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Abstract
Meaning representation is an important com-
ponent of semantic parsing. Although re-
searchers have designed a lot of meaning rep-
resentations, recent work focuses on only a
few of them. Thus, the impact of meaning
representation on semantic parsing is less un-
derstood. Furthermore, existing work’s per-
formance is often not comprehensively evalu-
ated due to the lack of readily-available execu-
tion engines. Upon identifying these gaps, we
propose UNIMER, a new unified benchmark
on meaning representations, by integrating ex-
isting semantic parsing datasets, completing
the missing logical forms, and implementing
the missing execution engines. The resulting
unified benchmark contains the complete enu-
meration of logical forms and execution en-
gines over three datasets × four meaning rep-
resentations. A thorough experimental study
on UNIMER reveals that neural semantic pars-
ing approaches exhibit notably different per-
formance when they are trained to generate
different meaning representations. Also, pro-
gram alias and grammar rules heavily impact
the performance of different meaning repre-
sentations. Our benchmark, execution engines
and implementation can be found on: https:
//github.com/JasperGuo/Unimer.

1 Introduction

A remarkable vision of artificial intelligence is to
enable human interactions with machines through
natural language. Semantic parsing has emerged
as a key technology for achieving this goal. In
general, semantic parsing aims to transform a nat-
ural language utterance into a logic form, i.e.,
a formal, machine-interpretable meaning repre-
sentation (MR) (Zelle and Mooney, 1996; Dahl
et al., 1994).1 Thanks to the recent development

∗Work done during an internship at Microsoft Research.
1In this paper, we focus on grounded semantic parsing,

where meaning representations are grounded to specific knowl-

MR Geo ATIS Job
Prolog - - 91.4
Lambda 90.4 91.3 85.0
FunQL 92.5 - -
SQL 78.0 69.0 -
Prolog 89.6 - 92.1
Lambda - - -
FunQL - - -
SQL 82.5 79.2 -

Table 1: State-of-the-art performance for MRs on Geo,
ATIS, and Job. The top table shows exact-match accu-
racy whereas the bottom table shows execution-match
accuracy. Most existing work focuses on evaluating
only a small subset of dataset×MR pairs, leaving most
of the table unexplored. A finer-grained table is avail-
able in the supplementary material (Table 8).

of neural networks techniques, significant improve-
ments have been made in semantic parsing perfor-
mance (Jia and Liang, 2016; Yin and Neubig, 2017;
Dong and Lapata, 2018; Shaw et al., 2019).

Despite the advancement in performance, we
identify three important biases in existing work’s
evaluation methodology. First, although multiple
MRs are proposed, most existing work is evaluated
on only one or two of them, leading to less com-
prehensive or even unfair comparisons. Table 1
shows the state-of-the-art performance of semantic
parsing on different dataset × MR combinations,
where the rows are the MRs and the columns are
the datasets. We can observe that while Lambda
Calculus is intensively studied, the other MRs have
not been sufficiently studied. This biased evalua-
tion is partly caused by the absence of target logic
forms in the missing cells. Second, existing work
often compares the performance on different MRs
directly (Sun et al., 2020; Shaw et al., 2019; Chen
et al., 2020) without considering the confounding

edge bases, instead of ungrounded semantic parsing.

https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer
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role that MR plays in the performance,2 causing
unfair comparisons and misleading conclusions.
Third, a more comprehensive evaluation methodol-
ogy would consider both the exact-match accuracy
and the execution-match accuracy, because two
logic forms can be semantically equivalent yet do
not match precisely in their surface forms. How-
ever, as shown in Table 1, most existing work is
only evaluated with the exact-match accuracy. This
bias is potentially due to the fact that execution
engines are not available in six out of the twelve
dataset ×MR combinations.

Upon identifying the three biases, in this paper,
we propose UNIMER, a new unified benchmark, by
unifying four publicly available MRs in three of the
most popular semantic parsing datasets: Geo, ATIS
and Jobs. First, for each natural language utter-
ance in the three datasets, UNIMER provides anno-
tated logical forms in four different MRs, including
Prolog, Lambda Calculus, FunQL, and SQL. We
identify that annotated logical forms in some MR
× dataset combinations are missing. As a result,
we complete the benchmark by semi-automatically
translating logical forms from one MR to another.
Second, we implement six missing execution en-
gines for MRs so that the execution-match accuracy
can be readily computed for all the dataset ×MR
combinations. Both the logical forms and their ex-
ecution results are manually checked to ensure the
correctness of annotations and execution engines.

