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Abstract

Topic models have been prevailing for many
years on discovering latent semantics while
modeling long documents. However, for short
texts they generally suffer from data spar-
sity because of extremely limited word co-
occurrences; thus tend to yield repetitive or
trivial topics with low quality. In this paper,
to address this issue, we propose a novel neu-
ral topic model in the framework of autoen-
coding with a new topic distribution quantiza-
tion approach generating peakier distributions
that are more appropriate for modeling short
texts. Besides the encoding, to tackle this
issue in terms of decoding, we further pro-
pose a novel negative sampling decoder learn-
ing from negative samples to avoid yielding
repetitive topics. We observe that our model
can highly improve short text topic modeling
performance. Through extensive experiments
on real-world datasets, we demonstrate our
model can outperform both strong traditional
and neural baselines under extreme data spar-
sity scenes, producing high-quality topics.

1 Introduction

In addition to formal documents, short texts play
an increasingly more important role in the era of
information explosion where people could instantly
share ideas, feelings, and comments via short text
fragments, including tweets, headlines, and product
reviews, etc. The latent semantics or topics discov-
ered among these short texts can be utilized in many
applications, such as content summarization (Ma
et al., 2012), classification(Zeng et al., 2018a), and
recommendations (Zeng et al., 2018b; Mehrotra
et al., 2013). However, conventional topic models
(Blei et al., 2003) work reasonably well on vari-
ous kinds of long documents, but perform poorly
on short texts. The main underlying reason is that
the co-occurrence information from short texts is
extremely limited as known as the data sparsity

sports scores games soccer league tennis ncaa players football
sports tennis soccer hockey games football beach match players
sports match cup hockey olympic football players sport league
sports football sport league games tennis champions club
sports football league game tennis players hockey games scores

bad additional abstract aspectj behave displayed customise accept
abstract behave accept additional bad displayed customise
abstract accept behave additional adding long many administration

Table 1: Repetitive and trivial topics from short texts.
Repetitive words are underlined.

problem which hinders the topic models from learn-
ing effective semantics and high-quality topics in
a pure unsupervised learning fashion. Therefore,
several approaches have been proposed to allevi-
ate this issue. One simple approach is to yield
pseudo texts (Quan et al., 2015), so that the con-
ventional topic models can apply, e.g., user data
(Weng et al., 2010), hashtags (Mehrotra et al., 2013)
and external corpora (Zuo et al., 2016), but aux-
iliary information is not always available. In an-
other vein, extra structural information or seman-
tics are incorporated with the models. For instance,
Biterm Topic Model (BTM) (Yan et al., 2013) di-
rectly constructs the topic distributions over un-
ordered word-pairs (biterms); Generalized Pólya
Urn-DMM (GPUDMM) (Li et al., 2016) applies
auxiliary pre-trained word embeddings to introduce
external information from other sources. However,
the data sparsity problem of short texts remains to
be solved, especially resulting in repetitive and triv-
ial topics. For example, as illustrated in Table 1, we
can see several repetitive topics about sports includ-
ing repeated words like “football”, “games”, and
“tennis”, and trivial topics composed of incoherent
words are discovered from short texts. These topics
are of low quality and could impair the performance
of downstream tasks.

In this paper, we aim to design a model that can
generate high-quality topics from short texts and
is more robust to rigorous data sparsity scenarios
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without any auxiliary corpus. Different from pre-
vious methods, we propose a new Negative sam-
pling and Quantization Topic Model (NQTM)
in an auto-encoding framework to address the un-
supervised short text modeling problem including
two essential and novel methods. First, for short
texts, we need peakier topic distributions for decod-
ing since short texts cover few primary topics, like
Dirichlet Multinomial Mixture (DMM) (Nigam
et al., 2000; Yin and Wang, 2014) that assumes
each short text only covers one topic. In the autoen-
coding framework, a possible and straightforward
way is using gumbel-softmax (Jang et al., 2016),
but its performance is highly determined by the
temperature parameter that necessarily needs to be
tuned across topic numbers and corpora; therefore,
it may not guarantee high-quality topics. Another
way is quantizing the latent representations like
VQ-VAE (van den Oord and Vinyals, 2017). Unfor-
tunately, the original quantization of VQ-VAE is for
image generation and cannot produce peakier dis-
tributions for short text topic modeling. Therefore,
we propose the novel topic distribution quantization
for short texts by separably mapping topic distribu-
tions into an appropriate defined embedding space.
With this new method, our model can naturally
encourage discretization to flexibly yield peakier
distributions for decoding, resulting in much better
topic quality performance.

