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Abstract

Phrase alignment is the basis for modelling
sentence pair interactions, such as paraphrase
and textual entailment recognition. Most
phrase alignments are compositional processes
such that an alignment of a phrase pair is con-
structed based on the alignments of their child
phrases. Nonetheless, studies have revealed
that non-compositional alignments involving
long-distance phrase reordering are prevalent
in practice. We address the phrase alignment
problem by combining an unordered tree map-
ping algorithm and phrase representation mod-
elling that explicitly embeds the similarity dis-
tribution in the sentences onto powerful con-
textualized representations. Experimental re-
sults demonstrate that our method effectively
handles compositional and non-compositional
global phrase alignments. Our method sig-
nificantly outperforms that used in a previous
study and achieves a performance competitive
with that of experienced human annotators.

1 Introduction

Phrase alignment is a fundamental problem in mod-
elling the interactions between a pair of sentences,
such as paraphrase identification, textual entail-
ment recognition, and question answering (Das
and Smith, 2009; Heilman and Smith, 2010; Wang
and Manning, 2010). Phrase alignment generally
adheres to compositionality, in which a phrase pair
is aligned based on the alignments of their child
phrases. Nonetheless, non-compositional align-
ments involving long-distance phrase reordering
are prevalent in practice (Burkett et al., 2010; Heil-
man and Smith, 2010; Arase and Tsujii, 2017). Fig-
ure 1 shows an example of phrase alignment in
which phrases of the same colours are alignable, i.e.
they are phrasal paraphrases. The alignment of ‘an-
tivirus vaccines’ and ‘vaccines against the virus’ is
compositional, as supported by alignments of their
child nodes although their orderings are reversed.

v3=lca(tf, 73)

The scientific team created vaccines against the virus through teamwork

Figure 1: Phrase alignments by the proposed method
(phrases of the same colour are paraphrases)

Similarly, the alignment of their parents 735 and 74
is compositional. By contrast, the alignment of 77
and 7} is non-compositional in relation to the align-
ment of 75 and 74; although 7} and 7 are siblings,
71 is not a sibling of 73, i.e. not in the scope of the
parent node of 75. To treat such a long-distance
correspondence in non-compositional alignment,
one has to consider candidate phrases outside the
local scope and potentially the entire sentence.

In this study, we address the phrase alignment
problem by combining a tree mapping algorithm
with phrase representation modelling. We treat
compositional alignment by an algorithm for an
unordered tree mapping (Zhang, 1996). For the
algorithm to work, definition of the edit cost (i.e.
dissimilarity between phrases) is crucial. We pro-
pose a novel phrase representation, by which the
edit cost is defined, based on contextualized rep-
resentations by the bidirectional encoder represen-
tations from transformers (BERT) (Devlin et al.,
2019). The proposed phrase representation models
the similarity distribution in the entire sentence,
thereby allowing the algorithm to be extended to
treat non-compositional global alignments.

Phrase alignment can be difficult even for hu-
mans because there is unavoidable subjectivity in
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acceptable semantic discrepancies between para-
phrases. Our experimental results indicate that
the proposed method achieves 95.7% of the align-
ment quality of trained human annotators for phrase
alignment in paraphrase sentence pairs.

The contributions of this study are twofold. First,
we formalise the compositional phrase alignment
problem as an unordered tree mapping. Second, we
propose a phrase representation model that allows
non-compositional global alignments.

2 Related Work

2.1 Tree Mapping and Phrase Alignment

Ordered tree mapping has been employed to esti-
mate the similarity of a pair of sentences for its
ability to align syntactic trees (Punyakanok et al.,
2004; Alabbas and Ramsay, 2013; Yao et al., 2013;
McCaffery and Nederhof, 2016). However, it
is too restrictive in that the order of the aligned
phrases in the sentences must be the same. Previ-
ous studies extended the algorithm to adapt the edit
costs (Bernard et al., 2008; Mehdad, 2009; Alabbas
and Ramsay, 2013) and edit operations (Heilman
and Smith, 2010; Wang and Manning, 2010) to spe-
cific tasks. In contrast, the unordered tree mapping
that we employ in this study is sufficiently flexible
to assure identification of optimal compositional
phrase alignments.

Parallel parsing also involves phrase alignment
in its parsing process. As the tree isomorphism
assumption is too restrictive, previous studies have
employed various relaxation techniques that pre-
fer but do not force synchronisation. Burkett et al.
(2010) used weakly synchronised grammar, and
Das and Smith (2009) used quasi-synchronous
grammars (Smith and Eisner, 2006). Choe and
McClosky (2015) used dual decomposition to en-
courage agreement between two parse trees. All
of these methods allow excess flexibility beyond
compositionality in alignment. Rule extraction
for tree transducers also involves phrase align-
ments (Martinez-Gémez and Miyao, 2016) but dis-
regards phrase boundaries to maximise the cov-
erage of extracted rules. In contrast, the phrase
alignment problem addressed in our study adheres
to syntactic structures.