After constructing UNIMER, to obtain a pre-
liminary understanding on the impact of MRs
on semantic parsing, we empirically study the
performance of MRs on UNIMER by using two
widely-used neural semantic parsing approaches
(a seq2seq model (Dong and Lapata, 2016; Jia
and Liang, 2016) and a grammar-based neural
model (Yin and Neubig, 2017)), under the super-
vised learning setting.

In addition to the empirical study above, we
further analyze the impact of two operations, i.e.,
program alias and grammar rules, to understand
how they affect different MRs differently. First,
Program alias. A semantically equivalent program
may have many syntactically different forms. As
a result, if the training and testing data have a
difference in their syntactic distributions of logic
forms, a naive maximum likelihood estimation
can suffer from this difference because it fails to

2In (Kate et al., 2005; Liang et al., 2011; Guo et al., 2019),
it was revealed that using an appropriate MR can substantially
improve the performance of a semantic parser.

capture the semantic equivalence (Bunel et al.,
2018). As different MRs have different degrees
of syntactic difference, they suffer from this
problem differently. Second, Grammar rules.
Grammar-based neural models can guarantee that
the generated program is syntactically correct (Yin
and Neubig, 2017; Wang et al., 2020; Sun et al.,
2020). For a given set of logical forms in an MR,
there exist multiple sets of grammar rules to model
them. We observe that when the grammar-based
neural model is trained with different sets of
grammar rules, it exhibits a notable performance
discrepancy. This finding alias with the one made
in traditional semantic parsers (Kate, 2008) that
properly transforming grammar rules can lead to
better performance of a traditional semantic parser.

In summary, this paper makes the following
main contributions:

• We propose UNIMER, a new unified bench-
mark on meaning representations, by integrat-
ing and completing semantic parsing datasets
in three datasets × four MRs; we also imple-
ment six execution engines so that execution-
match accuracy can be evaluated in all cases;

• We provide the baseline results for two widely
used neural semantic parsing approaches on
our benchmark, and we conduct an empirical
study to understand the impact that program
alias and grammar rule plays on the perfor-
mance of neural semantic parsing;

2 Preliminaries

In this section, we provide a brief description of
the MRs and neural semantic parsing approaches
that we study in the paper.

2.1 Meaning Representations

We investigate four MRs in this paper, namely,
Prolog, Lambda Calculus, FunQL, and SQL, be-
cause they are widely used in semantic parsing and
we can obtain their corresponding labeled data in
at least one semantic parsing domain. We regard
Prolog, Lambda Calculus, and FunQL as domain-
specific MRs, since the predicates defined in them
are specific for a given domain. Consequently, the
execution engines of domain-specific MRs need to
be significantly customized for different domains,
requiring plenty of manual efforts. In contrast, SQL
is a domain-general MR for querying relational
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MR Logical Form

Prolog answer(A, ( flight(A) , tomorrow(A) , during day(A, B) , const (B, period (morning)),
from(A, C) , const(C, city(Pittsburgh)), to(A, D), const (D, city(Atlanta))))

Lambda
Calculus

( lambda A:e ( (flight A) ∧ (during day A morning:pd) ∧ (from A Pittsburgh:ci)
∧ (to A Atlanta:ci) ∧ (tomorrow A) ) )

FunQL answer ( flight ( tomorrow ( intersect ( during day ( period ( morning ) ) ,
from ( city ( Pittsburgh ) ) , to ( city ( Atlanta ) ) ) ) ) )

SQL

SELECT flight id FROM . . . WHERE city 1.city name = ‘pittsburgh’
AND city 2.city name = ‘atlanta’ AND date day 1.year = 1991
AND date day 1.month number = 1 AND date day 1.day number = 20
AND departure time BETWEEN 0 AND 1200

Table 2: Examples of meaning representations for utterance “what flights do you have in tomorrow morning from
pittsburgh to atlanta?” in the ATIS domain.