Second, we propose a new negative sampling
decoder to improve the topic diversity performance.
As mentioned previously, short texts are extremely
sparse inputs, so the learning signals are too weak
to converge to a good local minimum, notably in an
unsupervised learning fashion, leading to repetitive
topics. Therefore, instead of using a straightfor-
ward log-likelihood objective, we propose a nega-
tive sampling decoder with the reconstruction by
selecting target words from assigned topics and
negative words from the topics that are unlikely to
be assigned. It acts as an inductive bias that en-
courages the topic-word distributions to be pushed
away from each other, resulting in a better learning
objective for generating diverse topics. The main
contributions1 of this paper can be concluded as

• We propose a neural model with a novel topic
distribution quantization method to produce
peakier distributions for improving short text
topic modeling;

1The code is available at https://github.com/
bobxwu/NQTM

• We also propose a negative sampling decoder
to enhance the diversity of short text topics
instead of conventional log-likelihood maxi-
mization;

• We conduct comprehensive experiments on
real-world datasets and demonstrate that our
model can effectively alleviate the data spar-
sity problem and generate higher quality top-
ics for short texts (more coherent and diverse);

• We further discuss the trade-off of short text
topic models between topic coherence and
diversity in detail and show our model outper-
forms baselines on both these aspects.

2 Related Work

Conventional topic models Conventional prob-
abilistic topic models, e.g., Probabilistic Latent Se-
mantic Analysis (PLSA) (Hofmann, 1999) and La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003),
work very well on formal documents with long
texts. To improve the performance of short text
topic modeling, Biterm Topic Model (BTM) (Yan
et al., 2013) and Dirichlet Multinomial Mixture
(DMM) model (Nigam et al., 2000; Sadamitsu
et al., 2007; Yin and Wang, 2014) are two basic
short text probabilistic topic models which em-
ploy traditional Bayesian inference methods includ-
ing Gibbs Sampling (Steyvers and Griffiths, 2007)
and Variational Inference (Blei et al., 2017). Sev-
eral extensions based on BTM and DMM are also
proposed, such as Generalized Pólya Urn-DMM
(GPUDMM) (Li et al., 2016) with word embed-
dings and Multiterm Topic Model (Wu and Li,
2019). Besides, Semantics-assisted Non-negative
Matrix Factorization (SeaNMF) (Shi et al., 2018)
was lately proposed as an NMF topic model incor-
porating word-context semantic correlations solved
by a block coordinate descent algorithm.

Neural topic models More recently, deep neural
networks have shown great potential for learning
complicated distributions for unsupervised mod-
els. Due to the success of Variational AutoEncoder
(VAE) (Kingma and Welling, 2014; Rezende et al.,
2014), various neural topic models are proposed
(Nan et al., 2019; Wu et al., 2020). Neural Vari-
ational Document Model (NVDM) (Miao et al.,
2016) is the first VAE-based neural topic model
that adopts the reparameterization trick of Gaus-
sian distributions and achieves remarkable results

https://github.com/bobxwu/NQTM
https://github.com/bobxwu/NQTM
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on normal text topic modeling. Some extensions
like Gaussian Softmax Construction (GSM) have
been explored in (Miao et al., 2017). Product of ex-
pert LDA (ProdLDA) is proposed by Srivastava and
Sutton (2017) using Logistic Normal distribution
due to the difficulty of taking the reparameteriza-
tion trick for Dirichlet distribution, which is impor-
tant for topic modeling. Topic Memory Network
(TMN) (Zeng et al., 2018a) is proposed for super-
vised short text topic modeling and classification
with pre-trained word embeddings, incorporating
the neural topic model (Miao et al., 2016) with
memory networks (Weston et al., 2014). Differ-
ent from these neural topic models, the proposed
model aims to improve short text topic modeling
without any extra information. Our model relies
on the novel topic distribution quantization to dis-
crete the latent representations in the auto-encoding
framework instead of the VAE assumption. Mean-
while, a new objective under the negative sampling
decoder replaces the traditional log-likelihood max-
imization objective to especially alleviate the data
sparsity of short texts.