2.2 Phrase Representation Generation

Researchers have proposed specialised phrase rep-
resentations for specific tasks (Arase and Tsujii,
2019; Yin et al., 2020) on top of contextualised rep-

resentations. In this study, we propose dedicated
phrase representations for the alignment problem.
Before contextualised representation, studies con-
sidered word alignment distributions for modelling
semantic interactions between a pair of sentences
(He and Lin, 2016; Parikh et al., 2016; Chen et al.,
2017). We agree with their intuition that the pair-
wise similarities alone are not good enough to de-
fine the cost of alignment. In case there are other
similar phrases, their pairwise similarities have to
be properly adjusted. This adjustment is crucial for
treating non-compositional global alignment.

3 Phrase Alignment Method

3.1 Preliminaries and Notation

We refer to one of the paraphrasal sentences as
the source, s, and the other as the target, t. Su-
perscripts s and t represent source and target, re-
spectively. The syntactic trees of the source and
target, T° = {7/}; and T* = {7}};, determine
the phrase structures; 7;° and T; are the source and
target phrases. The alignments of their phrases are
H = {h; = (77,7})}i. We interchangeably use
the subscript of a node as the index of the align-
ment or the index of the node in a tree whenever
the meaning is apparent from the context. A phrase
can align to an empty node 7y (7y ¢ T'), which is
called the null alignment.

We define functions to traverse a tree: ds(7) de-
rives descendant nodes of 7, and Ica(7;, 7;) derives
the lowest common ancestor of 7; and 7;. Addi-
tionally, function deg(7") computes the maximum
depth of T', and | - | counts the number of elements
in a set; e.g. || is the number of nodes in 7.

3.2 Problem Definition

Based on Arase and Tsujii (2017), we reformalise
conditions of legitimacy as a set of compositional
phrase alignments H;y,.

Definition 3.1. Legitimacy conditions consist of
the following:

Consistency In H;, a phrase (# Tp) in the source
tree is aligned with at most one phrase (# Ty)
in the target tree, and vice versa.

t s

Monotonicity For (77, 7;),(77,7;) € Hy, 77 €

ds(T]‘?) iﬁ”Tf S ds(T]'?).

Familiness For (75, 71), (5,7%), (75, 7%) in Hp,
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S S

lca(7$,73) is a proper ancestor' of T35 iff
bt

lca(Ti, 73) is a proper ancestor of T%.

The consistency condition ensures one-to-one align-
ment. The monotonicity condition regulates the
retainment of the ancestor-descendant relation in
the source and target sides. The familiness con-
dition realises compositionality in the language,
which constrains such that two separate subtrees of
T should be aligned to two separate subtrees of
T* 2 In other words, the familiness condition pro-
hibits a node in the source subtree to align to a node
outside that target subtree. In Figure 1, (75, 7}) vio-
lates the familiness condition in relation to (75, 73)
and (75, 74) because 7§ is not a proper ancestor
of lca(7§,735) , whereas 74 is a proper ancestor of
lca(rt, 7d).

We define non-compositional alignments H, as
alignments that satisfy the legitimacy conditions
internally but do not satisfy them against Hy,. For
example, the alignment (7§, 7{) in Figure 1 is com-
positionally composed and satisfies the legitimacy
conditions for its internal alignments. However, it
does not satisfy the legitimacy conditions against
alignments of (75, 74) and (73, 74) for violation
of the familinesss condition. We allow H, to be
added into Hy, if it is compatible;

Definition 3.2. H,,. is compatible with Hy, iff for
all (8,7}) € Hye (15,7} # 19), both (13, 7) and
(19, 7}) are in H.

When the compatibility condition is met, H,. can
be safely added to Hy by complementing null
alignments without violating the consistency con-
dition. We implement this process by a simple
post-processing step (Section 3.4).

3.3 Compositional Alignment

Finding the optimal set of legitimate compositional
alignments (Definition 3.1) is equivalent to find-
ing the minimum cost of constrained tree map-
ping (Zhang, 1996), which belongs to the prob-
lem of unordered tree mapping (Bille, 2005). The
edit operations of re-labelling, deletion, and inser-
tion correspond to alignment of two nodes, null
alignment of a source node, and null alignment
of a target node, respectively. Although the un-
ordered tree mapping problem is in general MAX
SNP-hard (Zhang and Jiang, 1994), the constrained

!'A proper ancestor of a node i is any node j such that node
J is an ancestor of node ¢ and j is not the same node as .

2Our definition is less constrained than that in Arase and
Tsujii (2017) as discussed in Appendix A.

tree edit distance (CTED) algorithm (Zhang, 1996)
achieves polynomial time complexity using the
familiness condition. In essence, the CTED al-
gorithm reduces the unordered tree mapping prob-
lem to a maximum matching problem by the fami-
liness condition. The reduction enables faster
dynamic programming of O(|T%||T"|(deg(T*) +
deg(T")) log (deg(T*) + deg(T"))). Details of the
CTED algorithm are described in detail in Ap-
pendix B.

To apply CTED for phrase alignment, the edit
cost function (-) — R is the key, which should
satisfy the properties of a proper distance metric.
This function evaluates the dissimilarity of a phrase
pair, for which we propose a phrase representa-
tion model (Section 4). We use cosine distance as
~(+) € [0,2.0] because of its prevalence in mea-
suring dissimilarity between representations. How-
ever, it is not a proper distance metric because it
does not satisfy the triangle inequality property. In
future work, we will investigate alternative distance
metrics.

