Palaskar
et al. (2019), all the methods take the same
2048-dimensional video features extracted from
a ResNeXt-101 3D convolutional neural network
(Hara et al., 2018) as input; the vocabulary is built
based on the How2 data, and do not use pre-trained
word embeddings.

5 Results and Analysis

5.1 Model Performance
We adopt multiple automatic metrics to compre-
hensively evaluate model performance: BLEU
(1,2,3,4) (Papineni et al., 2002), ROUGE (1,2,L)
(Lin, 2004), METEOR (Banerjee and Lavie, 2005)
and CIDEr (Vedantam et al., 2015). Table 2 shows
the results for different models on the How2 dataset.
Table 3 shows the model performances of using
automatic transcripts obtained from a speech recog-
nition system instead of ground-truth transcripts
provided by the dataset. The results show that our
proposed model achieves the state-of-the-art per-
formance in each evaluation metric on both the
RNN-based and transformer-based models. It can
also be seen that the performances of the pure video
modality models are modest because of the frozen
video features extracted from a task-independent
pretraining model.

In particular, Table 3 shows that when the perfor-
mances of all the prior models trained with ASR-
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Modality Method B-1 B-2 B-3 B-4 R-1 R-2 R-L M C

Ground-truth transcript S2S 0.552 0.456 0.399 0.358 0.586 0.406 0.538 0.276 2.349
PG 0.553 0.456 0.398 0.357 0.572 0.395 0.528 0.268 2.134
FT 0.566 0.467 0.408 0.366 0.590 0.410 0.543 0.277 2.296

Video VideoRNN 0.441 0.329 0.269 0.227 0.465 0.262 0.415 0.199 1.149
MT 0.496 0.384 0.329 0.274 0.519 0.320 0.468 0.229 1.461

Ground-truth transcript+Video HA (RNN) 0.572 0.477 0.418 0.375 0.603 0.425 0.557 0.288 2.476
HA (Trm) 0.586 0.483 0.433 0.381 0.602 0.431 0.559 0.289 2.512
Proposed (RNN) 0.591 0.504 0.451 0.411 0.623 0.461 0.582 0.301 2.690
Proposed (Trm) 0.600 0.509 0.453 0.413 0.616 0.451 0.574 0.299 2.671

Table 2: Results on the How2 test set. The proposed approach achieves better performance in each evaluation
metric with p < 0.01 under t-test. B: BLEU; R: ROUGE; M: METEOR; C: CIDEr.

Modality Method B-1 B-2 B-3 B-4 R-1 R-2 R-L M C

ASR-output transcript S2S 0.467 0.351 0.287 0.242 (↓0.116) 0.481 0.282 0.434 (↓0.104) 0.214 1.319
FT 0.498 0.384 0.320 0.276 (↓0.090) 0.511 0.310 0.458 (↓0.085) 0.228 1.551

ASR-output transcript+Video HA (RNN) 0.517 0.408 0.345 0.301 (↓0.074) 0.539 0.342 0.487 (↓0.070) 0.246 1.729
HA (Trm) 0.531 0.425 0.364 0.321 (↓0.060) 0.551 0.360 0.501 (↓0.058) 0.255 1.918
Proposed (RNN) 0.570 0.482 0.425 0.384 (↓0.027) 0.600 0.436 0.561 (↓0.021) 0.285 2.447
Proposed (Trm) 0.578 0.482 0.428 0.390 (↓0.023) 0.593 0.421 0.550 (↓0.024) 0.282 2.346

Table 3: Results on the How2 test set. The ASR-output transcripts is used to replace the provided ground-truth tran-
scripts. The down arrow (↓) indicates the performance degradation when using ASR-output transcript to replace
ground-truth transcript under the same model.

Archiecture No. Method B-1 B-2 B-3 B-4 R-1 R-2 R-L M C

RNN 1a T2VF 0.549 0.448 0.389 0.347 0.572 0.389 0.523 0.265 2.119
2a T2VF+FFG 0.573 0.484 0.428 0.388 0.610 0.439 0.564 0.288 2.442
3a V2TF 0.570 0.482 0.429 0.390 0.599 0.436 0.560 0.283 2.416
4a V2TF+FFG 0.573 0.485 0.432 0.393 0.603 0.442 0.563 0.285 2.458
5a T2VF+V2TF+HFD 0.571 0.481 0.427 0.387 0.601 0.435 0.560 0.282 2.426
6a T2VF+V2TF+HFD+FFG (full) 0.591 0.504 0.451 0.411 0.623 0.461 0.582 0.301 2.690

