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Abstract

The human language can be expressed through
multiple sources of information known as
modalities, including tones of voice, facial ges-
tures, and spoken language. Recent multi-
modal learning with strong performances on
human-centric tasks such as sentiment analy-
sis and emotion recognition are often black-
box, with very limited interpretability. In
this paper we propose Multimodal Routing,
which dynamically adjusts weights between in-
put modalities and output representations dif-
ferently for each input sample. Multimodal
routing can identify relative importance of
both individual modalities and cross-modality
features. Moreover, the weight assignment
by routing allows us to interpret modality-
prediction relationships not only globally (i.e.
general trends over the whole dataset), but also
locally for each single input sample, mean-
while keeping competitive performance com-
pared to state-of-the-art methods.

1 Introduction

The human language contains multimodal cues, in-
cluding textual (e.g., spoken or written words), vi-
sual (e.g., body gestures), and acoustic (e.g., voice
tones) modalities. It acts as a medium for human
communication and has been advanced in areas
spanning affect recognition (Busso et al., 2008),
media description (Lin et al., 2014), and multi-
media information retrieval (Abu-El-Haija et al.,
2016). Modeling multimodal sources requires to
understand the relative importance of not only each
single modality (defined as unimodal explanatory
features) but also the interactions (defined as bi-
modal or trimodal explanatory features) (Büchel
et al., 1998). Recent work (Liu et al., 2018;
Williams et al., 2018; Ortega et al., 2019) proposed
methods to fuse information across modalities and

∗ indicates equal contribution. Code is avail-
able at https://github.com/martinmamql/
multimodal_routing.

yielded superior performance, but these models are
often black-box with very limited interpretability.

Figure 1: An example of Multimodal Routing, where
the weights between visual, textual, and visual-textual
explanatory features and concepts of emotions (happy
and sad) are dynamically adjusted given every input
sample. The model associates vision and v-t features to
sad concept in the left sample, and v-t and text features
to happy concept in the right example, showing local
weights interpretation upon different input features.

Interpretability matters. It allows us to identify
crucial explanatory features for predictions. Such
interpretability knowledge could be used to pro-
vide insights into multimodal learning, improve
the model design, or debug a dataset. This iner-
pretability is useful at two levels: the global and
the local level. The global interpretation reflects
the general (averaged) trends of explanatory fea-
ture importance over the whole dataset. The local
interpretation is arguably harder but can give a high-
resolution insight of feature importance specifically
depending on each individual samples during train-
ing and inference. These two levels of interpretabil-
ity should provide us an understanding of unimodal,
bimodal and trimodal explanatory features.

https://github.com/martinmamql/multimodal_routing
https://github.com/martinmamql/multimodal_routing
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Figure 2: Overview of Multimodal Routing, which contains encoding, routing, and prediction stages. We consider
only two input modalities in this example. The encoding stage computes unimodal and bimodal explanatory
features with the inputs from different modalities. The routing stage iteratively performs concepts update and
routing adjustment. The prediction stage decodes the concepts to the model’s prediction. The routing associates
the text and the visual-text features with negative sentiment in the left example, and the vision and the visual-text
features with positive sentiment in the right example before making predictions.

In this paper we address both local and global
interpretability of unimodal, bimodal and trimodal
explanatory featuress by presenting Multimodal
Routing. In human multimodal language, such rout-
ing dynamically changes weights between modali-
ties and output labels for each sample as shown
in Fig. 1. The most significant contribution of
Multimodal Routing is its ability to establish local
weights dynamically for each input sample between
modality features and the labels during training and
inference, thus providing local interpretation for
each sample.

Our experiments focus on two tasks of sentiment
analysis and emotion recognition tasks using two
benchmark multimodal language datasets, IEMO-
CAP (Busso et al., 2008) and CMU-MOSEI (Zadeh
et al., 2018). We first study how our model com-
pares with the state-of-the-art methods on these
tasks. More importantly we provide local inter-
pretation by qualitatively analyzing adjusted local
weights for each sample. Then we also analyze the
global interpretation using statistical techniques
to reveal crucial features for prediction on aver-
age. Such interpretation of different resolutions
strengthens our understanding of multimodal lan-
guage learning.

2 Related Work

Multimodal language learning is based on the fact
that human integrates multiple sources such as
acoustic, textual, and visual information to learn
language (McGurk and MacDonald, 1976; Ngiam
et al., 2011; Baltrušaitis et al., 2018). Recent ad-

vances in modeling multimodal language using
deep neural networks are not interpretable (Wang
et al., 2019; Tsai et al., 2019a). Linear method like
the Generalized Additive Models (GAMs) (Hastie,
2017) do not offer local interpretability. Even
though we could use post hoc (interpret predic-
tions given an arbitrary model) methods such as
LIME (Ribeiro et al., 2016), SHAP (Lundberg and
Lee, 2017), and L2X (Chen et al., 2018) to inter-
pret these black-box models, these interpretation
methods are designed to detect the contributions
only from unimodal features but not bimodal or
trimodal explanatory features. It is shown that in
human communication, modality interactions are
more important than individual modalities (Engle,
1998).