We also need to estimate the cost of a null align-
ment. It is not trivial to generate representation of
such an empty phrase; hence, we decided to use a
constant cost Ay, i.e.,

V(7% 7)) = ({9, 7)) = Ag € [0,2.0].

The appropriate value of Ay is determined using a
development set.

3.4 Non-compositional Alignment

We designed top-down post-processing for non-
compositional alignment so that the legitimacy con-
ditions (Definition 3.1) will be maximally satisfied
in the final alignments. As Algorithm 3.1 shows,
we add a set of alignments H,,. that compose the
non-compositional alignments into IH;, when they
are compatible. Our post-processing aligns all
the coloured phrase pairs in Figure 1 by allowing
(7$,71) and its descendant alignments.

Algorithm 3.1 takes matrices of edit distance
and corresponding operations D and A as input,
which are obtained by CTED. D[i + 1][j + 1] and
Ali+1][j+1] store the total cost and operations, re-
spectively, to compose alignment of (77, T]t> Note
that index O is reserved for null alignments. The
algorithm sorts null alignments in I, in descend-
ing order of the span covering the source and tar-
get phrases (line 2). For each null alignment, the
algorithm finds candidates of non-compositional
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Algorithm 3.1 Non-compositional alignment

Input: Legitimate alignments IH;, and matrices of
tree edit distance and corresponding operations
Dand A
Hy {<7_S? T@>7 <T@7 Tt>‘IHL}
Sort I by descending order of phrase span
for all (7,7}) € Hy do
if 7- = 71y then
for all k£ € argmin D[i +
l

> target side is 7y

1][¢] do

6: if ISCOMPATIBLE(A[i + 1][k], H) then
UPDATEALIGNMENTS(A[i + 1][k], Hr,, Hp)

else
: Do the same for the source side
9: function ISCOMPATIBLE(A, Hy)
10:  forall (77,7}) € A where 77 , 7 # 7 do
1. if (77, 7)) € Hy or (17, ]> 6 Hy, where
7}, 77 # 79 then return False

R

12:  return True

13: function UPDATEALIGNMENTS(A, Hy, Hy)
14: forall (77, 7}) € A where 77 ;7 # 7 do
15: IHL<—IHLU{<,L, j>}

16:  Remove (77, 1) from Hj, and Hy

17: Remove (7, Tjt> from Hy, and Hy

alignments achieving the minimum cost (line 5).
Then, using the ISCOMPATIBLE function, it checks
whether a non-compositional alignment and its de-
scendant alignments are compatible with the cur-
rent set of alignments. If so, they are added to H,
by the UPDATEALIGNMENTS function, replacing
null alignments (77, 7p) and (7, ﬁ) in Hy, with
non-compositional alignment (77, j>

Our post-processing is a heuristic to maximally
satisfy the legitimacy conditions, as finding the
best combination of non-compositional alignments
is computationally intractable.®> Our method en-
sures that non-compositional alignments improve
the alignment cost by only allowing those with
minimum cost.

4 Phrase Representation for Alignment

We propose a phrase representation model on top
of the pre-trained BERT. One of the most common
methods for obtaining a phrase representation from
BERT is pooling outputs corresponding to tokens
in the phrase. However, as we empirically show in
Section 6, this method exhibits an unsatisfactory

3 Arase and Tsujii (2017) do not assure maximal satisfac-
tion of the legitimacy conditions.
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Figure 2: Modelling similarity distribution (shades of
the matrix represent word similarities)

ability for modelling the similarity distribution in a
sentence pair. Hence, we propose a novel method
for generating phrase representations suitable for
the phrase alignment problem.

Problem Statement and Approach The esti-
mate of a phrase pair’s similarity for alignment
is unique, because their similarity should depend
on similarities of other phrases in the sentence pair.
That is, even if the pairwise similarity of 7 and
T; is high, the similarity score should be lowered
if there is a phrase in the source sentence that is
more similar to T;. Hence, we generate a phrase
representation that reflects the similarity distribu-
tion within the sentence pair; this is particularly
important for non-compositional alignments to find
a globally plausible alignment pair.

We first generate a representation of the similar-
ity distribution within the sentence pair. We then
transform the phrase representation obtained from
BERT, referring to the representation of the simi-
larity distribution using an attention mechanism.

Similarity Distribution Modelling We regard
outputs of the last layer b € R® of BERT as token
representations, where b is the hidden size deter-
mined by the BERT pre-training settings. Using the
token representations, we generate a representation
of similarity distribution e® € R? (Figure 2).

We first compute cosine similarities between to-
ken representations of the sentence pair and obtain
the similarity matrix. We then encode the similarity
matrix using a convolutional neural network (CNN)
and obtain e€, called the SimMatrix representation.
Our CNN is shallow, under the assumption that a
shallow model is sufficient to capture latent features
in SimMatrix. A shallow model also allows train-
ing with a smaller corpus while fine-tuning BERT.
The CNN consists of a one-channel convolution
layer activated by the rectified linear unit function,
a max-pooling layer, and a fully connected feed-
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Figure 3: Phrase representation transformation

forward neural network (FFNN).

