
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 183–196,
November 16–20, 2020. c©2020 Association for Computational Linguistics

183

Information-Theoretic Probing with Minimum Description Length

Elena Voita1,2 Ivan Titov1,2

1University of Edinburgh, Scotland
2University of Amsterdam, Netherlands

lena-voita@hotmail.com ititov@inf.ed.ac.uk

Abstract

To measure how well pretrained representa-
tions encode some linguistic property, it is
common to use accuracy of a probe, i.e. a
classifier trained to predict the property from
the representations. Despite widespread adop-
tion of probes, differences in their accuracy
fail to adequately reflect differences in repre-
sentations. For example, they do not substan-
tially favour pretrained representations over
randomly initialized ones. Analogously, their
accuracy can be similar when probing for gen-
uine linguistic labels and probing for random
synthetic tasks. To see reasonable differences
in accuracy with respect to these random base-
lines, previous work had to constrain either
the amount of probe training data or its model
size. Instead, we propose an alternative to the
standard probes, information-theoretic prob-
ing with minimum description length (MDL).
With MDL probing, training a probe to pre-
dict labels is recast as teaching it to effectively
transmit the data. Therefore, the measure of
interest changes from probe accuracy to the de-
scription length of labels given representations.
In addition to probe quality, the description
length evaluates ‘the amount of effort’ needed
to achieve the quality. This amount of effort
characterizes either (i) size of a probing model,
or (ii) the amount of data needed to achieve the
high quality. We consider two methods for esti-
mating MDL which can be easily implemented
on top of the standard probing pipelines: varia-
tional coding and online coding. We show that
these methods agree in results and are more in-
formative and stable than the standard probes.1

1 Introduction

To estimate to what extent representations (e.g.,
ELMo (Peters et al., 2018) or BERT (Devlin et al.,
2019)) capture a linguistic property, most previous

1We release code at https://github.com/
lena-voita/description-length-probing.

Figure 1: Illustration of the idea behind MDL probes.

work uses ‘probing tasks’ (aka ‘probes’ and ‘diag-
nostic classifiers’); see Belinkov and Glass (2019)
for a comprehensive review. These classifiers are
trained to predict a linguistic property from ‘frozen’
representations, and accuracy of the classifier is
used to measure how well these representations
encode the property.

Despite widespread adoption of such probes,
they fail to adequately reflect differences in repre-
sentations. This is clearly seen when using them to
compare pretrained representations with randomly
initialized ones (Zhang and Bowman, 2018). Anal-
ogously, their accuracy can be similar when prob-
ing for genuine linguistic labels and probing for
tags randomly associated to word types (‘control
tasks’, Hewitt and Liang (2019)). To see differ-
ences in the accuracy with respect to these random
baselines, previous work had to reduce the amount
of a probe training data (Zhang and Bowman, 2018)
or use smaller models for probes (Hewitt and Liang,
2019).

As an alternative to the standard probing, we
take an information-theoretic view at the task of
measuring relations between representations and la-
bels. Any regularity in representations with respect
to labels can be exploited both to make predictions
and to compress these labels, i.e., reduce length of
the code needed to transmit them. Formally, we
recast learning a model of data (i.e., training a prob-
ing classifier) as training it to transmit the data (i.e.,
labels) in as few bits as possible. This naturally
leads to a change of measure: instead of evaluating

https://github.com/lena-voita/description-length-probing
https://github.com/lena-voita/description-length-probing

184

probe accuracy, we evaluate minimum description
length (MDL) of labels given representations, i.e.
the minimum number of bits needed to transmit the
labels knowing the representations. Note that since
labels are transmitted using a model, the model
has to be transmitted as well (directly or indirectly).
Thus, the overall codelength is a combination of the
quality of fit of the model (compressed data length)
with the cost of transmitting the model itself.

Intuitively, codelength characterizes not only the
final quality of a probe, but also the ‘amount of ef-
fort’ needed achieve this quality (Figure 1). If rep-
resentations have some clear structure with respect
to labels, the relation between the representations
and the labels can be understood with less effort;
for example, (i) the ‘rule’ predicting the label (i.e.,
the probing model) can be simple, and/or (ii) the
amount of data needed to reveal this structure can
be small. This is exactly how our vague (so far)
notion of ‘the amount of effort’ is translated into
codelength. We explain this more formally when
describing the two methods for evaluating MDL we
use: variational coding and online coding; they dif-
fer in a way they incorporate model cost: directly
or indirectly.

Variational code explicitly incorporates cost of
transmitting the model (probe weights) in addition
to the cost of transmitting the labels; this joint cost
is exactly the loss function of a variational learning
algorithm (Honkela and Valpola, 2004). As we will
see in the experiments, close probe accuracies often
come at a very different model cost: the ‘rule’ (the
probing model) explaining regularity in the data
can be either simple (i.e., easy to communicate) or
complicated (i.e., hard to communicate) depending
on the strength of this regularity.

Online code provides a way to transmit data with-
out directly transmitting the model. Intuitively, it
measures the ability to learn from different amounts
of data. In this setting, the data is transmitted in a
sequence of portions; at each step, the data trans-
mitted so far is used to understand the regularity in
this data and compress the following portion. If the
regularity in the data is strong, it can be revealed
using a small subset of the data, i.e., early in the
transmission process, and can be exploited to effi-
ciently transmit the rest of the dataset. The online
code is related to the area under the learning curve,
which plots quality as a function of the number of
training examples.

If we now recall that, to get reasonable differ-

ences with random baselines, previous work manu-
ally tuned (i) model size and/or (ii) the amount of
data, we will see that these were indirect ways of
accounting for the ‘amount of effort’ component
of (i) variational and (ii) online codes, respectively.
Interestingly, since variational and online codes are
different methods to estimate the same quantity
(and, as we will show, they agree in the results), we
can conclude that the ability of a probe to achieve
good quality using a small amount of data and its
ability to achieve good quality using a small probe
architecture reflect the same property: strength of
the regularity in the data. In contrast to previous
work, MDL incorporates this naturally in a theo-
retically justified way. Moreover, our experiments
show that, differently from accuracy, conclusions
made by MDL probes are not affected by an un-
derlying probe setting, thus no manual search for
settings is required.