Two recent methods, Graph-MFN (Zadeh
et al., 2018) and Multimodal Factorized Model
(MFM) (Tsai et al., 2019b), attempted to interpret
relationships between modality interactions and
learning for human language. Nonetheless, Graph-
MFN did not separate the contributions among uni-
modal and multimodal explanatory features, and
MFM only provided the analysis on trimodal inter-
action feature. Both of them cannot interpret how
both single modality and modality interactions con-
tribute to final prediction at the same time.

Our method is inspired and related to Capsule
Networks (Sabour et al., 2017; Hinton et al., 2018),
which performs routing between layers of capsules.
Each capsule is a group of neurons that encapsu-
lates spatial information as well as the probability
of an object being present. On the other hand,
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our method performs routing between multimodal
features (i.e., unimodal, bimodal, and trimodal ex-
planatory features) and concepts of the model’s
decision.

3 Method

The proposed Multimodal Routing contains three
stages shown in Fig. 2: encoding, routing, and
prediction. The encoding stage encodes raw in-
puts (speech, text, and visual data) to unimodal,
bimodal, and trimodal features. The routing stage
contains a routing mechanism (Sabour et al., 2017;
Hinton et al., 2018), which 1) updates some hid-
den representations and 2) adjusts local weights
between each feature and each hidden represen-
tation by pairwise similarity. Following previous
work (Mao et al., 2019), we call the hidden rep-
resentations “concepts”, and each of them is as-
sociated to specific a prediction label (in our case
sentiment or an emotion). Finally, the prediction
stage takes the inferred concepts to perform model
prediction.

3.1 Multimodal Routing

We use v(isual), a(coustic), and t(ext) to denote the
three commonly considered modalities in human
multimodal language. Let x = {xa, xv, xt} repre-
sent the multimodal input. xa ∈ RTa×da is an au-
dio stream with time length Ta and feature dimen-
sion da (at each time step). Similarly, xv ∈ RTv×dv

is the visual stream and xt ∈ RTt×dt is the text
stream. In our paper, we consider multiclass or
multilabel prediction tasks for the multimodal lan-
guage modeling, in which we use y ∈ RJ to denote
the ground truth label with J being the number of
classes or labels, and ŷ to represent the model’s
prediction. Our goal is to find the relative impor-
tance of the contributions from unimodal (e.g., xa
itself), bimodal (e.g., the interaction between xa
and xv), and trimodal features (e.g., the interaction
between xa, xv, and xt) to the model prediction ŷ.

Encoding Stage. The encoding stage encodes mul-
timodal inputs {xa, xv, xt} into explanatory fea-
tures. We use fi ∈ Rdf to denote the features with
i ∈ {a, v, t} being unimodal, i ∈ {av, vt, ta} be-
ing bimodal, and i ∈ {avt} being trimodal interac-
tions. df is the dimension of the feature. To be spe-
cific, fa = Fa(xa; θ), fav = Fav(xa, xv; θ), and
favt = Favt(xa, xv, xt; θ) with θ as the parameters
of the encoding functions and F as the encoding
functions. Multimodal Transformer (MulT) (Tsai

et al., 2019a) is adopted as the design of the en-
coding functions Fi. Here the trimodal function
Favt encodes sequences from three modalities into
a unified representation, Fav encodes acoustic and
visual modalities, and Fa encodes acoustic input.
Next, pi ∈ [0, 1] is a scalar representing how each
feature fi is activated in the model. Similar to fi,
we also use MulT to encode pi from the input xi.
That is, pa = Pa(xa; θ

′), pav = Pav(xa, xv, θ
′),

and pavt = Pavt(xa, xv, xt, θ
′) with θ′ as the pa-

rameters of MulT and Pi as corresponding encod-
ing functions (details in the Supplementary).

Routing Stage. The goal of routing is to infer in-
terpretable hidden representations (termed here as
“concepts”) for each output label. The first step
of routing is to initialize the concepts with equal
weights, where all explanatory features are as im-
portant. Then the core part of routing is an iterative
process which will enforce for each explanatory
feature to be assigned to only one output repre-
sentations (a.k.a the “concepts”; in reality it is a
soft assignment) that shows high similarity with a
concept. Formally each concept cj ∈ Rdc is repre-
sented as a one-dimensional vector of dimension
dc. Linear weights rij , which we term routing co-
efficient, are defined between each concept cj and
explanatory factor fi.