Representation Generation We obtain a basic
representation of 7° for span ¢ to j by simply pool-
ing the token representations obtained from BERT:
e® = pool(h;,...,hj) € R’. Similarly, a basic
representation e’ of target phrase 7! is obtained.
We then transform e’ to reflect the SimMatrix rep-
resentation e€. For this, we use an attention mech-
anism as shown in Figure 3, which has the same
architecture as the Transformer (Vaswani et al.,
2017). The attention layer consists of multi-head
attention and FFNNs. Our model takes e, e®, and
e', and transforms e into &' € R®.

Loss Function To train the phrase representation
model, we use a triplet margin loss:

ﬁ(eS,é;,ég) =

max{[le’ — &2 — [le* — &,l2 + 4,0}, (1)

where é;; and é!, are transformed representations
of positive (alignable) and negative (unalignable)
pairs, respectively, and ¢ is a margin. Intu-
itively, the loss function makes representations
of paraphrase pairs closer, whereas those of non-
paraphrase pairs are more distant. For negative
examples, we randomly sample phrases that are
separated by more than one hop from the alignable
pair in T*. At an inference, we transform the basic
representation of a target phrase by our model and
compute the cost y(e®, &').

We also tried models that discriminate alignable
phrases or minimise the cosine similarity of an
alignable pair. However, they were all inferior to
the triplet margin loss.

ESPADA SPADE
dev test
# sentence pairs 1,916 50 151
# phrases w/o tokens 75,283 2,584 7,438
Total # pairs 251,972 8,708 25,709
# unique pairs 105,154 3,566 10,790
# pairs agreed by > 2 80,572 2,814 8,292
# pairs agreed by all 66,246 2,328 6,627
Non-monotonicity 3.6% 4.7%  3.2%
Non-familiness 1.4% 1.2%  1.1%

Table 1: Statistics for ESPADA and SPADE (‘#’ stands
for ‘number of”)

5 Experiment Setting

5.1 Creation of ESPADA

To train our phrase representation model, we need
a corpus with phrase alignments annotated on sen-
tence pairs. We extended the Syntactic Phrase
Alignment Dataset for Evaluation (SPADE) (Arase
and Tsujii, 2018), creating the Extended Syntactic
Phrase Alignment DAtaset (ESPADA). Following
the same annotation scheme, we annotated 1,916
sentence pairs sampled from NIST OpenMT* cor-
pora. ESPADA is now the largest annotation cor-
pus for this problem and will be released by the
Linguistic Data Consortium (LDC) soon.

A linguist first annotated gold-standard syntac-
tic trees on paraphrases based on the head-driven
phrase structure grammar. Then, three native or
near-native English speakers annotated the 1,916
paraphrases in parallel to identify phrasal para-
phrases; i.e. the total number of annotated sen-
tences is 5,748. Before the formal annotation,
there was a training phase to improve annotation
agreement; all annotators annotated trial samples.’
One of the authors inspected the results and gave
advice on any misunderstandings of the annotation
guidelines. Appendix C provides further details of
the annotation process.

Table 1 shows the statistics for ESPADA and
SPADE; ~ 252k phrasal paraphrases were identi-
fied, among which ~ 81k unique pairs were agreed
upon by at least two annotators and ~ 66k unique
pairs were agreed upon by all annotators. The last
two rows show, in ESPADA and SPADE, 3.2% to
4.7% of pairs did not satisfy the monotonicity con-
dition, and 1.1% to 1.4% of triplets did not satisfy

4https ://www.nist.gov/itl/iad/mig/openmt
Sexcluded from the formal annotation set
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ALIR (%) ALIP (%) ALIF (%)
ESPADA 93.3 90.2 91.7
SPADE (dev)  93.5 91.4 92.4
SPADE (test)  92.3 90.3 91.3

Table 2: Human performance

the familiness condition in alignments agreed upon
by at least two annotators. Note that the monotonic-
ity and familiness conditions are defined on rela-
tions of alignment pairs and triples, respectively;
hence, these percentages do not mean that these
percentages of alignments are non-compositional.

5.2 Evaluation Metrics and Upper Bounds

We used SPADE as an evaluation corpus; Table 1
shows statistics for its development (dev) and test
sets. As evaluation metrics, we used alignment
recall (ALIR), alignment precision (ALIP), and
alignment F-measure (ALIF) (Arase and Tsujii,
2017, 2018). ALIR evaluates how gold-standard
alignments can be replicated by automatic align-
ments, and ALIP measures how automatic align-
ments overlap with alignments identified by at least
one annotator:

{hjh e H, Ah e GNGY
IGN G| ’

{hjh € H, A\h € GUG'}
|| ’

ALIR =

ALIP =

where IH,, is a set of automatic alignments, and G
and G’ are those obtained by two respective annota-
tors. ALIF computes the harmonic mean of ALIR
and ALIP. Because SPADE provides alignments by
three annotators, there are three combinations for
G and G'. The final ALIR, ALIP, and ALIF values
are calculated by taking the averages.