3 Negative sampling and Quantization
Topic Model

3.1 A Brief Review of Topic Models
LDA (Blei et al., 2003) is one of the most classic
probabilistic topic models. In its formulation, a
topic is defined as a distribution of words and each
word in a text is drawn from a mixture of Multi-
nomial distributions with Dirichlet distribution as
the priori. In LDA, the latent variable z denotes
the topic assignment of word xi and θ is the topic
distribution of a text. According to the generation
procedure of LDA, the marginal likelihood of a text
x is

p(x|α,β)

=

∫
θ

(
N∏
i=1

K∑
z=1

p (xi|z,β) p (z|θ)

)
p(θ|α)dθ

where N refers to the number of words in text x,
α is the hyperparameter of Dirichlet distribution,
βz refers to the topic distribution over words given
the topic assignment z and β = (β1, . . . ,βK) ∈
RV×K is the matrix of all topic words probability
vectors (V is the vocabulary size and K is the topic
numbder). Then, approximation methods, like Vari-
ational Inference or Gibbs Sampling, are employed
to approximate the intractable posterior.

In a different way, with the help of neural varia-
tional inference, neural topic models (Miao et al.,
2017; Srivastava and Sutton, 2017) have been pro-
posed to simplify the inference and the model
can be directly updated by gradient backpropaga-
tion. These models adopt a simplification that the
discrete latent variable z is integrated out in the
marginal likelihood as

p(x|α,β)=
∫
θ

(
N∏
i=1

p (xi|θ,β)

)
p(θ|α)dθ (1)

Based on these preceding neural topic models, we
present our proposed model for short text topic
modeling.

3.2 Network Architecture

In this section, we detail the proposed Negative
sampling and Quantization Topic Model (NQTM).
Figure 1 shows the overall architecture including
three main parts.

3.2.1 Short Text Encoder
Topic models discover semantic information (top-
ics) among large unlabeled datasets using word
co-occurrence, so topic models typically apply the
bag-of-words assumption ignoring the sequence
for simplification. Thus, we adopt MLPs that are
eligible enough for both encoder and decoder. We
assume the short text x is in the form of bag-of-
words which produces continuous representations
through the short text encoder. We adopt the fol-
lowing simple network structure as our short text
encoder:

π1 = ζ(W 1x+ b1) (2)

π2 = ζ(W 2π1 + b2) (3)

θe = σ(π2) (4)

whereW 1 andW 2 are linear transformations, and
π1 and π2 are intermediate outputs; σ(·) means
softmax function for normalization and ζ(·) de-
notes softplus function. After the encoder, we
have the lower dimensional representation θe of
the short text x.

3.2.2 Topic Distribution Quantization
Instead of directly feeding the continuous represen-
tation θe to the decoder as previous neural topic
models (Miao et al., 2016, 2017; Srivastava and
Sutton, 2017), we employ the quantization step
ahead. Unfortunately, we find that directly using
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Figure 1: The overall architecture of NQTM with three main components including the short text encoder, the
novel topic distribution quantization for short texts, and the new negative sampling decoder.

ordinary quantization is not a guarantee for better
topic quality, because the latent representations can
not be distinguished during optimization. More
precisely, since the original embedding space of
VQ-VAE is randomly initialized with uniform dis-
tributions, these embedding vectors of VQ-VAE
are too close to each other to distinguish. Thus,
it is arduous for the model to learn to separably
map the latent representations of different topics
to the embedding vectors, resulting in extremely
repetitive topics.

To this end, we propose a novel topic distribution
quantization method to alleviate the data sparsity
problem of short texts especially. We first set a
discrete embedding space e = (e1, e2, . . . , eB) ∈
RK×B where B is the size of the embedding space.
To encourage the maximum of distances between
embedding vectors and have peakier topic distri-
butions, the first K vectors (e1 · · · eK) are initial-
ized with identity matrix and the remaining vec-
tors (eK+1 · · · eB) are initialized with uniform unit
scaling Uniform

(
−
√

3/K,
√

3/K
)
. Therefore,

the embedding space e can be written as

e =


1 0 . . . 0

eK+1 . . . eB
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 (5)

which can be seen as an extended identity matrix.
The continuous representation θe is mapped to the

nearest vector θq of the embedding space e as

θq = ek, where k = argminj ‖θe − ej‖2 . (6)

In this way, the proposed new quantizing topic dis-
tributions method for short texts can make the la-
tent representations separably map to distinguished
embedding vectors and flexibly generate peakier
topic distributions, which can stimulate our model
to tackle the data sparsity and improve the diversity
and coherence of topics.