Transformer 1b T2VF 0.587 0.492 0.436 0.395 0.606 0.436 0.563 0.291 2.538
2b T2VF+FFG 0.593 0.501 0.446 0.407 0.612 0.448 0.571 0.293 2.63
3b V2TF 0.577 0.477 0.418 0.379 0.596 0.418 0.552 0.284 2.439
4b V2TF+FFG 0.579 0.481 0.422 0.381 0.598 0.421 0.554 0.285 2.456
5b T2VF+V2TF+HFD 0.592 0.497 0.440 0.398 0.606 0.437 0.562 0.290 2.591
6b T2VF+V2TF+HFD+FFG (full) 0.600 0.509 0.453 0.413 0.616 0.451 0.574 0.299 2.671

Table 4: Ablation analysis on the How2 test set. T2VF: transcript-to-video fusion; V2TF: video-to-transcript
fusion; HFD: hierarchical fusion decoder; FFG: fusion forget gate.

No. Method (On RNN) B-4 R-L

1 T2VF 0.301 0.483
2 T2VF+FFG 0.370 0.547
3 V2TF 0.353 0.528
4 V2TF+FFG 0.362 0.534
5 T2VF+V2TF+HFD 0.347 0.525
6 T2VF+V2TF+HFD+FFG (full) 0.384 0.561

Table 5: Ablation analysis on RNN-based models. The
ASR-output transcripts is used to replace the provided
ground-truth transcripts.

Full Model setting B-4 R-L

RNN 2-layers 0.411 0.582
+ FFG on HFD (2-layers) 0.405 0.574

3-layers 0.410 0.582

Trm 4-layers 0.413 0.574
+ FFG on HFD (4-layers) 0.410 0.571

6-layers 0.410 0.574

Table 6: Ablation analysis on the How2 test set.
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ASR-output Transcript:  first thing you have to do is attach the thread to the hook . what do you want to do as security . i 
suggest . lacrosse and fatherhood . and then wrap . backwards that way . just enough to catch . that . standing . piece of the . 
trader . therefore raps is usually good . and then . you can just depends on what you doing you can leave it hanging out you can 
clip it off close there . but you're now . my thread is not good . come loose . some radio star attachment other materials . 
sometimes you can go in wrap it all the way back . no just make sure you get it on there secure . rabbits back the other way . 
and then start retiring or if you want to start . start time back here grab it back and keep it back . but the trick is a just make 
those first couple of laps trap that . then go back this way few times . and then either continue back to the back of the head . 
turn up to the front . and um . the . gives a good song . foundation to start time

Summary:  watch and learn how to tie thread to a hook to help with fly tying as explained by out expert in this free how-to 
video on fly tying tips and techniques .

Ground-truth Transcript:   alvin dedeux : first thing you have to do is attach the thread to the hook , and what you want to do 
is secure it . i usually just lay it across in front of the hook and then wrap backwards that way just enough to catch that 
standing piece of the thread there . three or four wraps is usually good and then you can just , depending on what you 're 
doing , you can leave it hanging or you could clip it off close there . but now , my thread is not going to come loose so i 'm 
ready to start attaching my other materials . sometimes you can go ahead and wrap it all the way back , just make sure you got 
it on there secure , wrap it back the other way and then start your tying . or if you want to start tying back here , you 'd wrap it 
back here and keep it back here . but the trick is to just make those first couple of wraps , trap that thread and then go back 
this way a few times . and then either continue back to the back of the hook or up to the front . and that gives you a good solid 
foundation to start tying your fly .

Figure 5: A example taken from How2 test set. For the extracted ASR-output transcripts, we use the period “.” as
the separator of the automatically segmented audio clips.

output transcripts drop sharply due to the high er-
ror rate (WER = 32.9%) of speech recognition,
our model still has good performance close to the
models trained with ground-truth transcripts. In
using ASR-output transcripts, our framework out-
performs the HA 8.3 BLEU-4 points, 7.4 ROUGE-
L points, 3.9 METEOR points, and 71.8 CIDEr
points on the RNN-based architecture, and 6.9
BLEU-4 points, 4.9 ROUGE-L points, 2.7 ME-
TEOR points, and 42.8 CIDEr points on the
transformer-based architecture, which fully shows
the effectiveness of our approach.