The first half of routing, which we call routing
adjustment, is about finding new assignment (i.e.
the routing coefficients) between the input features
and the newly learned concepts by taking a soft-
max of the dot product over all concepts, thus only
the features showing high similarity of a concept
(sentiment or an emotion in our case) will be as-
signed close to 1, instead of having all features
assigned to all concepts. This will help local in-
terpretability because we can always distinguish
important explanatory features from non-important
ones. The second half of routing, which we call
concept update, is to update concepts by linearly
aggregating the new input features weighted by the
routing coefficients, so that it is local to each input
samples.

- Routing adjustment. We define the routing coef-
ficient rij ∈ [0, 1] by measuring the similarity 1

1We use dot-product as the similarity measurement as
in prior work (Sabour et al., 2017). Note that routing only
changes rij , not Wij . Another choice can be the probability
of a fit under a Gaussian distribution (Hinton et al., 2018).
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Procedure 1 Multimodal Routing

1: procedure ROUTING({fi}, {pi}, {Wij})
2: Concepts are initialized with uniform weights
3: for t iterations do

/* Routing Adjustment */
4: for all feature i and concept j: sij ← (fiWij)

>cj
5: for all feature i: rij ← exp

(
sij
)
/
∑

j′ exp
(
sij′
)

/* Concepts Update */
6: for all concept j: cj ←

∑
i pirij(fiWij)

return {cj}

between fiWij and cj :

rij =
exp(〈fiWij , cj〉)∑
j′ exp(

〈
fiWij′ , cj′

〉 (1)

We note that rij is normalized over all concepts cj .
Hence, it is a coefficient which takes high value
only when fi is in agreement with cj but not with
cj′ , where j′ 6= j.
- Concept update. After obtaining pi from encod-
ing stage, we update concepts cj using weighted
average as follows: updates the concepts based on
the routing weights by summing input features fi
projected by weight matrix Wij to the space of the
jth concept

cj =
∑
i

pirij(fiWij) (2)

cj is now essentially a linear aggregation from
(fiWij) with weights pirij .

We summarize the routing procedure in Proce-
dure 1, which returns concepts (cj) given explana-
tory features (fi), local weights (Wij) and pi. First,
we initialize the concepts with uniform weights.
Then, we iteratively perform adjustment on routing
coefficients (rij) and concept updates. Finally, we
return the updated concepts.

Prediction Stage. The prediction stage takes the
inferred concepts to make predictions ŷ. Here, we
apply linear transformations to concept cj to obtain
the logits. Specifically, the jth logit is formulated
as

logitj = o>j cj

=
∑
i

pirijo
>
j (fiWij)

(3)

where oj ∈ Rdc and is the weight of the linear trans-
formation for the jth concept. Then, the Softmax
(for multi-class task) or Sigmoid (for multi-label
task) function is applied on the logits to obtain the
prediction ŷ.

3.2 Interpretability

In this section, we provide the framework of locally
interpreting relative importance of unimodal, bi-
modal, and trimodal explanatory features to model
prediction given different samples, by interpreting
the routing coefficients rij , which represents the
weight assignment between feature fi and concept
cj . We also provide methods to globally interpret
the model across the whole dataset.

3.2.1 Local Interpretation
The goal of local interpretation is trying to under-
stand how the importance of modality and modality
interaction features change, given different multi-
modal samples. In eq. (3), a decision logit con-
siders an addition of the contributions from the
unimodal {fa, fv, ft}, bimodal {fav, fvt, fta}, and
trimodal favt explanatory features. The particular
contribution from the feature fi to the jth concept
is represented by pirijo>j (fiWij). It takes large
value when 1) pi of the feature fi is large; 2) the
agreement rij is high (the feature fi is in agreement
with concept cj and is not in agreement with cj′ ,
where j′ 6= j); and 3) the dot product o>j (fiWij)
is large. Intuitively, any of the three scenarios re-
quires high similarity between a modality feature
and a concept vector which represents a specific
sentiment or emotion. Note that pi, rij and fi are
the covariates and oj and Wij are the parameters in
the model. Since different input samples yield dis-
tinct pi and rij , we can locally interpret pi and rij
as the effects of the modality feature fi contribut-
ing to the jth logit of the model, which is roughly a
confidence of predicting jth sentiment or emotion.
We will show examples of local interpretations in
the Interpretation Analysis section.