Note that these evaluation metrics count null
alignments also; hence, ALIP performs differently
from a general precision metric in that stricter mod-
els will have lower ALIP scores. This is because
a stricter model aligning only a small number of
phrases (# 7y) increases the number of null align-
ments, making |IH,| larger.

The agreement among the human annotators can
also be measured using ALIR, ALIP, and ALIF by
regarding one annotator as a test and the other two
as gold-standard and then taking averages. The
scores for the trained annotators were consistent
between ESPADA and SPADE as shown in Ta-
ble 2. This indicates that phrase alignment is diffi-

cult even for humans because acceptable levels of
semantic divergence in paraphrases cannot be per-
fectly controlled. Hence, we regard these human
scores as upper bounds for ALIR, ALIP, and ALIF.

5.3 Comparison Method

As the comparison state-of-the-art syntactic phrase
alignment method, we used Arase and Tsujii
(2017). We re-implemented this method and com-
pared the performance on aligning gold parse trees.

Additionally, we compared variations of our
method via ablation studies. We investigated the
effect of CTED by comparing it with alignments by
a naive thresholding, which aligns phrases having
cosine similarities above a threshold. The threshold
was set to maximise the ALIF score on the SPADE
development set.

To investigate the effect of our phrase represen-
tation model, we compared it with a simply fine-
tuned BERT using Equation (1) but directly in-
putting basic phrase representations of eg and el,.
To investigate the effect of SimMatrix represen-
tation, we compared it with the representation of
the [CLS] symbol (denoted as BERT+ [CLS]).
BERT defines its input to begin with the special
symbol [CLS], whose representation has been
commonly used as a representation of sentence
pair (Devlin et al., 2019). The assumption here
is that BERT may learn to embed information of
similarity distribution into [CLS] representation.

As a pre-trained model for generating phrase
representations, we compared the fine-tuning ap-
proach with the feature-based approach, i.e. Fast-
Text (Bojanowski et al., 2017) and embeddings
from language models (ELMo) (Peters et al., 2018).
For all pre-trained models, we used mean-pooling
to generate a basic phrase representation, which
consistently outperformed max-pooling in our pre-
liminary experiments.

5.4 Model Settings

We used the following public pre-trained models:
‘crawl-300d-2M-subword’® as FastText, ‘Original
(5.5B)’7 as ELMo, and ‘BERT-Base, Uncased’® as
BERT. We implemented our method and its varia-
tions using PyTorch” with libraries Transformers, '’

6https://dl.fbaipublicfiles.com/fasttext/
vectors—-english/crawl-300d-2M-subword.zip
7https://allennlp.org/elmo
8https://huggingface.co/bertfbasefuncased
9https://pytorch.org/(Versionl.4.0)

10https://github.com/huggingface/transformers
(version 0.6.2)
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AllenNLP,'! and NetworkX'? for solving the mini-
mum cost maximum flow problem in CTED.

Our attention mechanism had eight heads; the
other settings were the same as those for Trans-
former (Vaswani et al., 2017). Dropouts of 10%
and 50% were applied to the BERT and ELMo out-
puts, respectively, as recommended in their papers.
The CNN had a kernel size of three in the convolu-
tion layer and two for the pooling layer. The Sim-
Matrix was padded with zeros for sentences shorter
than the maximum sequence length of 128.13

All models used AdamW (Loshchilov and Hut-
ter, 2019) as an optimiser, using default settings
except on the learning rate. We tuned a few hyper-
parameters in our models to maximise the ALIF
score on the development set of SPADE by a grid
search. The value of null alignment cost Ay was
searched for in the range [0.05, 0.95] by intervals of
0.05, the margin ¢ in the loss function was searched
forin [0.2, 1.0] by intervals of 0.2, and the learning
rate was chosen from among 1.0e — 5, 3.0e — 5,
and 5.0e — 5.

5.5 Training Settings

All experiments were conducted on an NVIDIA
Tesla V100 GPU. We trained our phrase represen-
tation model using ESPADA. We simply used all
phrase alignments by the three annotators, regard-
ing all of them as equally reliable, i.e. each sen-
tence pair has three sets of phrase alignments. We
split the entire dataset into training and validation
sets (90% and 10%, respectively) after randomly
shuffling the sentence pairs, which prevents the
same sentence pair from appearing in both sets.
The batch size was 16. Training was terminated
by validation-based early-stopping with patience 5
and minimum delta 0.005.

To alleviate the randomness effects in initialis-
ing the neural networks, we trained and evaluated
the models 10 times with random seeds and report
means of the evaluation scores with 95% confi-
dence intervals. Further, we tested the significance
of differences in means of the evaluation scores by
the randomised test (Efron and Tibshirani, 1994).
Throughout the paper, we present the best scores
with a significance level of < 1% using a bold font.

Mhttps://allennlp.org/ (version 0.9.0)
2https://networkx.github.io/ (version 2.4)
¥None of the sentence pairs exceeded this limit.

6 Experiment Results

6.1 Opverall Results

Table 3 compares the methods’ performance.
BERT-+SimMatrix+CTED (last row) includes the
full feature set; it transforms the phrase represen-
tation using SimMatrix representation and aligns
phrases using CTED. This method performed the
best overall, achieving an ALIF score of 87.4%
with post-processing. This ALIF score is 95.7% of
that achieved by humans (Table 2).