We illustrate the effectiveness of MDL for dif-
ferent kinds of random baselines. For example,
when considering control tasks (Hewitt and Liang,
2019), while probes have similar accuracies, these
accuracies are achieved with a small probe model
for the linguistic task and a large model for the
random baseline (control task); these architectures
are obtained as a byproduct of MDL optimization
and not by manual search.

Our contributions are as follows:

• we propose information-theoretic probing
which measures MDL of labels given repre-
sentations;

• we show that MDL naturally characterizes not
only probe quality, but also ‘the amount of
effort’ needed to achieve it;

• we explain how to easily measure MDL on
top of standard probe-training pipelines;

• we show that, compared to standard probes,
MDL results are more informative and stable.

2 Information-Theoretic Viewpoint

Let D = {(x1, y1), . . . , (xn, yn)} be a dataset,
where x1:n = (x1, x2, . . . , xn) are representations
from a model and y1:n = (y1, y2, . . . , yn) are
labels for some linguistic task (we assume that
yi ∈ {1, 2, . . . ,K}, i.e. we consider classification
tasks). As in standard probing task, we want to
measure to what extent x1:n encode y1:n. Differ-
ently from standard probes, we propose to look at

185

this question from the information-theoretic per-
spective and define the goal of a probe as learning
to effectively transmit the data.

Setting. Following the standard information the-
ory notation, let us imagine that Alice has all
(xi, yi) pairs in D, Bob has just the xi’s from D,
and that Alice wants to communicate the yi’s to
Bob. The task is to encode the labels y1:n knowing
the inputs x1:n in an optimal way, i.e. with minimal
codelength (in bits) needed to transmit y1:n.

Transmission: Data and Model. Alice can
transmit the labels using some probabilistic model
of data p(y|x) (e.g., it can be a trained probing clas-
sifier). Since Bob does not know the precise trained
model that Alice is using, some explicit or implicit
transmission of the model itself is also required.
In Section 2.1, we explain how to transmit data
using a model p. In Section 2.2, we show direct
and indirect ways of transmitting the model.

Interpretation: quality and ‘amount of effort’.
In Section 2.3, we show that total codelength char-
acterizes both probe quality and the ‘amount of
effort’ needed to achieve it. We draw connections
between different interpretations of this ‘amount
of effort’ part of the code and manual search for
probe settings done in previous work.2

2.1 Transmission of Data Using a Model
Suppose that Alice and Bob have agreed in advance
on a model p, and both know the inputs x1:n. Then
there exists a code to transmit the labels y1:n loss-
lessly with codelength3

Lp(y1:n|x1:n) = −
n∑
i=1

log2 p(yi|xi). (1)

This is the Shannon-Huffman code, which gives
an optimal bound on the codelength if the data are
independent and come from a conditional probabil-
ity distribution p(y|x).

Learning is compression. The bound (1) is ex-
actly the categorical cross-entropy loss evaluated
on the model p. This shows that the task of com-
pressing labels y1:n is equivalent to learning a
model p(y|x): quality of a learned model p(y|x) is
the codelength needed to transmit the data.

2Note that in this work, we do not consider practical im-
plementations of transmission algorithms; everywhere in the
text, ‘codelength’ refers to the theoretical codelength of the
associated encodings.

3Up to at most one bit on the whole sequence; for datasets
of reasonable size this can be ignored.

Compression is usually compared against uni-
form encoding which does not require any learning
from data. It assumes p(y|x) = punif (y|x) =
1
K , and yields codelength Lunif (y1:n|x1:n) =
n log2K bits. Another trivial encoding ignores
input x and relies on class priors p(y), resulting in
codelength H(y) for a datapoint.

Relation to Mutual Information. If the in-
puts and the outputs come from a true joint
distribution q(x, y), then, for any transmission
method with codelength L, it holds Eq[L(y|x)] ≥
H(y|x) (Grunwald, 2004). Therefore, the gain in
codelength over the trivial codelength H(y) is
H(y)−Eq[L(y|x)] ≤ H(y)−H(y|x) = I(y;x).
In other words, the compression is limited by the
mutual information (MI) between inputs (i.e. pre-
trained representations) and outputs (i.e. labels).

Note that total codelength includes model code-
length in addition to the data code. This means that
while high MI is necessary for effective compres-
sion, a good representation is the one which also
yields simple models predicting y from x, as we
formalize in the next section.

2.2 Transmission of the Model (Explicit or
Implicit)

We consider two compression methods that can be
used with deep learning models (probing classi-
fiers):

• variational code – an instance of two-part
codes, where a model is transmitted explicitly
and then used to encode the data;

• online code – a way to encode both model and
data without directly transmitting the model.

2.2.1 Variational Code
We assume that Alice and Bob have agreed on a
model class H = {pθ|θ ∈ Θ}. With two-part
codes, for any model pθ∗ , Alice first transmits its
parameters θ∗ and then encodes the data while re-
lying on the model. The description length decom-
poses accordingly:

L29part
θ∗ (y1:n|x1:n) =

= Lparam(θ∗) + Lpθ∗ (y1:n|x1:n)

To compute the description length of the parameters
Lparam(θ∗), we can further assume that Alice and
Bob have agreed on a prior distribution over the
parameters α(θ∗). Now, we can rewrite the total
description length (using also eq. (1)) as

186

− log2(α(θ∗)εm)−
n∑
i=1

log2 pθ∗(yi|xi),

where m is the number of parameters and ε is a
prearranged precision for each parameter. With
deep learning models, such straightforward codes
for parameters are highly inefficient. Instead, in the
variational approach, weights are treated as random
variables, and the description length is given by the
expectation

Lvarβ (y1:n|x1:n) =

=9Eθ∼β

[
log2α(θ)9log2β(θ)+

n∑
i=1

log2 pθ(yi|xi)

]

= KL(β ‖ α) 9 Eθ∼β
n∑
i=1

log2 pθ(yi|xi), (2)

where β(θ) =
∏m
i=1 βi(θi) is a distribution encod-

ing uncertainty about the parameter values. The
distribution β(θ) is chosen by minimizing the code-
length given in Expression (2). The formal jus-
tification for the description length relies on the
bits-back argument (Hinton and von Cramp, 1993;
Honkela and Valpola, 2004; MacKay, 2003). How-
ever, the underlying intuition is straightforward:
parameters we are uncertain about can be transmit-
ted at a lower cost as the uncertainty can be used
to determine the required precision. The entropy
term in Equation (2), H(β) = 9Eθ∼β log2 β(θ),
quantifies this discount.