3.2.2 Global Interpretation
To globally interpret Multimodal Routing, we ana-
lyze rij , the average values of routing coefficients
rijs over the entire dataset. Since eq. (3) considers
a linear effect from fi, pi and rij to logitj , rij rep-
resents the average assignment from feature fi to
the jth logit. Instead of reporting the values for rij ,
we provide a statistical interpretation on rij using
confidence intervals to provide a range of possible
plausible coefficients with probability guarantees.
Similar tests on pi and pirij are provided in Sup-
plementary Materials. Here we choose confidence
intervals over p-values because they provide much
richer information (Ranstam, 2012; Du Prel et al.,
2009). Suppose we have n data with the corre-
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sponding rij = {rij,1, rij,2, · · · rij,n}. If n is large
enough and rij has finite mean and finite variance
(it suffices since rij ∈ [0, 1] is bounded), according
to Central Limit Theorem, rij (i.e., mean of rij)
follows a Normal distribution:

rij ∼ N
(
µ,
s2n
n

)
, (4)

where µ is the true mean of rij and s2n is the sample
variance in rij . Using eq. (4), we can provide a con-
fidence interval for rij . We follow 95% confidence
in our analysis.

4 Experiments

In this section, we first provide details of experi-
ments we perform and comparison between our pro-
posed model and state-of-the-art (SOTA) method,
as well as baseline models. We include inter-
pretability analysis in the next section.

4.1 Datasets

We perform experiments on two publicly available
benchmarks for human multimodal affect recogni-
tion: CMU-MOSEI (Zadeh et al., 2018) and IEMO-
CAP (Busso et al., 2008). CMU-MOSEI (Zadeh
et al., 2018) contains 23, 454 movie review video
clips taken from YouTube. For each clip, there are
two tasks: sentiment prediction (multiclass classi-
fication) and emotion recognition (multilabel clas-
sification). For the sentiment prediction task, each
sample is labeled by an integer score in the range
[−3, 3], indicating highly negative sentiment (−3)
to highly positive sentiment (+3). We use some
metrics as in prior work (Zadeh et al., 2018): seven
class accuracy (Acc7: seven class classification in
Z ∈ [−3, 3]), binary accuracy (Acc2: two-class
classification in {−1,+1}), and F1 score of pre-
dictions. For the emotion recognition task, each
sample is labeled by one or more emotions from
{Happy, Sad, Angry, Fear, Disgust, Surprise}. We
report the metrics (Zadeh et al., 2018): six-class ac-
curacy (multilabel accuracy of predicting six emo-
tion labels) and F1 score.

IEMOCAP consists of 10K video clips for hu-
man emotion analysis. Each clip is evaluated and
then assigned (possibly more than one) labels of
emotions, making it a multilabel learning task. Fol-
lowing prior work and insight (Tsai et al., 2019a;
Tripathi et al., 2018; Jack et al., 2014), we report
on four emotions (happy, sad, angry, and neutral),
with metrics four-class accuracy and F1 score.

For both datasets, we use the extracted fea-
tures from a public SDK https://github.com/

A2Zadeh/CMU-MultimodalSDK, whose features are
extracted from textual (GloVe word embedding
(Pennington et al., 2014)), visual (Facet (iMotions,
2019)), and acoustic (COVAREP (Degottex et al.,
2014)) modalities. The acoustic and vision features
are processed to be aligned with the words (i.e.,
text features). We present results using this word-
aligned setting in this paper, but ours can work on
unaligned multimodal language sequences. The
train, valid and test set split are following previous
work (Wang et al., 2019; Tsai et al., 2019a).

4.2 Ablation Study and Baseline Models
We provide two ablation studies for interpretable
methods as baselines: The first is based on Gen-
eralized Additive Model (GAM) (Hastie, 2017)
which directly sums over unimodal, bimodal, and
trimodal features and then applies a linear transfor-
mation to obtain a prediction. This is equivalent
to only using weight pi and no routing coefficients.
The second is our denoted as Multimodal Routing∗,
which performs only one routing iteration (by set-
ting t = 1 in Procedure 1) and does not iteratively
adjust the routing and update the concepts.

We also choose other non-interpretable methods
that achieved state-of-the-art to compare the perfor-
mance of our approach to: Early Fusion LSTM (EF-
LSTM), Late Fusion LSTM (LF-LSTM) (Hochre-
iter and Schmidhuber, 1997), Recurrent Attended
Variation Embedding Network (RAVEN) (Wang
et al., 2019), and Multimodal Transformer (Tsai
et al., 2019a).

4.3 Results and Discussions
We trained our model on 1 RTX 2080 GPU. We use
7 layers in the Multimodal Transformer, and choose
the batch size as 32. The model is trained with
initial learning rate of 10−4 and Adam optimizer.