We investigated non-compositional alignments
produced by BERT+SimMatrix+CTED with post-
processing. We found that 0.1% of alignment pairs
did not satisfy the monotonicity condition and 1.2%
of alignment triplets did not satisfy the familiness
condition. These non-compositional alignments
cover 3.5% and 23.2% of those of the gold standard
that did not satisfy the monotonicity and familiness
conditions, respectively (as shown in Table 1).

Effect of CTED Algorithm and Post-Processing
The middle and last sets of rows compare
CTED-based and thresholding-based alignments.
Thresholding-based alignment greedily aligns
phrases by disregarding compositionality. In con-
trast, the pure CTED-based alignment only al-
lows compositional alignments and makes all non-
compositional alignments null. Even though CTED
is much stricter than thresholding, it achieved com-
petitive ALIF scores. The scores of the CTED-
based alignment further improves by allowing
non-compositional alignments by post-processing;
ALIR, ALIP, and ALIF improved by 2.2, 3.4, and
2.8 percentage points on average, respectively.

Effect of Phrase Representation Model The
last set of rows shows the performance of align-
ments by CTED with different phrase represen-
tation approaches. BERT+4SimMatrix+CTED
significantly outperformed BERT+CTED and
BERT+ [CLS]1+CTED. The superiority of Sim-
Matrix representation over [CLS] was more pro-
nounced on alignments with post-processing. Al-
though ALIF of BERT+ [CLS]+CTED with post-
processing achieved 94.4% of the human score,
SimMatrix representation further improved it by
1.2 percentage points.

These results indicate that a phrase represen-
tation that explicitly models the similarity distri-
bution is crucial for handling non-compositional
alignments. We conjecture that SimMatrix rep-
resentation has two effects in phrase alignment.
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w/o post-processing

w/ post-processing

Method Ay ALIR (%) ALIP(%) ALIF(%) ALIR(%) ALIP(%) ALIF (%)
Arase and Tsujii (2017) - 81.8 75.6 78.6 - - -
BERT+Thresh. 0.80 83.6+0.2 834+0.2 835+0.2 - - -
BERT+ [CLS] +Thresh. 0.65 84.7+0.5 83.5+0.6 84.1+0.5 - - -
BERT+SimMatrix+Thresh. 0.60 84.14+0.4 84.7+0.3 84.4+0.3 - - -
BERT+CTED 090 85.3+£0.1 819+£0.1 83.5£01 874402 852402 86.3+0.2
BERT+ [CLS]+CTED 0.80 85.6+03 821+05 83.8+04 874+04 85.0+0.7 86.2=+0.5
BERT+SimMatrix+CTED  0.80 85.74+0.2 82.7+0.1 84.2+02 882+0.3 86.6+0.2 874+0.2

Table 3: ALIR, ALIP, and ALIF scores with 95% confidence intervals

90

801

s

o, 70

2

~ 601

] —s=— ALIR

& 501 - ALIP

< 404 —=— ALIR w/o post-processing

ALIP w/o post-processing

301

02 04 0.6 0.8
Null-alignment cost

Figure 4: ALIR and ALIP on SPADE development set
by null alignment cost

First, it encourages a null alignment in CTED
when there is a more similar phrase beyond the
local scope. Ie., it implicitly relaxes the syntactic
constraint when composing compositional align-
ments that could be too restrictive to handle non-
compositional alignments. Second, the SimMatrix
representation allows the post-processing to find a
globally plausible alignment pair considering the
entire similarity distribution.

Effect of Null-Alignment Cost Figure 4
presents ALIR and ALIP by the cost of null
alignment )y for BERT+SimMatrix+CTED
with and without post-processing. A small Ay
causes the method to align only a small number
of phrases and produce a large number of null
alignments. In contrast, a large Ay confuses the
method by allowing a larger number of possible
alignments. Both situations are harmful, but the
former has a larger impact. This is because the
constraint of CTED only allows a legitimate set of
phrase alignments, which effectively prunes away
incorrect alignments.

Figure 4 empirically confirms that the post-
processing is effective in improving ALIR and
ALIP scores; these scores with post-processing

were always higher than those without. The same
trend was also observed for BERT+CTED and
for BERT+ [CLS]+CTED. This occurs because
our post-processing only allows non-compositional
alignments of minimum cost. Hence, it also im-
proves ALIR and ALIP scores when phrase repre-
sentations are reliable.