3.2.3 Negative Sampling Decoder
After the topic distribution quantization, θq is fed
to the decoder for reconstruction. It has been found
that normalizing topic words probability matrix
β, such as σ(β), results in trivial and less dis-
criminative topics (Srivastava and Sutton, 2017).
Hence, according to Equation (1), the reconstruc-
tion of a word xi in the text x is modeled as
xi ∼ Mult(σ(βθq)).

Negative sampling algorithm In contrast to the
standard decoder with log-likelihood maximization
objective function, we propose to take advantage of
the negative sampling scheme and formulate a new
decoder to generate more diverse topics. Similar
ideas are mentioned in some data sparsity fields like
collaborative filtering (Liang et al., 2018) where if
for a short text , the negative samples simply are all
the words that do not exist in it. But this method
is unable to distinguish the words from different
topics explicitly.



1776

Thus, instead of applying this simple solution,
we further propose the negative sampling decoder.
We take the words with high probabilities in the
other topics but not assigned to the current text
fragment as negative samples. The intuition is to
strengthen the discrimination between the words
drawn from the assigned topic distribution and a
negative draw from other topics that are not as-
signed to the text. Therefore, we introduce an in-
ductive bias that prompts the topic-word distribu-
tions to be pushed away from each other. In the
meantime, the neural model benefits from a bet-
ter learning signal other than the ordinary softmax
loss. As shown in Figure 1, given a short document
and its topic distribution, we first remove the top t
probable topics and sample one negative topic zneg
from the left (K − t) topics with equal probability,
which is

zneg ∼ Mult(p, 1) (7)

where p = (p1, p2, . . . , pK) and pk is the probabil-
ity of choosing topic k, defined as

pk =

{
0 topic k is included in top t topics
1

K−t otherwise

Therefore, zneg represents a topic that the docu-
ment is unlikely to cover because of its low proba-
bility to be assigned. Then, we generate M words
from βzneg

by TopK function as

xneg = TopK(βzneg
,M) (8)

where xneg denotes the M words that topic zneg
is more likely to contain. But since the document
is supposed to not cover zneg, the decoder should
avoid generating them during reconstruction. This
heuristic acts as a positive bias to help the model
discover high-quality topics and the negative sam-
ples xneg can amplify the learning signals for better
optimizing the neural model and improving topic
diversity.

Objective function With the negative sampling
decoder, we can then construct our objective func-
tion. The reconstruction error and the negative
sampling error are

Lrecon(x(i)) = −x(i) · log
(
σ(βθ(i)q )

)
(9)

Lneg(x(i)) = −x(i)
neg · log

(
1− σ(βθ(i)q )

)
(10)

where x(i) refers to the i-th short text in the cor-
pus. As indicated previously, θ(i)e means the latent
representation outputted by the encoder for x(i)

and θ(i)q is the discrete representation after the new
topic distribution quantization part. We apply the
cross-entropy between inputs x(i) and σ(βθ(i)q ) to
calculate the reconstruction error. For the negative
sampling error, we also use the cross-entropy be-
tween x(i)

neg and (1− σ(βθ(i)q )) to enrich learning
signals. Therefore, the overall training objective
with the negative sampling decoder can be written
as

L(Θ) =

D∑
i=1

[
Lrecon(x(i)) + Lneg(x(i))

+
∥∥sg(θ(i)e )− θ(i)q

∥∥2
2
+ λ

∥∥sg(θ(i)q )− θ(i)e
∥∥2
2

]
where Θ means all parameters and D is the num-
ber of texts in a corpus. In order to minimize the
distance between the embedding vector θ(i)q and
the encoder output θ(i)e , training objective includes
the l2 regularization between them. In detail, λ is
a hyper parameter and sg(·) operator means the
stop-gradient operation defined as

sg(x) =

{
x forward pass
0 backward pass

that blocks gradients from flowing into its argu-
ment.