CMU-MOSEI sentiment. Table 1 summarizes
the results on this dataset. We first compare all the
interpretable methods. We see that Multimodal
Routing enjoys performance improvement over
both GAM (Hastie, 2017), a linear model on en-
coded features, and Multimodal Routing∗, a non-
iterative feed-forward net with same parameters
as Multimodal Routing. The improvement sug-
gests the proposed iterative routing can obtain a
more robust prediction by dynamically associat-
ing the features and the concepts of the model’s
predictions. Next, when comparing to the non-

https://github.com/A2Zadeh/CMU-MultimodalSDK
https://github.com/A2Zadeh/CMU-MultimodalSDK
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CMU-MOSEI Sentiment IEMOCAP Emotion
Models - Happy Sad Angry Neutral

Acc7 Acc2 F1 Acc F1 Acc F1 Acc F1 Acc F1

Non-Interpretable Methods

EF-LSTM 47.4 78.2 77.9 86.0 84.2 80.2 80.5 85.2 84.5 67.8 67.1
LF-LSTM 48.8 80.6 80.6 85.1 86.3 78.9 81.7 84.7 83.0 67.1 67.6

RAVEN (Wang et al., 2019) 50.0 79.1 79.5 87.3 85.8 83.4 83.1 87.3 86.7 69.7 69.3
MulT (Tsai et al., 2019a) 51.8 82.5 82.3 90.7 88.6 86.7 86.0 87.4 87.0 72.4 70.7

Interpretable Methods

GAM (Hastie, 2017) 48.6 79.5 79.4 87.0 84.3 83.2 82.4 85.2 84.8 67.4 66.6
Multimodal Routing∗ 50.6 81.2 81.3 85.4 81.7 84.2 83.2 83.5 83.6 67.1 66.3
Multimodal Routing 51.6 81.7 81.8 87.3 84.7 85.7 85.2 87.9 87.7 70.4 70.0

Table 1: Left: CMU-MOSEI sentiment prediction. Right: IEMOCAP emotion recognition. Multimodal Routing∗

denotes our method without iterative routing. Our results are better or close to the state-of-the-art (Tsai et al.,
2019a). We make our results bold if it is SOTA or close to SOTA (≤ 1%).

CMU-MOSEI Emotion
Models Happy Sad Angry Fear Disgust Surprise

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Non-Interpretable Methods

EF-LSTM 68.6 68.6 74.6 70.5 76.5 72.6 90.5 86.0 82.7 80.8 91.7 87.8
LF-LSTM 68.0 68.0 73.9 70.6 76.1 72.4 90.5 85.6 82.7 80.3 91.7 87.8

MulT (Tsai et al., 2019a) 71.8 71.8 75.7 73.2 77.6 73.4 90.5 86.0 84.4 83.2 91.7 87.8

Interpretable Methods

GAM (Hastie, 2017) 69.6 69.6 76.2 67.8 77.5 69.7 90.5 86.0 84.2 80.7 91.7 87.8
Multimodal Routing∗ 69.4 69.3 76.2 68.8 77.5 69.1 90.5 86.0 84.1 81.6 91.7 87.8
Multimodal Routing 69.7 69.4 76.0 72.1 77.6 72.8 90.5 86.0 83.1 82.3 91.7 87.8

Table 2: CMU-MOSEI emotion recognition. Multimodal Routing∗ denotes our method without iterative routing.
We make our results bold if it is the best or close to the best (≤ 1%).

interpretable methods, Multimodal Routing outper-
forms EF-LSTM, LF-LSTM and RAVEN models
and performs competitively when compared with
MulT (Tsai et al., 2019a). It is good to see that
our method can competitive performance with the
added advantage of local and global interpretability
(see analysis in the later section). The configuration
of our model is in the supplementary file.

CMU-MOSEI emotion. We report the results
in Table 2. We do not report RAVEN (Wang et al.,
2019) and MulT (Tsai et al., 2019a) since they did
not report CMU-MOSEI results. Compared with
all the baselines, Multimodal Routing performs
again competitively on most of the results metrics.
We note that the distribution of labels is skewed
(e.g., there are disproportionately very few sam-
ples labeled as “surprise”). Hence, this skewness
somehow results in the fact that all models end up
predicting not “surprise”, thus the same accuracy
for “surprise” across all different approaches.

IEMOCAP emotion. When looking at the
IEMOCAP results in Table 1, we see similar trends
with CMU-MOSEI sentiment and CMU-MOSEI
emotion, that multimodal routing achieves perfor-

mance close to the SOTA method. We see a perfor-
mance drop in the emotion “happy”, but our model
outperforms the SOTA method for the emotion “an-
gry”.

5 Interpretation Analysis

In this section, we revisit our initial research ques-
tion: how to locally identify the importance or
contribution of unimodal features and the bimodal
or trimodal interactions? We provide examples
in this section on how multimodal routing can be
used to see the variation of contributions. We first
present the local interpretation and then the global
interpretation.