The negated codelength −Lvarβ (y1:n|x1:n) is
known as the evidence-lower-bound (ELBO) and
used as the objective in variational inference. The
distribution β(θ) approximates the intractable pos-
terior distribution p(θ|x1:n, y1:n). Consequently,
any variational method can in principle be used to
estimate the codelength.

In our experiments, we use the network com-
pression method of Louizos et al. (2017). Similarly
to variational dropout (Molchanov et al., 2017),
it uses sparsity-inducing priors on the parameters,
pruning neurons from the probing classifier as a
byproduct of optimizing the ELBO. As a result we
can assess the probe complexity both using its de-
scription length KL(β ‖ α) and by inspecting the
discovered architecture.

2.2.2 Online (or Prequential) Code
The online (or prequential) code (Rissanen, 1984)
is a way to encode both the model and the labels
without directly encoding the model weights. In

the online setting, Alice and Bob agree on the form
of the model pθ(y|x) with learnable parameters θ,
its initial random seeds, and its learning algorithm.
They also choose timesteps 1 = t0 < t1 < · · · <
tS = n and encode data by blocks.4 Alice starts
by communicating y1:t1 with a uniform code, then
both Alice and Bob learn a model pθ1(y|x) that
predicts y from x using data {(xi, yi)}t1i=1, and Al-
ice uses that model to communicate the next data
block yt1+1:t2 . Then both Alice and Bob learn a
model pθ2(y|x) from a larger block {(xi, yi)}t2i=1

and use it to encode yt2+1:t3 . This process contin-
ues until the entire dataset has been transmitted.
The resulting online codelength is

Lonline(y1:n|x1:n) = t1 log2K

−
S−1∑
i=1

log2 pθi(yti+1:ti+1 |xti+1:ti+1). (3)

In this sequential evaluation, a model that per-
forms well with a limited number of training ex-
amples will be rewarded by having a shorter code-
length (Alice will require fewer bits to transmit
the subsequent yti:ti+1 to Bob). The online code is
related to the area under the learning curve, which
plots quality (in case of probes, accuracy) as a func-
tion of the number of training examples. We will
illustrate this in Section 3.2.

2.3 Interpretations of Codelength
Connection to previous work. To get larger dif-
ferences in scores compared to random baselines,
previous work tried to (i) reduce size of a prob-
ing model and (ii) reduce the amount of a probe
training data. Now we can see that these were in-
direct ways to account for the ‘amount of effort’
component of (i) variational and (ii) online codes,
respectively.

Online code and model size. While the online
code does not incorporate model cost explicitly, we
can still evaluate model cost by interpreting the
difference between the cross-entropy of the model
trained on all data and online codelength as the cost
of the model. The former is codelength of the data
if one knows model parameters, the latter (online
codelength) — if one does not know them. In
Section 3.2 we will show that trends for model cost
evaluated for the online code are similar to those
for the variational code. It means that in terms of a

4In all experiments in this paper, the timesteps correspond
to 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.25, 12.5, 25, 50, 100 percent of
the dataset.

187

code, the ability of a probe to achieve good quality
using small amount of data or using a small probe
architecture reflect the same property: the strength
of the regularity in the data.

Which code to choose? In terms of implementa-
tion, the online code uses a standard probe along
with its training setting: it trains the probe on in-
creasing subsets of the dataset. Using the varia-
tional code requires changing (i) a probing model
to a Bayesian model and (ii) the loss function to the
corresponding variational loss (2) (i.e. adding the
modelKL term to the standard data cross-entropy).
As we will show later, these methods agree in re-
sults. Therefore, the choice of the method can be
done depending on the preferences: the variational
code can be used to inspect the induced probe archi-
tecture, but the online code is easier to implement.

3 Description Length and Control Tasks

Hewitt and Liang (2019) note that probe accuracy
does not necessarily reveal if the representations
encode the linguistic annotation or if the probe
‘itself’ learned to predict this annotation. They in-
troduce control tasks which associate word types
with random outputs, and each word token is as-
signed its type’s output, regardless of context. By
construction, such tasks can only be learned by
the probe itself. The authors argue that selectivity,
i.e. difference between linguistic task accuracy and
control task accuracy, reveals how much the lin-
guistic probe relies on the regularities encoded in
the representations. They propose to tune probe hy-
perparameters to maximize selectivity. In contrast,
we will show that MDL probes do not require such
tuning.

3.1 Experimental Setting

In all experiments, we use the data and follow the
setting of Hewitt and Liang (2019); we build on
top of their code and release our extended version
to reproduce the experiments.

In the main text, we use a probe with default
hyperparameters which was a starting point in He-
witt and Liang (2019) and was shown to have low
selectivity. In the appendix, we provide results for
10 different settings and show that, in contrast to
accuracy, codelength is stable across settings.

Task: part of speech. Control tasks were de-
signed for two tasks: part-of-speech (PoS) tagging
and dependency edge prediction. In this work, we

focus only on the PoS tagging task, the task of as-
signing tags, such as noun, verb, and adjective, to
individual word tokens. For the control task, for
each word type, a PoS tag is independently sam-
pled from the empirical distribution of the tags in
the linguistic data.

Data. The pretrained model is the 5.5 billion-
word pre-trained ELMo (Peters et al., 2018).
The data comes from Penn Treebank (Marcus
et al., 1993) with the traditional parsing train-
ing/development/testing splits5 without extra pre-
processing. Table 7 shows dataset statistics.

Probes. The probe is MLP-2 of Hewitt and
Liang (2019) with the default hyperparame-
ters. Namely, it is a multi-layer perceptron
with two hidden layers defined as: yi ∼
softmax(W3ReLU(W2ReLU(W1hi))); hidden
layer size h is 1000 and no dropout is used. Ad-
ditionally, in the appendix, we provide results for
both MLP-2 and MLP-1 for several h values: 1000,
500, 250, 100, 50.