6.2 Effects on Feature-Based Approaches

Table 4 shows the effect on performance when
CTED is combined with the feature-based ap-
proaches: FastText, ELMo, and BERT without
fine-tuning.'* Specifically, we generated a phrase
representation by simply mean-pooling token rep-
resentations generated by these pre-trained models
and aligned phrases by CTED or by thresholding.
Note that these methods behave deterministically
owing to the absence of neural network training.
BERT w/o fine-tuning+CTED achieved an
ALIF score of 84.7% with post-processing, even
though it only tunes the hyper-parameter \y. Al-
though it scored lower than the proposed method
(BERT+SimMatrix+CTED), the result is still en-
couraging for conducting phrase alignment in do-
mains for which no corpora are available for train-
ing our phrase representation model.
Improvements in ALIR, ALIP, and ALIF scores
by CTED over thresholding were much greater
with FastText than with ELMo or BERT; it showed
average gains of 6.0 to 8.6 percentage points. Im-
provements ranged from —0.8 to 2.7 for ELMo
and from 0.2 to 1.3 percentage points for BERT.
The CTED algorithm constrains alignments by the
syntactic structures. FastText representations obvi-
ously do not retain such structural information. We
conjecture that FastText-based alignment is com-

14 Although we also applied our phrase representation model
to feature-based approaches, the results were inferior to those
given here, as discussed in Appendix D.
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w/o post-processing

w/ post-processing

Method Ag  ALIR (%) ALIP (%) ALIF (%) ALIR (%) ALIP (%) ALIF (%)
FastText+Thresh. 0.70 4.7 72.9 73.8 - - -
FastText+CTED 0.80 83.3 78.9 81.1 84.3 81.9 83.1
ELMo+Thresh. 0.50 81.7 80.7 81.2 - - -
ELMo+CTED 0.75 84.3 79.8 82.0 85.7 81.8 83.7
BERT w/o fine-tuning+Thresh. 0.80 82.3 79.6 80.9 - - -
BERT w/o fine-tuning+CTED  0.85 83.6 79.8 81.7 85.9 83.5 84.7

Table 4: ALIR, ALIP, and ALIF scores with feature-based approaches

pensated for by CTED. In contrast, the smaller
improvements on ELMo and BERT imply that they
obtain such structural information through their
masked language model training. This result is con-
sistent with previous studies (Hewitt and Manning,
2019; Jawahar et al., 2019; Reif et al., 2019) that
confirmed that BERT learns syntactic structures.

7 Discussion and Future Work

In contrast to previous methods, ours can align
phrases not only in paraphrasal sentence pairs but
also in partially paraphrasal pairs. We plan to apply
it to a comparable corpus of partial paraphrases
and investigate the performance, with the aim of
creating a large-scale syntactic and phrasal para-
phrase dataset. We intend to expand our method
to conduct forest alignments for making it robust
against parsing errors, which are inevitable in han-
dling large corpora. Further, as our method does
not restrict input to syntactic trees but only assumes
tree structures with arbitrary numbering (e.g. left-
to-right post-order numbering) as input, we intend
to try alignments of chunk-based trees, which is de-
sirable for applications that process text fragments,
e.g. those that perform information extraction.
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Appendices

A Detailed Comparison with Previous
Study

Arase and Tsujii (2017) include additional condi-
tions that a legitimate set of compositional align-
ments should satisfy. One of these is called the
root-pair containment condition, which requires
the root nodes of trees to be aligned. This con-
straint firmly restricts their method such that it can
only handle a paraphrasal sentence pair as input.
Our method, by contrast, can align any pair of sen-
tences, i.e. not only paraphrasal sentences but also
sentences that are only partially paraphrasal.

Algorithm B.1 CTED algorithm (Zhang, 1996)

Input: Source and target trees 7' and 1"
Output: Tree edit distance matrix D[i][j], where
1<i<|Tland 1< j < |TY

1: D[0][0] = 0, F'[0][0] =0

2: foralli = 1to |T°| do > target side is 7
3 F[EJ0] = 32kl Dlik][0]

4 D[i][0] = F[)[0] +~({7", 79))

5: forall j = 1to|T% do > source side is 7y
6 FlO)[j] = X242, DI0][i]

7. D[0][] = F[0][5] +~v({ro, 7}))

8: foralli=1to |7 do

9: forall j =1to|T? do
10: Compute F'[i][j] (Equation (2))

11:  Compute D[i][j] (Equation (3))

Additionally, in their study, the familiness con-
dition is replaced by the maximum set condition.
The maximum set condition, together with the
monotonicity condition, constrains all the lowest
common ancestors (LCAs) of any pair of non-null
alignments in Hy, to ensure that they are aligned.
That is, for all h,,,h,, € Hjy of non-null align-

ments, (77, 77) € Hy, where 7§ = Ica(75,, 75) and

r} = lca(r},,7}). Owing to this constraint, their
method belongs to the class of LCA-preserving
distance mappings (Zhang et al., 1995), whose con-
straint is tighter than the constraint edit distance
mapping. In phrase alignment, this forces LCAs
of two aligned nodes to be aligned as well, even
though the majority of phrases under the LCAs are
null alignments. By contrast, CTED allows such
LCAs to have null alignments depending on the

alignments of descendant nodes.