The above is the architecture of our proposed
model NQTM and moreover, we name a simple
variant of NQTM without the negative sampling
error Lneg as Quantization Topic Model (QTM).
From the above description, our model NQTM dif-
fers from the VQ-VAE in two aspects. First, in-
stead of a standard decoder, our model includes the
new negative sampling decoder. Second, a novel
topic distribution quantization method is proposed
particularly for short texts to yield sharper distribu-
tions. These approaches are both to alleviate the
data sparsity issue and we demonstrate the effec-
tiveness of these two technical contributions in the
next sections.

4 Experiments Setup

4.1 Datasets

Several real-world short text datasets are adopted
in our experiment. The details are listed as

• StackOverflow2 This dataset originates from

2https://github.com/jacoxu/
StackOverflow

https://github.com/jacoxu/StackOverflow
https://github.com/jacoxu/StackOverflow
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Datasets # of Average # of Vocabulary
docs length labels size

StackOverflow 19,901 4.6 20 2,607
TagMyNews Title 31,223 5.2 7 6,391

Snippet 10,053 10.3 8 4,004
Yahoo Answer 19,027 4.1 10 3,243

Table 2: Statistics of datasets after preprocessing. La-
bels refer to the class labels of the corpus.

the challenge data published in Kaggle3 . We
use the dataset containing randomly selected
20,000 question titles provided by Xu et al.
(2015). Each question title is annotated with
an information technology name like “mat-
lab”, “osx” and “visual studio” as labels.

• TagMyNews Title4 This dataset contains ti-
tles and contents of Engish news released by
Vitale et al. (2012). We utilize the news titles
as short texts in our experiment. Each news is
assigned with a ground-truth label, e.g., “sci-
tech”, and “business”, etc.

• Snippet5 This dataset is provided by Phan
et al. (2008) composed of the web content
from Google search snippets. Eight labels are
included in this dataset, such as “Culture-Arts-
Entertainment” and “Computers”, etc.

• Yahoo Answer6 We obtained this dataset
from Zhang et al. (2015) through the Yahoo
Webscope program, including question titles,
contents, and best answers. We adopt the ques-
tion titles for topic modeling, totally contain-
ing ten labels.

To preprocess the raw content, we conduct the
following steps: (1) tokenize each text and re-
move non-Latin characters and stop words by using
NLTK7 ; (2) filter out short texts with length less
than 2; (3) remove words with document frequency
less than 5; (4) convert all letters into lower cases.
The statistics of each dataset after preprocessing
are summarized in Table 2.

3https://www.kaggle.com/c/
predict-closed-questions-on-stack-overflow/
download/train.zip

4http://acube.di.unipi.it/tmn-dataset/
5http://jwebpro.sourceforge.net/

data-web-snippets.tar.gz
6https://answers.yahoo.com
7https://nltk.org

4.2 Baseline Models
We take both conventional and neural topic models
as baselines for comparison. For traditional topic
models, we consider LDA (Blei et al., 2003), BTM8

(Yan et al., 2013), DMM9 (Yin and Wang, 2014),
GPUDMM10 (Li et al., 2016), and SeaNMF11 (Shi
et al., 2018). Note that SeaNMF is the state-of-the-
art conventional model. In terms of neural topic
models, we compare our model with NVDM12

(Miao et al., 2016), GSM (Miao et al., 2017) and
ProdLDA13 (Srivastava and Sutton, 2017). Re-
cently proposed supervised model TMN14 (Zeng
et al., 2018a) is also taken into consideration. We
also compare our model with VQ-VAE to demon-
strate the effectiveness of our proposed topic distri-
bution quantization method.