5.2 Ablations

The purpose of this study is to examine the role
of the proposed multistage fusion and fusion for-
get gate (FFG). We divide the fusion process into
transcript-to-video-fusion (T2VF) and video-to-
transcript fusion (V2TF) in the cross fusion block,
the following FFG, and the final HFD, and retrain
our approach by ablating one or more of them.
• We retrain only T2VF and only V2TF and

replace HFD with a standard decoder to handle
single-source multimodal encodings.
•We add the FFG to the above T2VF and V2TF

models separately.
•We retain T2VF, V2TF, HFD, and remove all

the FFG of the full model.
Table 4 lists the results on the How2 dataset. We

can observe that: 1) except that the V2TF’s per-

formance is weaker than the single-text modality
on RNN {1a}, the performances of all the V2TF
and T2VF models {3a, 1b, 3b} exceed the perfor-
mances of the single-modality models. 2) Com-
pared with using only V2TF or T2VF, using V2TF
and T2VF together with HFD {5a, 5b} further im-
proves the model effect. 3) When FFG is added,
the performances of all the fusion structures im-
prove, which is particularly evident in the RNN-
based models. 4) Only one-way fusion structures
with FFG {2a,4a,2b,4b} can achieve comparable
and even better performance compared to the HA.
These results demonstrate the effectiveness of the
multistage fusion and inside FFG.

Table 5 lists the results of using the ASR-output
transcript instead of the provided ground-truth tran-
script. The observation results are similar to those
observed in Table 4. In particular, we can see a
greater increase in the performance of the FFG
when using high noise ASR-output trancript com-
pared to using the ground-truth transcript. This
further verifies the ability of FFG to the resist the
flow of multimodal noise.

Additionally, we also evaluate 1) the effect of
model depth and 2) the effect of FFG on HFD.
We deepen the model depth, and apply FFG to
the multimodal context representation generated
by the AoMA in HFD. The results in Table 6 indi-
cate that the two measures do not improve model
performance.



1842

Modality Method R-L Output

- Reference -
watch and learn how to tie thread to a hook to help with fly tying as explained by out expert in
this free how-to video on fly tying tips and techniques .

Ground-truth transcript FT 0.543
learn about attaching the thread in fly tying and other fly fishing tips in this free how-to video on
fly tying tips and techniques .

Video MT 0.468
learn how to attach a backing tail to fly fishing backing in this free how-to video on fly tying and
techniques .

Ground-truth transcript+Video HA (RNN) 0.557
learn from our expert how to attach a hook to fly tying in this free how-to video on fly tying tips
and techniques .

HA (Trm) 0.559
learn about using a bobbin in fly tying from our expert in this free how-to video on techniques for
and making fly tying nymphs .

Proposed (RNN) 0.582 watch and learn from an expert how to attach the thread to fly tying in this free how-to video on
fly tying tips and techniques .

Proposed (Trm) 0.574
learn some great tips on attaching the thread to the fly fishing in this free how-to video on fly tying
tips and techniques .

ASR-output transcript+Video HA (RNN) 0.487
tying a knot for fly fishing is easy with these tips , get expert advice on woodworking in this free
video .

HA (Trm) 0.501
tying a knot onto a knot , make sure the snap is secure and connected to the hoop knot . attach a
french braid to a knot with tips from an experienced handyman in this free video on fly tying .

Proposed (RNN) 0.561 watch and learn from our expert on fly fishing tips in this free how-to video on fly tying tips and
techniques .

Proposed (Trm) 0.550
learn how to use a wrapped knot to wrap a fly fishing knot in this free how-to video on fly tying
tips and techniques .

Table 7: Example outputs from different models.

in this clip we 're going to file allister 's nails down with a drill . that will 
help smooth out the nails once again making it comfortable for ...

Figure 6: A visualization of FFG and attention in CFG.

5.3 Qualitative Analysis

We provide some example outputs from trained
models. The example is taken from the How2 test
set, and we show its ground-truth transcript and the
extracted ASR-output transcript in Figure 5. Table
7 lists the generated results. We can observe that:
1) compared to single-modality models, the multi-
modality models can generate more accurate and
fluent contents. 2) In using ground-truth transcript,
both HA and our proposed model generate accu-
rate and fluent summaries. 3) In using ASR-output
transcripts, our proposed model still generates a
relatively accurate summary while the content gen-
erated by HA is not accurate enough, which intu-
itively illustrates the advantage of our model in the
absence of ground-truth transcripts.