databases. Its execution engines (e.g., MySQL)
can be used directly in different domains. Table 2
shows a logical form for each of the four MRs in
the ATIS domain.
Prolog has long been used to represent the meaning
of natural language (Zelle and Mooney, 1996; Kate
and Mooney, 2006). Prolog includes first-order
logical forms, augmented with some higher-order
predicates, e.g., most, to handle issues such as
quantification and aggregation. Take the first logi-
cal form in Tables 2 as an example. The uppercase
characters denote variables, and the predicates in
the logical form specify the constraints between
variables. In this case, character A denotes a vari-
able, and it is required to be a flight, and the flight
should depart tomorrow morning from Pittsburgh
to Atlanta. The outer predicate answer indicates
the variable whose binding is of interest. One ma-
jor benefit of Prolog-style MRs is that they allow
predicates to be introduced in the order where they
are actually named in the utterance. For instance,
the order of predicates in the logical form strictly
follows their mentions in the natural language ut-
terance.
Lambda Calculus is a formal system to express
computation. It can represent all first-order logic
and it naturally supports higher-order functions. It
represents the meanings of natural language with
logical expressions that contain constants, quan-
tifiers, logical connectors, and lambda abstract.
These properties make it prevalent in semantic pars-
ing. Consider the second logical form in Table 2. It
defines an expression that takes an entity A as input
and returns true if the entity satisfies the constraints
defined in the expressions. Lambda Calculus can
be typed, allowing type checking during generation
and execution.
FunQL, abbreviated for Functional Query Lan-
guage, is a variable-free language (Kate et al.,

2005). It abstracts away variables and encodes
compositionality via its nested function-argument
structure, making it easier to implement an efficient
execution engine for FunQL. Concretely, unlike
Prolog and Lambda Calculus, predicates in FunQL
take a set of entities as input and return another set
of entities that meet certain requirements. Consider-
ing the third logical form in Table 2, the predicate
during day(period(morning)) returns a
set of flights that depart in the morning. With this
function-argument structure, FunQL can directly
return the entities of interest.
SQL is a popular relational database query lan-
guage. Since it is domain-agnostic and has well-
established execution engines, the subtask of se-
mantic parsing, Text-to-SQL, has received a lot of
interests. Compared with domain-specific MRs,
SQL cannot encapsulate too much domain prior
knowledge in its expressions. As shown in Table 2,
to query flights that depart tomorrow, one needs to
specify the concrete values of year, month, and day
in the SQL query. However, these values are not
explicitly mentioned in the utterance and may even
change over time.

It is important to note that although these MRs
are all expressive enough to represent all mean-
ings in some domains, they are not equivalent in
terms of their general expressiveness. For example,
FunQL is less expressive than Lambda Calculus in
general, partially due to the elimination of variables
and quantifiers.

2.2 Neural Semantic Parsing Approaches

During the last few decades, researchers have pro-
posed different approaches for semantic parsing.
Most state-of-the-art approaches are based on neu-
ral models and formulate the semantic parsing prob-
lem as a sequence transduction problem. Due to
the generality of sequence transduction, these ap-



1523

Encoder Encoder

River

Encoder Encoder

in California ?

Attention

Decoder

<start>

answer

Decoder

answer

(

Decoder

(

river

… Decoder

)

<end>

(a) Seq2Seq Model

Encoder Encoder

River

Encoder Encoder

in California ?

Attention Decoder

<start>

Stat := “answer(” 
Var “,” Goal “)” 

Decoder

Var := “A” 

Decoder

Goal := “(“ 
Pred “,” Conj “)”

… Decoder

State := “stated(” 
StateName “)” 

StateName := 
“California”

Stat := “answer(” 
Var “,” Goal “)” 

Var := “A” 

(b) Grammar-based Model

Figure 1: Illustrations of the seq2seq model and the
grammar-based model with utterance “Rivers in Cali-
fornia?” and its corresponding logical form in Prolog.