5 Experimental Results

5.1 Topic Quality Evaluation
Topic Quality Metrics As mentioned before, the
challenge of data sparsity in short texts results in
two problems: generated topic words tend to be
incoherent (trivial topics), and highly similar top-
ics with repeated words are also yielded (repeti-
tive topics). Therefore, we focus on the evalua-
tion of topic quality referring to these two aspects,
topic coherence and diversity. Topic coherence
metrics depend on co-occurrences of topic words
learned by models in the external corpus assum-
ing that coherent words should co-occur within a
certain distance. A new topic coherence metric
CV was introduced by Röder et al. (2015), which
has been proven to perform better than other co-
herence metrics like widely-used NPMI (Bouma,
2009; Newman et al., 2010; Chang et al., 2009)
and UMASS(Mimno et al., 2011). According to
Krasnashchok and Jouili (2018), given a topic z
and its top T words (x1, x2, ..., xT ) sorted by the
probability, the definition of CV is

CV (z) =
1

T

T∑
i=1

scos(vNPMI(xi),vNPMI(x1:T ))

where scos(·) means cosine similarity function and
the vectors are defined as

8https://github.com/xiaohuiyan/BTM
9https://github.com/jackyin12/GSDMM

10https://github.com/NobodyWHU/GPUDMM
11https://github.com/tshi04/SeaNMF
12https://github.com/ysmiao/nvdm
13https://github.com/akashgit/

autoencoding_vi_for_topic_models
14https://github.com/zengjichuan/TMN

https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
https://www.kaggle.com/c/predict-closed-questions-on-stack-overflow/download/train.zip
http://acube.di.unipi.it/tmn-dataset/
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
http://jwebpro.sourceforge.net/data-web-snippets.tar.gz
https://answers.yahoo.com
 https://nltk.org 
https://github.com/xiaohuiyan/BTM
https://github.com/jackyin12/GSDMM
https://github.com/NobodyWHU/GPUDMM
https://github.com/tshi04/SeaNMF
https://github.com/ysmiao/nvdm
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/akashgit/autoencoding_vi_for_topic_models
https://github.com/zengjichuan/TMN
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Models StackOverflow TagMyNews Title Snippet Yahoo Answer

K=20 K=50 K=20 K=50 K=20 K=50 K=20 K=50

Unsupervised CV TU CV TU CV TU CV TU CV TU CV TU CV TU CV TU
LDA 0.353 0.675 0.352 0.639 0.355 0.845 0.352 0.789 0.389 0.747 0.396 0.699 0.327 0.690 0.334 0.689
BTM 0.377 0.530 0.378 0.379 0.412 0.765 0.415 0.681 0.426 0.625 0.420 0.574 0.389 0.560 0.392 0.454
DMM 0.370 0.561 0.366 0.409 0.367 0.788 0.383 0.742 0.392 0.590 0.401 0.585 0.326 0.628 0.341 0.595
GPUDMM 0.372 0.568 0.362 0.496 0.378 0.798 0.391 0.744 0.405 0.604 0.409 0.600 0.332 0.633 0.351 0.626
SeaNMF 0.371 0.770 0.368 0.703 0.397 0.935 0.415 0.925 0.439 0.922 0.436 0.923 0.346 0.773 0.361 0.811
NVDM 0.386 0.982 0.376 0.905 0.458 0.995 0.421 0.964 0.434 0.986 0.391 0.937 0.387 0.988 0.370 0.915
GSM 0.365 0.658 0.356 0.482 0.357 0.807 0.351 0.612 0.399 0.781 0.399 0.649 0.325 0.668 0.321 0.470
ProdLDA 0.385 0.926 0.378 0.868 0.415 0.969 0.397 0.929 0.439 0.811 0.440 0.653 0.385 0.968 0.390 0.885

QTM 0.412 0.993 0.390 0.942 0.499 1.000 0.430 0.975 0.442 0.999 0.426 0.957 0.392 0.997 0.371 0.956
NQTM 0.416 0.998 0.394 0.953 0.502 1.000 0.432 0.985 0.442 1.000 0.431 0.968 0.406 0.997 0.373 0.977

Supervised
TMN 0.423 0.397 0.420 0.269 0.464 0.453 0.428 0.347 0.465 0.613 0.427 0.516 0.343 0.527 0.322 0.220

VQ-VAE 0.457 0.303 0.363 0.435 0.477 0.693 0.483 0.444 0.419 0.737 0.407 0.447 0.382 0.423 0.383 0.463

Table 3: Topic coherence (CV ) and unique score (TU ) of the top 15 words. K is the topic number. QTM means
the variant of NQTM without negative sampling. The best in each unsupervised topic model is in bold.

vNPMI(xi) = {NPMI(xi, xj)}j=1,...,T

vNPMI(x1:T ) =

{
T∑
i=1

NPMI (xi, xj)

}
j=1,...,T

.