5.1 Local Interpretation Analysis

We show how our model makes decisions locally
for each specific input sample by looking at in-
ferred coefficients pirij . Different samples create
different pi and rij , and their product represents
how each feature vector contributes to final predic-
tion locally, thus providing local interpretability.
We provide such interpretability analysis on exam-
ples from CMU-MOSEI sentiment prediction and
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Figure 3: Local interpretation (qualitative results) for Multimodal Routing. The upper row contains three examples
from CMU-MOSEI sentiment prediction task; the bottom row contains three examples from CMU-MOSEI emo-
tion recognition task. pirij represents the contribution from the explanatory features i (unimodal/bimodal/trimodal
interaction features) to the prediction logitj (see eq. 3). In these examples, j is chosen to be the ground truth label.

emotion recognition, and illustrate them in Fig. 3.
For sentiment prediction, we show samples with
true labels neutral (0), most negative sentiment
(−3), and most positive (+3) sentiment score. For
emotion recognition, we illustrate examples with
true label “happy”, “sad”, and “disgust” emotions.
A color leaning towards red in the rightmost spec-
trum stands for a high association, while a color
leaning towards blue suggests a low association.

In the upper-left example in Fig. 3, a speaker is
introducing movie Sweeny Todd. He says the movie
is a musical and suggests those who dislike musi-
cals not to see the movie. Since he has no personal
judgment on whether he personally likes or dislikes
the movie, his sentiment is classified as neutral (0),
although the text modality (i.e., transcript) contains
a “don’t”. In the vision modality (i.e., videos), he
frowns when he mentions this movie is musical, but
we cannot conclude his sentiment to be neutral by
only looking at the visual modality. By looking at
both vision and text together (their interaction), the
confidence in neutral is high. The model gives the
text-vision interaction feature a high value of pirij
to suggest it highly contributes to the prediction,
which confirms our reasoning above.

Similarly, for the bottom-left example, the
speaker is sharing her experience on how to au-
dition for a Broadway show. She talks about a very
detailed and successful experience of herself and
describes “love” in her audition monologue, which
is present in the text. Also, she has a dramatic smile
and a happy tone. We believe all modalities play
a role in the prediction. As a result, the trimodal
interaction feature contributes significantly to the
prediction of happiness, according to our model.

Notably, by looking at the six examples overall,
we could see each individual sample bears a differ-
ent pattern of feature importance, even when the
sentiment is the same. This is a good debuging and
interpretation tool. For global interpretation, all
these samples will be averaged giving more of a
general trend.

5.2 Global Interpretation Analysis

Here we analyze the global interpretation of Multi-
modal Routing. Given the averaged routing coef-
ficients rij generated and aggregated locally from
samples, we want to know the overall connection
between each modality or modality interaction and
each concept across the whole dataset. To evaluate



1830

Sentiment
-3 -2 -1 0 1 2 3

rt (0.052, 0.066) (0.349, 0.511) (0.094, 0.125) (0.194, 0.328) (0.078, 0.166) (0.025, 0.042) (0.017, 0.039)
ra (0.531, 0.747) (0.033, 0.066) (0.044, 0.075) (0.051, 0.079) (0.054, 0.123) (0.045, 0.069) (0.025, 0.040)
rv (0.152, 0.160) (0.122, 0.140) (0.205, 0.220) (0.161, 0.178) (0.131, 0.140) (0.128, 0.137) (0.066, 0.071)
rta (0.012, 0.030) (0.012, 0.025) (0.018, 0.037) (0.011, 0.045) (0.014, 0.033) (0.021, 0.096) (0.728, 0.904)
rav (0.062, 0.087) (0.050, 0.064) (0.289, 0.484) (0.060, 0.093) (0.057, 0.079) (0.153, 0.305) (0.042, 0.051)
rvt (0.167, 0.181) (0.174, 0.228) (0.167, 0.190) (0.158, 0.172) (0.122, 0.132) (0.104, 0.119) (0.052, 0.062)
rtav (0.112, 0.143) (0.062, 0.093) (0.119, 0.149) (0.149, 0.178) (0.100, 0.149) (0.213, 0.322) (0.064, 0.094)

Emotions
Happy Sad Angry Fear Disgust Surprise

rt (0.114, 0.171) (0.078, 0.115) (0.093, 0.170) (0.382, 0.577) (0.099, 0.141) (0.026, 0.120)
ra (0.107, 0.171) (0.095, 0.116) (0.104, 0.149) (0.119, 0.160) (0.285, 0.431) (0.092, 0.117)
rv (0.139, 0.164) (0.143, 0.168) (0.225, 0.259) (0.159, 0.182) (0.141, 0.155) (0.123, 0.136)
rta (0.117, 0.158) (0.039, 0.059) (0.104, 0.143) (0.055, 0.079) (0.055, 0.082) (0.462, 0.615)
rav (0.102, 0.136) (0.054, 0.074) (0.358, 0.482) (0.219, 0.261) (0.043, 0.072) (0.092, 0.107)
rvt (0.173, 0.215) (0.075, 0.099) (0.212, 0.241) (0.180, 0.196) (0.134, 0.150) (0.132, 0.142)
rtav (0.182, 0.225) (0.146, 0.197) (0.146, 0.183) (0.158, 0.209) (0.151, 0.176) (0.101, 0.116)