For the variational code, we replace dense layers
with the Bayesian compression layers from Louizos
et al. (2017); the loss function changes to Eq. (2).

Optimizer. All of our probing models are trained
with Adam (Kingma and Ba, 2015) with learning
rate 0.001. With standard probes, we follow the
original paper (Hewitt and Liang, 2019) and anneal
the learning rate by a factor of 0.5 once the epoch
does not lead to a new minimum loss on the devel-
opment set; we stop training when 4 such epochs
occur in a row. With variational probes, we do
not anneal learning rate and train probes for 200
epochs; long training is recommended to enable
pruning (Louizos et al., 2017).

3.2 Experimental Results
Results are shown in Table 1.6

Different compression methods, similar results.
First, we see that both compression methods show
similar trends in codelength. For the linguistic task,
the best layer is the first one. For the control task,
codes become larger as we move up from the em-
bedding layer; this is expected since the control

5As given by the code of Qi and Manning (2017) at
https://github.com/qipeng/arc-swift.

6Accuracies can differ from the ones reported in Hewitt
and Liang (2019): we report accuracy on the test set, while
they – on the development set. Since the development set is
used for stopping criteria, we believe that test scores are more
reliable.

https://github.com/qipeng/arc-swift

188

Accuracy Variational code Online code
codelength compression codelength compression

LAYER 0 93.7 / 96.3 163 / 267 31.32 / 19.09 173 / 302 29.5 / 16.87
LAYER 1 97.5 / 91.9 85 / 470 59.76 / 10.85 96 / 515 53.06 / 9.89
LAYER 2 97.3 / 89.4 103 / 612 49.67 / 8.33 115 / 717 44.3 / 7.11

Table 1: Experimental results (MLP-2, h = 1000); shown in pairs: linguistic task / control task. Codelength is
measured in kbits (variational codelength is given in equation (2), online – in equation (3)). Accuracy is shown for
the standard probe as in Hewitt and Liang (2019); for the variational probe, scores are similar (see Table 2).

(a) (b) (c) (d) random seeds

Figure 2: (a), (b): codelength split into data and model codes; (c): learning curves corresponding to online code
(solid lines for linguistic task, dashed – for control); (d): results for 5 random seeds, linguistic task (for control
task, see appendix).

task measures the ability to memorize word type.
Note that codelengths for control tasks are substan-
tially larger than for the linguistic task (at least
twice larger). This again illustrates that description
length is preferable to probe accuracy: in contrast
to accuracy, codelength is able to distinguish these
tasks without any search for settings.

LAYER 0: MDL is correct, accuracy is not.
What is even more surprising, codelength identifies
the control task even when accuracy indicates the
opposite: for LAYER 0, accuracy for the control
task is higher, but the code is twice longer than for
the linguistic task. This is because codelength char-
acterizes how hard it is to achieve this accuracy: for
the control task, accuracy is higher, but the cost of
achieving this score is very big. We will illustrate
this later in this section.

Embedding vs contextual: drastic difference.
For the linguistic task, note that codelength for
the embedding layer is approximately twice larger
than that for the first layer. Later in Section 4 we
will see the same trends for several other tasks, and
will show that even contextualized representations
obtained with a randomly initialized model are a
lot better than with the embedding layer alone.

Model: small for linguistic, large for control.
Figure 2(a) shows data and model components of
the variational code. For control tasks, model size
is several times larger than for the linguistic task.

This is something that probe accuracy alone is not
able to reflect: representations have structure with
respect to the linguistic labels and this structure
can be ‘explained’ with a small model. The same
representations do not have structure with respect
to random labels, therefore these labels can be pre-
dicted only using a larger model.

Using interpretation from Section 2.3 to split
the online code into data and model codelength,
we get Figure 2(b). The trends are similar to the
ones with the variational code; but with the online
code, the model component shows how easy it is
to learn from small amount of data: if the represen-
tations have structure with respect to some labels,
this structure can be revealed with a few training ex-
amples. Figure 2(c) shows learning curves showing
the difference between behavior of the linguistic
and control tasks. In addition to probe accuracy,
such learning curves have also been used by Yo-
gatama et al. (2019) and Talmor et al. (2019).

Architecture: sparse for linguistic, dense for
control. The method for the variational code we
use, Bayesian compression of Louizos et al. (2017),
lets us assess the induced probe complexity not
only by using its description length (as we did
above), but also by looking at the induced architec-
ture (Table 2). Probes learned for linguistic tasks
are much smaller than those for control tasks, with
only 33-75 neurons at the second and third layers.
This relates to the work by Hewitt and Liang (2019).

189

Layer Task Accuracy Final probe

0 base 93.5 406-33-49
control 96.3 427-214-137

1 base 97.7 664-55-35
control 92.2 824-272-260

2 base 97.3 750-75-41
control 88.7 815-308-481

Table 2: Pruned architecture of a trained variational
probe (starting probe: 1024-1000-1000).

The authors considered several predefined probe
architectures and picked one of them based on a
manually defined criterion. In contrast, the varia-
tional code gives probe architecture as a byproduct
of training and does not need human guidance.

3.3 Stability and Reliability of MDL Probes

Here we discuss stability of MDL results across
compression methods, underlying probing classi-
fier setting and random seeds.

The two compression methods agree in results.
Note that the observed agreement in codelengths
from different methods (Table 1) is rather surpris-
ing: this contrasts to Blier and Ollivier (2018), who
experimented with images (MNIST, CIFAR-10)
and argued that the variational code yields very
poor compression bounds compared to online code.
We can speculate that their results may be due to
the particular variational approach they use. The
agreement between different codes is desirable and
suggests sensibility and reliability of the results.

Hyperparameters: change results for accuracy,
do not for MDL. While here we will discuss
in detail results for the default settings, in the ap-
pendix we provide results for 10 different settings;
for LAYER 0, results are given in Figure 3. We see
that accuracy can change greatly with the settings.
For example, difference in accuracy for linguistic
and control tasks varies a lot; for LAYER 0 there
are settings with contradictory results: accuracy
can be higher either for the linguistic or for the
control task depending on the settings (Figure 3).
In striking contrast to accuracy, MDL results are
stable across settings, thus MDL does not require
search for probe settings.