Then, the NPMI is calculated as

NPMI(xi, xj) =
log

p(xi,xj)+ε
p(xi)p(xj)

− log(p(xi, xj) + ε)

where p(xi) is the probability of xi, p(xi, xj) the
coocurrance probability of xi, xj within a window
in the reference corpus and ε is used to avoid zero.
We use the public tool15 to compute CV provided
by Röder et al. (2015).

Besides CV score, we employ the topic unique
metric (TU ) (Nan et al., 2019) for topic diversity
evaluation. For the top T words of topic z, it is
defined as

TU(z) =
1

T

T∑
i=1

1

cnt(xi)

where cnt(xi) is the total number of times that
word xi appears in the top T words of all top-
ics. Therefore TU score ranges from 1/K to 1
and a higher value means the generated topics are
more diverse due to fewer duplicated words across
other topics. It is crucial to note that in general,
higher TU scores tend to cause lower CV scores

15https://github.com/dice-group/
Palmetto

because coherent words seldom repeat, and higher
CV scores often lead to lower TU scores because
coherent words frequently repeat across topics. We
show our model can achieve significantly better
performance on both aspects in the following.

Result Analysis Table 3 reports the topic coher-
ence (CV ) and unique scores (TU ) of the top 15
words under topic number K = 20 and 50. To be
more specific, when topic numberK = 20, NQTM
can achieve significantly higher CV scores, and we
notice that TU scores of NQTM reach the highest
on all datasets. When K = 50, NQTM still sur-
passes all unsupervised baselines on StackOverflow
and TMN title in terms of both TU and CV scores.
Although CV scores of ProdLDA and BTM are
higher on Snippet and Yahoo Answer, TU scores
of NQTM are much better than them. As men-
tioned earlier, the reason is that the CV scores can
be easily tricked by the repetitive topics composed
of prominent words while with low topic diver-
sity performance (further illustrated in Section 5.4).
This issue is evenly severer for TMN. Notably, we
can see TU scores of TMN are among the worst
of all baselines, which is because the diversity of
topics learned from TMN is not encouraged with
the strong learning signal from the classification
loss. Although some discovered topics seem coher-
ent from the above baselines, unfortunately, many
repetitive and less informative topics are ineffective
in downstream applications; thus, their higher CV
scores are meaningless. On the contrary, we can ob-
serve the topic diversity performance of NQTM is

https://github.com/dice-group/Palmetto
https://github.com/dice-group/Palmetto
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Figure 2: Topic coherence (CV ) and diversity (TU ) performance with various topic numbers(K) (a, b) and mini-
mum document frequencies (min-df) (c, d).
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Figure 3: Change of TU scores along training epochs.

clearly superior with high coherence performance
at the same time, which demonstrates the effec-
tiveness of our model to alleviate the data sparsity
problem.

5.2 Ablation Study

To conduct an ablation study, we also compare
NQTM with VQ-VAE and QTM in Table 3. We can
notice VQ-VAE sometimes has higher CV scores,
but as indicated in Section 5.1, it is useless because
of its much lower TU scores. However, we can see
QTM clearly has higher TU scores than VQ-VAE.
This is because our new topic distribution quanti-
zation can separably distinguish topic distributions
from different topics, while VQ-VAE cannot and
leads massive texts under different topics to map
to the same embedding vector. This contrast shows
the effectiveness of our new topic distribution quan-
tization method. Moreover, compared to QTM, we
can see NQTM performs comparatively better on
CV scores and achieves obvious improvements on
TU scores. This is because our negative sampling
decoder provides extra learning signals to encour-
age topic-word distributions to differ from each
other, bringing about better topic diversity perfor-
mance. The change of TU scores of QTM and
NQTM along training epochs is shown in Figure 3
that illustrates the TU score of NQTM gradually

becomes higher than QTM during the training pro-
cess. It is necessary to note that one advantage of
QTM over NQTM is that QTM is faster on training
since the negative sampling error is not required.

According to the above comparisons between
VQ-VAE, QTM and NQTM, we can observe that
our proposed new topic distribution quantization
and negative sampling decoder are effective in im-
proving the topic quality of short texts.