Table 3: Global interpretation (quantitative results) for Multimodal Routing. Confidence Interval of rij , sampled
from CMU-MOSEI sentiment task (top) and emotion task (bottom). We bold the values that have the largest mean
in each emotion and are significantly larger than a uniform routing (1/J = 1/7 = 0.143).

these routing coefficients we will compare them to
uniform weighting, i.e., 1

J where J is the number
of concepts. To perform such analysis, we provide
confidence intervals of each rij . If this interval is
outside of 1

J , we can interpret it as a distinguishably
significant feature. See Supplementary for similar
analysis performed on pirij and pi.

First we provide confidence intervals of rij sam-
pled from CMU-MOSEI sentiment. We compare
our confidence intervals with the value 1

J . From
top part of Table 3, we can see that our model
relies identified language modality for neutral sen-
timent predictions; acoustic modality for extremely
negative predictions (row ra column -3); and text-
acoustic bimodal interaction for extremely positive
predictions (row rta column 3). Similarly, we ana-
lyze rij sampled from CMU-MOSEI emotion (bot-
tom part of Table 3). We can see that our model
identified the text modality for predicting emotion
fear (row rt column Fear, the same indexing for
later cases), the acoustic modality for predicting
emotion disgust, the text-acoustic interaction for
predicting emotion surprise, and the acoustic-visual
interaction for predicting emotion angry. For emo-
tion happy and sad, either trimodal interaction has
the most significant connection, or the routing is
not significantly different among modalities.

Interestingly, these results echo previous re-
search. In both sentiment and emotion cases, acous-
tic features are crucial for predicting negative sen-

timent or emotions. This well aligns with research
results in behavior science (Lima et al., 2013). Fur-
thermore, (Livingstone and Russo, 2018) showed
that the intensity of emotion angry is stronger in
acoustic-visual than in either acoustic or visual
modality in human speech.

6 Conclusion

In this paper, we presented Multimodal Routing to
identify the contributions from unimodal, bimodal
and trimodal explanatory features to predictions
in a locally manner. For each specific input, our
method dynamically associates an explanatory fea-
ture with a prediction if the feature explains the pre-
diction well. Then, we interpret our approach by
analyzing the routing coefficients, showing great
variation of feature importance in different sam-
ples. We also conduct global interpretation over
the whole datasets, and show that the acoustic fea-
tures are crucial for predicting negative sentiment
or emotions, and the acoustic-visual interactions
are crucial for predicting emotion angry. These ob-
servations align with prior work in psychological
research. The advantage of both local and global
interpretation is achieved without much loss of per-
formance compared to the SOTA methods. We be-
lieve that this work sheds light on the advantages of
understanding human behaviors from a multimodal
perspective, and makes a step towards introducing
more interpretable multimodal language models.
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A Appendix

Confidence Interval

pt (0.98, 0.995)
pa (0.991, 0.992)
pv (0.807, 0.880)
pta (0.948, 0.965)
pav (0.968, 0.969)
pvt (0.588, 0.764)
ptav (0.908, 0.949)

Table 6: Global interpretation (quantitative results) for
Multimodal Routing. Confidence interval of pi, sam-
pled from CMU-MOSEI sentiment task.

Confidence Interval

pt (0.980, 0.999)
pa (0.991, 0.992)
pv (0.816, 0.894)
pta (0.935, 0.963)
pav (0.967, 0.968)
pvt (0.635, 0.771)
ptav (0.913, 0.946)

Table 7: Global interpretation (quantitative results) for
Multimodal Routing. Confidence interval of pi, sam-
pled from CMU-MOSEI emotion task.

A.1 Encoding pi from input

In practice, we use the same MulT to encode fi
and pi simultaneously. We design MulT to have an
output dimension df + 1. A sigmoid function is
applied to the last dimension of the output. For this
output, the first df dimensions refers to fi and the
last dimension refers to pi.

A.2 Training Details and Hyper-parameters

Our model is trained using the Adam (Kingma and
Ba, 2014) optimizer with a batch size of 32. The
learning rate is 1e-4 for CMU-MOSEI Sentiment
and IEMOCAP, and 1e-5 for CMU-MOSEI emo-
tion. We apply a dropout (Srivastava et al., 2014)
of 0.5 during training.

For the encoding stage, we use MulT (Tsai et al.,
2019a) as feature extractor. After the encoder pro-
ducing unimodal, bimodal, and trimodal features,
we performs linear transformation for each fea-
ture, and output feature vectors with dimension
df = 64.