Random seed: affects accuracy but not MDL.
We evaluated results from Table 1 for random seeds
from 0 to 4; for the linguistic task, results are shown

Figure 3: Results for 10 probe settings: accuracy is
wrong for 8 out of 10 settings, MDL is always correct
(for accuracy higher is better, for codelength – lower).

in Figure 2(d). We see that using accuracy can lead
to different rankings of layers depending on a ran-
dom seed, making it hard to draw conclusions about
their relative qualities. For example, accuracy for
LAYER 1 and LAYER 2 are 97.48 and 97.31 for seed
1, but 97.38 and 97.48 for seed 0. On the contrary,
the MDL results are stable and the scores given to
different layers are well separated.

Note that for this ‘real’ task, where the true rank-
ing of layers 1 and 2 is not known in advance, tun-
ing a probe setting by maximizing difference with
the synthetic control task (as done by Hewitt and
Liang (2019)) does not help: in the tuned setting,
scores for these layers remain very close (e.g., 97.3
and 97.0 (Hewitt and Liang, 2019)).

4 MDL and Random Models

Now, from random labels for word types, we come
to another type of random baselines: randomly
initialized models. Probes using these represen-
tations show surprisingly strong performance for
both token (Zhang and Bowman, 2018) and sen-
tence (Wieting and Kiela, 2019) representations.
This again confirms that accuracy alone does not
reflect what a representation encodes. With MDL
probes, we will see that codelength shows large dif-
ference between trained and randomly initialized
representations.

In this part, we also experiment with ELMo and
compare it with a version of the ELMo model in
which all weights above the lexical layer (LAYER

0) are replaced with random orthonormal matrices
(but LAYER 0, is retained from trained ELMo). We
conduct a line of experiments using a suite of edge
probing tasks (Tenney et al., 2019). In these tasks, a
probe can access only representations within given
spans, such as a predicate-argument pair, and must
predict properties, such as semantic roles.

We build our experiments on top of the original
code by Tenney et al. (2019) and release our ex-
tended version. Examples for each task are shown
in Table 3; more details on dataset statistics, probe
architecture and optimization are in the appendix.

190

Part-of-speech I want to find more , [something] bigger or deeper . −→ NN (Noun)
Constituents I want to find more , [something bigger or deeper] . −→ NP (Noun Phrase)
Dependencies [I]1 am not [sure]2 how reliable that is , though . −→ nsubj (nominal subject)
Entities The most fascinating is the maze known as [Wind Cave] . −→ LOC
SRL I want to [find]1 [more , something bigger or deeper]2 . −→ Agr1 (Agent)
Coreference So [the followers]1 waited to say anything about what [they]2 saw . −→ True
Rel. (SemEval) The [shaman]1 cured him with [herbs]2 . −→ Instrument-Agency(e2, e1)

Table 3: Examples of sentences, spans, and target labels for each task.

Accuracy Variational code Online code
codelength compression codelength compression

Part-of-speech
LAYER 0 91.3 483 23.4 462 24.5
LAYER 1 97.8 / 95.7 209 / 273 54.0 / 41.4 192 / 294 58.8 / 38.5
LAYER 2 97.5 / 95.7 252 / 273 44.7 / 41.4 216 / 294 52.3 / 38.5

Constituents
LAYER 0 75.9 1181 7.5 1149 7.7
LAYER 1 86.4 / 77.6 603 / 877 14.7 / 10.1 570 / 1081 15.6 / 8.2
LAYER 2 85.1 / 77.6 719 / 875 12.3 / 10.1 680 / 1074 13.1 / 8.3

Dependencies
LAYER 0 80.9 158 7.1 175 6.4
LAYER 1 94.0 / 90.3 80 / 103 14.0 / 10.8 74 / 106 15.1 / 10.5
LAYER 2 92.8 / 90.4 94 / 103 11.9 / 10.8 82 / 106 13.7 / 10.6

Entities
LAYER 0 92.3 40 13.2 40 13.1
LAYER 1 95.0 / 93.5 27 / 34 19.3 / 15.4 27 / 35 19.8 / 15.1
LAYER 2 95.3 / 93.6 30 / 34 17.7 / 15.2 26 / 35 19.9 / 15.1

SRL
LAYER 0 81.1 411 8.6 381 9.3
LAYER 1 91.9 / 84.4 228 / 306 15.5 / 11.5 212 / 365 16.7 / 9.7
LAYER 2 90.2 / 84.5 272 / 306 13.0 / 11.6 245 / 363 14.4 / 9.7

Coreference
LAYER 0 89.9 57.4 3.54 60 3.4
LAYER 1 92.9 / 90.7 50.3 / 54.5 4.04 / 3.72 51 / 65 4.0 / 3.1
LAYER 2 92.2 / 90.4 56.8 / 54.3 3.57 / 3.74 55 / 65 3.7 / 3.1

Rel. (SemEval)
LAYER 0 55.8 11.5 2.48 15.9 1.79
LAYER 1 75.2 / 69.1 8.0 / 9.7 3.56 / 2.94 8.8 / 11.8 3.2 / 2.4
LAYER 2 77.0 / 68.9 8.4 / 9.7 3.40 / 2.92 8.6 / 11.7 3.3 / 2.4

Table 4: Results are shown in pairs: trained / randomly initialized model. Code-
length is measured in kbits (variational codelength is given in equation (2), on-
line – in (3)), compression – with respect to the corresponding uniform code.

Table 5: Data and model
code components for the
tasks from Table 4.

4.1 Experimental Results

Results are shown in Table 4.

LAYER 0 vs contextual. As we have already
seen in the previous section, codelength shows dras-
tic difference between the embedding layer (LAYER

0) and contextualized representations: codelengths
differ about twice for most of the tasks. Both com-
pression methods show that even for the randomly
initialized model, contextualized representations
are better than lexical representations. This is be-
cause context-agnostic embeddings do not contain

enough information about the task, i.e., MI be-
tween labels and context-agnostic representations
is smaller than between labels and contextualized
representations. Since compression of the labels
given model (i.e., data component of the code) is
limited by the MI between the representations and
the labels (Section 2.1), the data component of the
codelength is much bigger for the embedding layer
than for contextualized representations.