5.3 Data Sparsity Analysis

Since data sparsity is the essential challenge of
short text topic modeling, to further demonstrate
the advantages of our model, we explore the topic
coherence and diversity performance under varying
data sparsity degrees regarding two aspects, topic
numbers (K) and minimum document frequencies
(min-df) in preprocessing (see Section 4.1). Ex-
perimental results of NVDM, ProdLDA, SeaNMF
are reported as these baselines perform relatively
better in traditional and neural topic models re-
spectively. Figures 2a and 2b show the CV and
TU scores of StackOverflow with topic number
K ranging from 10 to 100. We can see although
the TU scores of all models tend to decline due to
the lack of word co-occurrences, NQTM decreases
much slower than others by a large margin and also
surpasses other baseline models in terms of CV .
Figures 2c and 2d present the CV and TU scores
of StackOverflow preprocessed by different min-df,
from 0 to 10 underK = 50. Note that data sparsity
becomes severer when preprocessing corpora with
a bigger min-df. We can see that NQTM remains
higher CV scores than others and especially, TU
scores of baselines fall sharply while NQTM still
obviously keeps up.

Based on the above results under various data
sparsity conditions, we can conclude that NQTM
is grossly more robust in tackling the data sparsity
challenge of short texts, which means NQTM can
be better utilized in downstream applications.
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Models Topic Word Examples

DMM

able abort absolute abstract accept accepts
able abort absolute abstract accept accepts
wiki wikipedia encyclopedia film article movie
movie movies film com imdb news reviews
oscar academy movies movie picture winners

GPUDMM

qt library using matlab project use widget
mac os qt osx windows application using
oscar academy awards com movie winners award
movie film com movies news reviews films
movie movies imdb film title celebs encyclopedia

SeaNMF

cocoa window text menu button item focus
application cocoa context without getting running
oscar academy awards com winners award movie
movie film com movies news reviews films
movie movies imdb film title celebs encyclopedia

NVDM

featuring conducts homes hole creates
aspects hand hear serve spanning compliance
topix breakthrough continually rule progressive
remedy ankle yet dry gum pink interview added
lamp construct natural arrows width correct

ProdLDA

music romantic pop rock movie comedy movies
music movie romantic pop movies comedy
movie celebrity movies favorite youtube episode
intel duo athlon core parallel processor memory
intel processor memory cache ram pentium core

NQTM

mac os leopard snow installing osx installer
qt widget signal slot signals creator slots
cocoa interface builder events nsview app
movie movies character actor scripts actors
core intel processor pentium dual processors

Table 4: Topic words examples under K = 50. Repeti-
tive words are underlined.

5.4 Topic Examples Evaluation

To qualitatively illustrate the high-quality topics
generated by our model, Table 4 presents the exam-
ples of topic words yielded by DMM, GPUDMM,
SeaNMF, NVDM, ProdLDA, and NQTM in one
experiment. We can observe that baseline mod-
els generate some repetitive topics with repeated
words, such as “movie”, “qt” and “processor”, and
although the topics of NVDM seem diverse, they’re
less informative. However, we can see that NQTM
only generates a single coherent topic for each cor-
responding topic and the topic quality of NQTM is
apparently higher.

5.5 Visualization of Latent Space

Figure 4 shows the t-SNE (van der Maaten and Hin-
ton, 2008) visualization for topic distributions of
texts underK = 50. It obviously illustrates that the
points of NQTM are relatively more aggregated as
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Figure 4: tSNE visualization of topic distributions.

groups and well separately scattered in the canvas,
which is because NQTM can generate peakier topic
distributions for short text topic modeling. The dis-
cretization and separation of the latent space can
explain why NQTM is able to achieve higher topic
coherence and diversity performance.

6 Conclusion

In this paper, for short text topic modeling, we
propose the Negative sampling and Quantization
Topic Model (NQTM) with a novel topic distribu-
tion quantization mechanism to yield peakier dis-
tributions and a new negative sampling decoder to
enrich the learning signals. Experiments on bench-
mark datasets quantitatively and qualitatively show
our model significantly outperforms baselines to
overcome the data sparsity problem of short texts.
Future works could focus on employing the pro-
posed model in more downstream tasks.
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