We perform two iterations of routing between
features and concepts with dimension dc = 64
where dc is the dimension of concepts. All experi-
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Sentiment
-3 -2 -1 0 1 2 3

ptrt (0.060, 0.088) (0.326, 0.538) (0.098, 0.141) (0.128, 0.206) (0.067, 0.169) (0.033, 0.060) (0.010, 0.024)
para (0.587, 0.789) (0.027, 0.055) (0.035, 0.066) (0.040, 0.069) (0.042, 0.105) (0.027, 0.043) (0.023, 0.039)
pvrv (0.063, 0.082) (0.060, 0.080) (0.093, 0.128) (0.067, 0.089) (0.057, 0.074) (0.051, 0.064) (0.028, 0.038)
ptarta (0.015, 0.032) (0.015, 0.033) (0.022, 0.045) (0.037, 0.092) (0.010, 0.029) (0.023, 0.113) (0.610, 0.790)
pavrav (0.060, 0.090) (0.046, 0.064) (0.227, 0.429) (0.030, 0.058) (0.064, 0.089) (0.126, 0.258) (0.038, 0.052)
pvtrvt (0.069, 0.093) (0.053, 0.104) (0.080, 0.110) (0.076, 0.098) (0.055, 0.073) (0.049, 0.064) (0.028, 0.039)
ptavrtav (0.096, 0.119) (0.056, 0.083) (0.135, 0.163) (0.113, 0.164) (0.080, 0.122) (0.244, 0.394) (0.071, 0.133)

Table 4: Global interpretation (quantitative results) for Multimodal Routing. Confidence Interval of pirij , sampled
from CMU-MOSEI sentiment task.

Emotions
Happy Sad Angry Fear Disgust Surprise

ptrt (0.137, 0.183) (0.071, 0.099) (0.107, 0.174) (0.280, 0.481) (0.106, 0.138) (0.068, 0.123)
para (0.105, 0.156) (0.094, 0.113) (0.104, 0.149) (0.129, 0.160) (0.310, 0.442) (0.078, 0.099)
pvrv (0.123, 0.141) (0.099, 0.129) (0.189, 0.221) (0.141, 0.162) (0.119, 0.128) (0.103, 0.114)
ptarta (0.070, 0.101) (0.045, 0.065) (0.127, 0.165) (0.052, 0.078) (0.044, 0.065) (0.504, 0.648)
pavrav (0.104, 0.138) (0.059, 0.076) (0.286, 0.395) (0.200, 0.252) (0.062, 0.100) (0.089, 0.102)
pvtrvt (0.131, 0.173) (0.050, 0.068) (0.152, 0.199) (0.122, 0.149) (0.096, 0.118) (0.093, 0.115)
ptavrtav (0.160, 0.187) (0.132, 0.197) (0.132, 0.174) (0.151, 0.183) (0.151, 0.173) (0.096, 0.111)

Table 5: Global interpretation (quantitative results) for Multimodal Routing. Confidence Interval of pirij , sampled
from CMU-MOSEI emotion task.

ments use the same hyper-parameter configuration
in this paper.

A.3 Remarks on CMU-MOSEI Sentiment
Our model poses the problem as classification and
predicts only integer labels, so we don’t provide
mean average error and correlation metrics.

A.4 Remarks on CMU-MOSEI Emotion
Due to the introduction of concepts in our model,
we transform the CMU-MOSEI emotion recogni-
tion task from a regression problem (every emotion
has a score in [0, 3] indicating how strong the evi-
dence of that emotion is) to a classification problem.
For each sample with six emotion scores, we label
all emotions with scores greater than zero to be
present in the sample. Then a data sample would
have a multiclass label.

A.5 Global Interpretation Result
We analyze global interpretation of both CMU-
MOSEI sentiment and emotion task.

CMU-MOSEI Sentiment The analysis of the
routing coefficients rij is included in the main pa-
per. We then analyze pi (table 6) and the products
pirij (table 4). Same as analysis in the main paper,
our model relies on acoustic modality for extremely
negative predictions (row ra column -3) and text-
acoustic bimodal interaction for extremely positive

predictions (row rta column 3). The sentiment that
is neutral or less extreme are predicted by contribu-
tions from many different modalities / interactions.
The activation table shows high activation value
(> 0.8) for most modality / interactions except pvl.

CMU-MOSEI Emotion Same as above, we an-
alyze pi (Table 7) and the product pirij (Table
5).The result is very similar to that of rij . The ac-
tivation table shows high activation value (> 0.8)
for most modality / interactions except pvl, same
as CMU-MOSEI sentiment. We see strong connec-
tions between audio-visual interactions and angry,
text modality and fear, audio modality and disgust,
and text-audio interactions and surprise. The ac-
tivation table shows high activation value (> 0.8)
for most modality / interactions except pvl as well.