Trained vs random. As expected, codelengths
for the randomly initialized model are larger than

191

for the trained one. This is more prominent when
not just looking at the bare scores, but compar-
ing compression against context-agnostic repre-
sentations. For all tasks, compression bounds for
the randomly initialized model are closer to those
of context-agnostic LAYER 0 than representations
from the trained model. This shows that gain from
using context for the randomly initialized model is
at least twice smaller than for the trained model.

Note also that randomly initialized layers do not
evolve: for all tasks, MDL for layers of the ran-
domly initialized model is the same. Moreover,
Table 5 shows that not only total codelength but
data and model components of the code for random
model layers are also identical. For the trained
model, this is not the case: LAYER 2 is worse than
LAYER 1 for all tasks. This is one more illustra-
tion of the general process explained in Voita et al.
(2019a): the way representations evolve between
layers is defined by the training objective. For the
randomly initialized model, since no training ob-
jective has been optimized, no evolution happens.

5 Related work

Probing classifiers are the most common approach
for associating representations with linguistic prop-
erties (see Belinkov and Glass (2019) for a survey).
Among the works highlighting limitations of stan-
dard probes (not mentioned above) is the work by
Saphra and Lopez (2019), who show that probes
are not suitable for analyzing learning dynamics.

In addition to task performance, learning curves
have also been used before by Yogatama et al.
(2019) to evaluate how quickly a model learns a
new task, and by Talmor et al. (2019) to understand
whether the performance of a LM on a task should
be attributed to the pre-trained representations or
to the process of fine-tuning on the task data.

Other methods for analyzing NLP models in-
clude (i) inspecting the mechanisms a model uses
to encode information, e.g. attention weights (Voita
et al., 2018; Raganato and Tiedemann, 2018; Voita
et al., 2019b; Clark et al., 2019; Kovaleva et al.,
2019) or individual neurons (Karpathy et al., 2015;
Pham et al., 2016; Bau et al., 2019), (ii) look-
ing at model predictions using manually defined
templates, either evaluating sensitivity to specific
grammatical errors (Linzen et al., 2016; Gulordava
et al., 2018; Tran et al., 2018; Marvin and Linzen,
2018) or understanding what language models
know when applying them as knowledge bases

or in QA settings (Radford et al., 2019; Petroni
et al., 2019; Poerner et al., 2019; Jiang et al., 2019).
An information-theoretic view on analysis of NLP
models has been previously attempted in Voita et al.
(2019a) when explaining how representations in the
Transformer evolve between layers under different
training objectives.

In context of probing, Pimentel et al. (2020) at-
tempted to formalize probing for linguistic struc-
ture from the information-theoretic perspective.
The authors measure mutual information between
representations and labels, and argue the impor-
tance of defining and taking into account “ease of
extraction”, though they do not formalize this no-
tion. That work can serve as an additional motiva-
tion for using MDL. Namely, minimum description
length is the sum of (i) the data codelength, which
is related to mutual information, and (ii) the model
codelength, which measures “the amount of effort”
needed to extract labels from representations; in
Pimentel et al. (2020), this is referred to as “ease
of extraction”.

6 Conclusions

We propose information-theoretic probing which
measures minimum description length (MDL) of
labels given representations. We show that MDL
naturally characterizes not only probe quality, but
also ‘the amount of effort’ needed to achieve it (or,
intuitively, strength of the regularity in representa-
tions with respect to the labels); this is done in a
theoretically justified way without manual search
for settings. We explain how to easily measure
MDL on top of standard probe-training pipelines.
We show that results of MDL probing are more
sensible compared to standard probes.

Acknowledgments

The work is partially supported by the European
Research Council (ERC StG BroadSem 678254)
and the Dutch National Science Foundation (NWO
VIDI 639.022.518).

References
Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir

Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations, New Orleans.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.

https://openreview.net/pdf?id=H1z-PsR5KX
https://openreview.net/pdf?id=H1z-PsR5KX
https://openreview.net/pdf?id=H1z-PsR5KX
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254

192

Transactions of the Association for Computational
Linguistics, 7:49–72.

Léonard Blier and Yann Ollivier. 2018. The descrip-
tion length of deep learning models. In Advances
in Neural Information Processing Systems, pages
2216–2226.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2014. One billion word benchmark for mea-
suring progress in statistical language modeling. In
Fifteenth Annual Conference of the International
Speech Communication Association.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Peter Grunwald. 2004. A tutorial introduction to
the minimum description length principle. arXiv
preprint math/0406077.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205. Associ-
ation for Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

GE Hinton and D von Cramp. 1993. Keeping neu-
ral networks simple by minimising the description
length of weights. In Proceedings of COLT-93,
pages 5–13.

Antti Honkela and Harri Valpola. 2004. Variational
learning and bits-back coding: an information-
theoretic view to bayesian learning. In IEEE Trans-
actions on Neural Networks, volume 15, pages 800–
810.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2019. How can we know what language
models know? arXiv preprint arXiv:1911.12543.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentation (ICLR 2015).

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for
Computational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of lstms to learn syntax-
sensitive dependencies. Transactions of the Associa-
tion for Computational Linguistics, 4:521–535.

Christos Louizos, Karen Ullrich, and Max Welling.
2017. Bayesian compression for deep learning. In
Advances in Neural Information Processing Systems,
pages 3288–3298.

David JC MacKay. 2003. Information theory, infer-
ence and learning algorithms. Cambridge university
press.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. 2017. Variational dropout sparsifies deep
neural networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages

http://papers.nips.cc/paper/7490-the-description-length-of-deep-learning-models.pdf
http://papers.nips.cc/paper/7490-the-description-length-of-deep-learning-models.pdf
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.1109/TNN.2004.828762
https://doi.org/10.1109/TNN.2004.828762
https://doi.org/10.1109/TNN.2004.828762
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
http://aclweb.org/anthology/Q16-1037
http://aclweb.org/anthology/Q16-1037
http://papers.nips.cc/paper/6921-bayesian-compression-for-deep-learning.pdf
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

193

2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Ngoc-Quan Pham, German Kruszewski, and Gemma
Boleda. 2016. Convolutional neural network lan-
guage models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1153–1162, Austin, Texas. Asso-
ciation for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. Bert is not a knowledge base (yet): Fac-
tual knowledge vs. name-based reasoning in unsu-
pervised qa. arXiv preprint arXiv:1911.03681.