B CTED Algorithm

Algorithm B.1 shows the CTED algorithm. For
brevity, we denote the ith node in a tree as 7 and
its child nodes as I = {ix|i1,...,in, }, Where n;
is the number of children. The input trees are
numbered; the numbers are determined by an ar-
bitrary ordering of the nodes in the tree, such as
left-to-right post-order numbering or left-to-right
pre-order numbering. The algorithm first computes
the minimum cost of IH; ;, which are alignments of
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forests rooted at nodes ¢ and j (line 10):

Fli)[5] =
F[O][7] + miny<g<pn; { F[][jx] — F[0][jx]},
min § F[i][0] + miny <<, { F[it] [5] — F[i][0]},
mingy, ; y(H; ;).
(2)

Then (line 11), it computes the minimum cost of
(i,7), (i, 7). and (7, j) as
Dli][j] =
DI0][5] + mini<p<n,; { D[i][jx] — D[0][j]},
min § D[i][0] + miny <j<n, { D[ir][] — D[a][0]},
F[5] + (78, 7))
3)

In Equation (2), v(H; ;) is the summation of the
alignment costs between the forests:

Y i) = D A((u,0),

<U,’U>€]H¢7j

where u or v is 7 for null alignments.

The algorithm searches for IH; ; that has the
minimum cost by solving the minimum cost maxi-
mum flow problem on a graph G(V, E), as shown
in Figure 5. The vertex set consists of V' =
{50, 8,75, 7j} U T U J, where sq and s; are the
start and sink nodes, respectively, and Té and Tg are
null nodes. Each edge in E has a cost and capac-
ity: Edges (so,ix), (s0,74), (ji,s¢), and (77, 5¢)
are cost zero; (ig, j;) is cost D[ix][ji]; (Té,jt) is
cost D[0][4:]; (i, Té) is cost D[ix][0]; and (7, Té)
is cost zero. All the edges have capacity one except
(s0,73)» (74, 73)» and (77, 5¢), whose capacities are
n;j, min(n;, nj),15 and n;, respectively. Obviously,
the maximum flow of G is n; 4+ n; and G is a net-
work with integer capacities and non-negative costs.
The minimum cost on the maximum flow of G is
proven to be in agreement with ming, ; v(IH; ;)
in (Zhang, 1996).

Algorithm B.1 only shows the computation of
the alignment cost for brevity. However, the cor-
responding edit operations, i.e. alignments, can be
computed simultaneously in the same manner as
the edit cost.

'5The flows in a solution should pass through all the non-
null nodes; hence, the capacity between empty trees should be
(n; +n;) —max(ns;, n;) = min(n,, n;), which subtracts the
minimum flows from/to non-null nodes from the maximum

flow of G. Zhang (1996) set this capacity to max(ns,n;) —
min(n;, n;), but that produces a degenerate solution.

Figure 5: Minimum cost maximum flow problem (val-
ues in parentheses represent the (capacity, cost) of each
edge)

C Details of ESPADA Creation

To obtain paraphrasal sentence pairs to annotate,
we sampled paraphrases from reference transla-
tions in NIST OpenMT corpora'® excluding sen-
tences in SPADE. There are a variety of resources
for constructing paraphrases, including reference
translations (Weese et al., 2014), news texts (Dolan
et al., 2004), and tweets (Lan et al., 2017). Arase
and Tsujii (2018) discussed how paraphrases con-
structed from reference translations are authentic in
the sense that they only pose paraphrastic phenom-
ena because they are constrained by correspond-
ing source sentences. By contrast, paraphrases
extracted from other resources tend to have more
diverse linguistic phenomena, such as additions and
omissions of information and inferences requiring
knowledge of the world.

First, we recruited a linguist who is also a na-
tive English speaker to annotate the gold-standard
syntactic trees on paraphrases based on the gram-
mar of the head-driven phrase structure. Through
this process, the linguist identified and discarded
ungrammatical and/or non-paraphrasal pairs. The
annotated trees were checked automatically for for-
matting, and the linguist corrected the annotations
of trees with errors, such as trees with inconsistent
bracketing. We then had three native or near-native
English speakers annotate the phrase alignments.
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w/o post-processing w/ post-processing
Method Ay ALIR (%) ALIP(%) ALIF (%) ALIR (%) ALIP (%) ALIF (%)

ELMo+SimMatrix+CTED 0.60 825+0.1 799+0.1 81.2+01 83.5£01 81.6£0.1 82501
BERT w/o FT+ [CLS]1+CTED 0.75 838+0.1 803+0.1 82.0=£01 85.5£02 829+£02 842+02
BERT w/o FT+SimMatrix+CTED 0.80 84.3£0.1 804+£0.0 823+0.0 85.3+0.1 820£0.1 83.6=£0.1

Table 5: ALIR, ALIP, and ALIF scores for our phrase representation model when applied to feature-based models
(‘BERT w/o FT’ stands for ‘BERT without fine-tuning”)

D Phrase Representation with
Feature-Based Approaches

We also applied our phrase representation model to
ELMo and BERT, using them as feature generators.
We trained only the attention and CNN models
using ESPADA. For ELMo, we also trained the
scalar weighting parameters.

Table 5 shows the results. Unfortunately, all
of these methods are inferior to their counter-
parts that lack our phrase representation model:
ELMo+CTED and BERT w/o fine-tuning+CTED,
respectively. We conjecture that ESPADA may be
insufficiently large for training our phrase repre-
sentation model to adapt to a pre-trained model
that behaves in a completely independent manner.
BERT’s ability to adapt quickly to a specific task
by fine-tuning is a notable advantage.

SL.DC catalogue numbers: LDC2010T14, LDC2010T17,
LDC2010T21, LDC2010T23, LDC2013T03
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