To better understand what our model has learned,
we take the sample shown in Figure 1 to visualize
the FFG and cross-attention in CFG. We sum the
FFG weights and use the color depth of the word
to represent the intensity of the FFG of controlling

the flow of video to text, and demonstrate the in-
teraction between video and text by displaying the
video frame with the highest transcript-to-video
attention when generating adaptive video streams.
As shown in Figure 6, in the input segment, we can
observe the following: 1) For some words related
to the summary such as “file”, “nails”, the FFG
retains video streams for it, in contrast, for words
such as “once again”, the FFG forgets most of the
video information. 2) For the words that FFG re-
members deeply, the corresponding video frame
has a certain correlation with it, for example, “file
allister’s nails” point to a close-up of manicuring
the parrot’s nails.

6 Conclusions

We introduce a multistage fusion network with fu-
sion forget gate for generating text summaries for
the open-domain videos. We propose a multistep
fusion schema to model fine-grained interactions
between multisource modalities and a fusion for-
get gate module to handle the flow of multimodal
noise of multisource long sequences. Experiments
on the How2 dataset show the effectiveness of the
proposed models. Furthermore, when using high
noise speech recognition transcription, our model
still achieves the effect of being close to the ground-
truth transcription model, which reduces the man-
ual annotation cost of transcripts.
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A Appendices

A.1 Hierarchical Fusion Decoder

In this section, The formula expression and model
diagram of RNN-based and Transformer-based de-
coder are illustrated. The structures are shown in
Figure 7.

RNN-based HFD. At each decoding time step,
an unidirectional GRU receives the target token
embeddings xt and previous hidden state ht−1 to
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RNN

Linear&Softmax

......

Visual Attention Textual Attention 

AoMA

Feed-Forward

Linear&Softmax

Masked Self-Attention

......

Visual Attention Textual Attention 

AoMA

Figure 7: Transformer-based decoder is above, and
RNN-based decoder is below.

compute a new hidden state ht, which is defined as:

ht = GRU(xt, ht−1) (17)

The context vectors of each modality are firstly
calculated by:

CV = AttnMLP (ht, VF ) (18)

CT = AttnMLP (ht, TF ) (19)

We adopt an MLP attention for RNN-based
methods. Then the second attention AoMA over
the video context vectors CV and text context vec-
tors CT are implemented as:

Cc =AoMA(ht, CV , CT )

=softmax(W1 tanh(W2ht+

W3[CV ;VT ])) · [CV ;VT ]
(20)

The context vector CC of multimodal fusion and
the decoder state ht are merged to get the output
state yt+1:

yt+1 = tanh(W [ht;CC ] + b) (21)

where W1,W2,W3,W and b are trainable parame-
ters.

Transformer-based HFD. Transformer-based
HFD has a similar strategy as RNN-based. We
mainly introduce how it absorbs multimodal infor-
mation. It firstly receives target token embeddings
xt through the masked multi-head self-attention
and residual connection to obtain the hidden state
vector ht, denoted as:

ht =MHAmasked(xt) (22)

Then ht is transformed into a query, separately
attends to a set of key and value pairs mapped by
previous encodings of each modality by the multi-
head encoder-decoder attention, denoted as:

CV =MHA(ht, VF ) (23)

CT =MHA(ht, TF ) (24)

Similarly, the generated multimodal context vectors
are fused by AoMA:

Cc = AoMA(ht, CV , CT ) (25)

The final output state reaches through the feed-
forward and add&norm layer like the general trans-
former, calculated as the following equation:

yt+1 =W2ReLu(W1(Cc+ht)+b1)+b2+Cc+ht
(26)

where W1,W2, b1 and b2 are trainable parameters.

A.2 Evalution Metrics
We use the nmtpytorch evaluation library https:

//github.com/lium-lst/nmtpytorch suggested
by the How2 Challenge, which includes BLEU (1,
2, 3, 4), ROUGE-L, METEOR, and CIDEr eval-
uation metrics. As an alternative, nlg-eval https:
//github.com/Maluuba/nlg-eval can obtain the
same evaluation score as nmtpytorch.

In addition, we also use a ROUGE
evaluation library https://github.com/

neural-dialogue-metrics/rouge, which
supports the evaluation of ROUGE series metrics
(ROUGE-N, ROUGE-L and ROUGE-W).

A.3 Data
The extracted ASR-output transcript data is avail-
able on https://github.com/forkarinda/MFN.

https://github.com/lium-lst/nmtpytorch
https://github.com/lium-lst/nmtpytorch
https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval
https://github.com/neural-dialogue-metrics/rouge
https://github.com/neural-dialogue-metrics/rouge
https://github.com/forkarinda/MFN