Peng Qi and Christopher D. Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 110–117, Vancouver, Canada.
Association for Computational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
287–297, Brussels, Belgium. Association for Com-
putational Linguistics.

Jorma Rissanen. 1984. Universal coding, information,
prediction, and estimation. IEEE Transactions on
Information theory, 30(4):629–636.

Naomi Saphra and Adam Lopez. 2019. Understand-
ing learning dynamics of language models with
SVCCA. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 3257–3267, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2019. olmpics – on what lan-
guage model pre-training captures. arXiv preprint
arXiv:1912.13283.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2019. What do you learn from con-
text? probing for sentence structure in contextual-
ized word representations. In International Confer-
ence on Learning Representations.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018.
The importance of being recurrent for modeling hi-
erarchical structure. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4731–4736, Brussels, Bel-
gium. Association for Computational Linguistics.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong,
China. Association for Computational Linguistics.

Elena Voita, Pavel Serdyukov, Rico Sennrich, and Ivan
Titov. 2018. Context-aware neural machine trans-
lation learns anaphora resolution. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1264–1274, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019b. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797–5808, Florence,
Italy. Association for Computational Linguistics.

John Wieting and Douwe Kiela. 2019. No train-
ing required: Exploring random encoders for sen-
tence classification. In International Conference on
Learning Representations.

Dani Yogatama, Cyprien de Masson d’Autume, Jerome
Connor, Tomas Kocisky, Mike Chrzanowski, Ling-
peng Kong, Angeliki Lazaridou, Wang Ling, Lei
Yu, Chris Dyer, and Phil Blunsom. 2019. Learning
and evaluating general linguistic intelligence. arXiv
preprint arXiv:1901.11373.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task
analysis. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 359–361, Brussels, Bel-
gium. Association for Computational Linguistics.

https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D16-1123
https://doi.org/10.18653/v1/D16-1123
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/P17-2018
https://doi.org/10.18653/v1/P17-2018
http://www.aclweb.org/anthology/W18-5431
http://www.aclweb.org/anthology/W18-5431
http://www.aclweb.org/anthology/W18-5431
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://arxiv.org/abs/1912.13283
https://arxiv.org/abs/1912.13283
https://openreview.net/pdf?id=SJzSgnRcKX
https://openreview.net/pdf?id=SJzSgnRcKX
https://openreview.net/pdf?id=SJzSgnRcKX
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P18-1117
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://openreview.net/forum?id=BkgPajAcY7
https://openreview.net/forum?id=BkgPajAcY7
https://openreview.net/forum?id=BkgPajAcY7
https://arxiv.org/abs/1901.11373
https://arxiv.org/abs/1901.11373
https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/W18-5448
https://www.aclweb.org/anthology/W18-5448

194

A Description Length and Control Tasks

Accuracy Description Length
variational code online code

codelength compr. codelength compr.

MLP-2, h=1000
L 0 93.7 / 96.3 163 / 267 32 / 19 173 / 302 30 / 17
L 1 97.5 / 91.9 85 / 470 60 / 11 96 / 515 53 / 10
L 2 97.3 / 89.4 103 / 612 50 / 8 115 / 717 44 / 7

MLP-2, h=500
L 0 93.5 / 96.2 161 / 268 32 / 19 170 / 313 30 / 16
L 1 97.8 / 92.1 84 / 470 61 / 11 93 / 547 55 / 9
L 2 97.1 / 86.5 102 / 611 50 / 8 112 / 755 46 / 7

MLP-2, h=250
L 0 93.6 / 96.1 161 / 274 32 / 19 169 / 328 30 / 16
L 1 97.7 / 90.3 84 / 470 61 / 11 91 / 582 56 / 9
L 2 97.1 / 85.2 101 / 611 50 / 8 112 / 799 46 / 6

MLP-2, h=100
L 0 93.7 / 95.5 161 / 261 32 / 20 167 / 367 31 / 14
L 1 97.6 / 86.9 84 / 492 61 / 10 91 / 678 56 / 8
L 2 97.2 / 80.9 102 / 679 50 / 8 112 / 901 46 / 6

MLP-2, h=50
L 0 93.7 / 93.1 161 / 314 32 / 16 166 / 416 31 / 12
L 1 97.6 / 82.7 84 / 605 61 / 8 93 / 781 55 / 7
L 2 97.0 / 76.2 102 / 833 50 / 6 116 / 1007 44 / 5

MLP-1, h=1000
L 0 93.7 / 96.8 160 / 254 32 / 20 166 / 275 31 / 19
L 1 97.7 / 92.7 82 / 468 62 / 11 88 / 477 58 / 11
L 2 97.0 / 86.7 100 / 618 51 / 8 107 / 696 48 / 7

MLP-1, h=500
L 0 93.6 / 97.2 159 / 257 32 / 20 164 / 295 31 / 17
L 1 97.5 / 91.6 82 / 468 62 / 11 88 / 516 58 / 10
L 2 97.0 / 86.3 100 / 619 51 / 8 107 / 736 48 / 7

MLP-1, h=250
L 0 93.6 / 96.6 159 / 257 32 / 20 164 / 316 31 / 16
L 1 97.5 / 89.9 82 / 473 62 / 11 87 / 574 58 / 9
L 2 97.1 / 84.2 99 / 632 51 / 8 109 / 795 47 / 6

MLP-1, h=100
L 0 93.7 / 95.3 159 / 269 32 / 19 163 / 374 31 / 14
L 1 97.6 / 86.4 82 / 525 62 / 10 87 / 683 58 / 8
L 2 97.1 / 80.0 100 / 731 51 / 7 109 / 905 47 / 6

MLP-1, h=50
L 0 93.7 / 92.7 159 / 336 32 / 15 164 / 438 31 / 11
L 1 97.6 / 82.0 82 / 648 62 / 8 90 / 790 56 / 7
L 2 97.2 / 75.0 100 / 875 51 / 6 114 / 1016 45 / 5

Table 6: Experimental results; shown in pairs: linguis-
tic task / control task. Codelength is measured in kbits
(variational codelength is given in equation (2), online
– in equation (3)). h is the probe hidden layer size.

A.1 Results for Different Settings

Results are given in Table 6.

A.2 Results for Random Seeds: Control Task

Results are shown in Figure 4.

Figure 4: Results for 5 random seeds, control task (de-
fault setting: MLP-2, h = 1000).

B MDL and Random Models

B.1 Experimental Setting

Tasks and datasets. We focus on several core
NLP tasks: PoS tagging, syntactic constituent and
dependency labeling, named entity recognition, se-
mantic role labeling, coreference resolution, and
relation classification. Examples for each task are
shown in Table 3, dataset statistics are in Table 8.
See extra details in Tenney et al. (2019).

We follow Tenney et al. (2019) and use
ELMo (Peters et al., 2018) trained on the Billion
Word Benchmark dataset (Chelba et al., 2014).

Probes and optimization. Probing architecture
is illustrated in Figure 5. It takes a list of con-
textual vectors [e0, e1, . . . , en] and integer spans
s1 = [i1, j1) and (optionally) s2 = [i2, j2) as in-
puts, and uses a projection layer followed by the
self-attention pooling operator of Lee et al. (2017)
to compute fixed-length span representations. The
span representations are concatenated and fed into
a two-layer MLP followed by a softmax output
layer. As in the original paper, we use the standard
cross-entropy loss, hidden layer size of 256 and
dropout of 0.3. For further details on training, we
refer the reader to the original paper by Tenney
et al. (2019).7

For the variational code, the layers are replaced
with that of Bayesian compression by Louizos et al.
(2017); loss function changes to (2) and no dropout
is used. Similar to the experiments in the previous
section, we do not anneal learning rate and train at
least 200 validations to enable pruning.

We build our experiments on top of the origi-
nal code by Tenney et al. (2019) and release our
extended version.

7The differences with the original implementation by Ten-
ney et al. (2019) are: softmax with the cross-entropy loss
instead of sigmoid with binary cross-entropy, using the loss
instead of F1 in the early stopping criterion.

195

Labels Number of sentences Number of targets

Part-of-speech 45 39832 / 1700 / 2416 950028 / 40117 / 56684

Table 7: Dataset statistics. Numbers of sentences and targets are given for train / dev / test sets.

Labels Number of sentences Number of targets

Part-of-speech 48 115812 / 15680 / 12217 2070382 / 290013 / 212121
Constituents 30 115812 / 15680 / 12217 1851590 / 255133 / 190535
Dependencies 49 12522 / 2000 / 2075 203919 / 25110 / 25049
Entities 18 115812 / 15680 / 12217 128738 / 20354 / 12586
SRL 66 253070 / 35297 / 26715 598983 / 83362 / 61716
Coreference 2 115812 / 15680 / 12217 207830 / 26333 / 27800
Rel. (SemEval) 19 6851 / 1149 / 2717 6851 / 1149 / 2717

Table 8: Dataset statistics. Numbers of sentences and targets are given for train / dev / test sets.

Figure 5: Probing model architecture for an edge prob-
ing task. The example is for semantic role labeling; for
PoS, NER and constituents, only a single span is used.

B.2 Pruned Probe Architectures
For each task, we provide pruned architecture of
trained variational probes in Tables 9-15.

Accuracy Final probe

layer 0
base 91.31 728-31-154

layer 1
base 97.7 878-42-172

random 96.76 876-50-228

layer 2
base 97.32 872-50-211

random 96.76 929-47-229

Table 9: Pruned architecture of a trained variational
probe, Part of Speech (starting probe: 1024-256-256).

Accuracy Final probe

layer 0
base 75.61 976-47-242

layer 1
base 86.01 1011-53-227

random 81.35 1001-57-235

layer 2
base 84.36 985-61-238

random 81.42 971-57-234

Table 10: Pruned architecture of a trained variational
probe, constituent labeling (starting probe: 1024-256-
256).

Accuracy Final probe

layer 0
base 80.11 (423+356)-36-119

layer 1
base 92.3 (682+565)-38-85

random 89.86 (635+548)-40-98

layer 2
base 90.6 (581+422)-42-104

random 89.96 (646+538)-38-94

Table 11: Pruned architecture of a trained vari-
ational probe, dependency labeling (starting probe:
(1024+1024)-512-256).

196

Accuracy Final probe

layer 0
base 91.7 450-16-36

layer 1
base 94.95 509-16-35

random 93.36 551-18-36

layer 2
base 94.93 527-17-41

random 93.57 536-18-34

Table 12: Pruned architecture of a trained variational
probe, named entity recognition (starting probe: 1024-
256-256).

Accuracy Final probe

layer 0
base 79.1 (567+754)-46-158

layer 1
base 90.25 (709+937)-48-140

random 86.59 (678+857)-55-148

layer 2
base 88.5 (601+863)-52-142

random 86.34 (744+889)-53-151

Table 13: Pruned architecture of a trained varia-
tional probe, semantic role labeling (starting probe:
(1024+1024)-512-256).

Accuracy Final probe

layer 0
base 88.87 (358+352)-16-20

layer 1
base 91.6 (497+492)-20-22

random 90.35 (363+357)-23-21

layer 2
base 90.29 (519+505)-18-19

random 90.45 (375+377)-21-21

Table 14: Pruned architecture of a trained varia-
tional probe, coreference resolution (starting probe:
(1024+1024)-512-256).

Accuracy Final probe

layer 0
base 48.77 (138+137)-10-14

layer 1
base 71.07 (116+178)-16-17

random 60.73 (168+135)-15-15

layer 2
base 71.59 (123+164)-14-18

random 60.69 (167+125)-13-15

Table 15: Pruned architecture of a trained varia-
tional probe, relation classification (starting probe:
(1024+1024)-512-256).