proaches can be trained to generate any MRs. In
this work, without loss of generality, we bench-
mark MRs by evaluating the seq2seq model (Dong
and Lapata, 2016; Jia and Liang, 2016) and the
grammar-based model (Yin and Neubig, 2017) un-
der the supervised learning setting. We select the
two models because most neural approaches are
designed based on them.
Seq2Seq Model. Dong and Lapata (2016) and
Jia and Liang (2016) formulated the semantic
parsing problem as a neural machine translation
problem and employed the sequence-to-sequence
model (Sutskever et al., 2014) to solve it. As illus-
trated in Figure 1a, the encoder takes an utterance
as input and outputs a distributed representation for
each word in the utterance. A decoder then sequen-
tially predicts words in the logical form. When aug-
mented with the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015), the decoder can
better utilize the encoder’s information to predict
logical forms. Moreover, to address the problem
caused by the long tail distribution of entities in
logical forms, Jia and Liang (2016) proposed an
attention-based copying mechanism. That is, at
each time step, the decoder takes one of two types
of actions, one to predict a word from the vocabu-
lary of logical forms and the other to copy a word
from the input utterance.
Grammar-based Model. By treating a logical
form as a sequence of words, the seq2seq model
cannot fully utilize the property that logical forms

are well-formed and must conform to certain gram-
mars of an MR. To bridge this gap, Yin and Neubig
(2017) proposed a grammar-based decoder that out-
puts a sequence of grammar rules instead of words,
as presented in Figure 1b. The decoded grammar
rules can deterministically generate a valid abstract
syntax tree (AST) of a logical form. In this way,
the generated logical form is guaranteed to be syn-
tactically correct. This property makes it widely
used in a lot of code generation and semantic pars-
ing tasks (Sun et al., 2020; Wang et al., 2020; Bo-
gin et al., 2019). The grammar-based decoder can
also be equipped with the attention-based copy-
ing mechanism to address the long-tail distribution
problem.

3 Benchmark

To provide an infrastructure for exploring MRs, we
construct UNIMER, a unified benchmark on MRs,
based on existing semantic parsing datasets. Cur-
rently, UNIMER covers three domains, namely Geo,
ATIS, and Job, each of which has been extensively
studied in previous work and has annotated logical
forms for at least two MRs. All natural language
utterances in UNIMER are written in English.
Geo focuses on querying a database of U.S. geog-
raphy with natural language. To solve the prob-
lem, Zelle and Mooney (1996) designed a Prolog-
style MR and annotated 880 (utterance, logical
form) pairs. Popescu et al. (2003) and Kate et al.
(2005) proposed to use SQL and FunQL to repre-
sent the meanings, respectively. Almost the same
time, Zettlemoyer and Collins (2005) proposed to
use Lambda Calculus and manually converted the
Prolog logical forms to equivalent expressions in
Lambda Calculus. Following their work, we adopt
the standard 600/280 training/test split.
ATIS is a dataset of flight booking questions. It
consists of 5,418 questions and their correspond-
ing SQL queries. Zettlemoyer and Collins (2007)
proposed to use Lambda Calculus to represent the
meanings of natural language and automatically
map these SQL queries to its equivalent logical
forms in Lambda Calculus. Following the work
of Kwiatkowski et al. (2011), we use the standard
4480/480/450 training/dev/test split.
Job is a dataset about job announcements posted
in the newsgroup austin.jobs (Califf and Mooney,
1999). It consists of 640 utterances and their corre-
sponding Prolog logical forms that query computer-
related job postings. Similarly, in Geo, Zettlemoyer
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and Collins (2005) proposed using Lambda Cal-
culus and manually converted them to equivalent
expressions in Lambda Calculus. We use the same
training-test split with them, containing 500 train-
ing and 140 test instances.

Since not all the four MRs that we introduce in
Section 2.1 are used in these three domains, we
semi-automatically translate logical forms in one
MR into another. This effort enables researchers
to explore MRs in more domains and make a fair
comparison among them. Take the translation of
Lambda Calculus to FunQL in ATIS as an exam-
ple. We first design predicates for FunQL based on
those defined in Lambda Calculus and implement
an execution engine for FunQL. Then, we translate
logical forms in Lambda Calculus to FunQL and
compare the execution results to verify the correct-
ness of the translation. In this process, we find
that there is no ready-to-use Lambda Calculus ex-
ecution engine for the three domains. Hence, we
implement one for each domain. These engines, on
the one hand, enable evaluations of semantic pars-
ing approaches with both exact-match accuracy and
execution-match accuracy. On the other hand, they
enable exploration of weakly supervised semantic
parsing with Lambda Calculus. In addition, we
find some annotation mistakes in logical forms and
several bugs in existing execution engines of Pro-
log and FunQL. By correcting the mistakes and
fixing the bugs in the engines, we create a refined
version of these datasets. Section A.1 in the supple-
mentary material provides more details about the
construction process.

We plan to cover more domains and more MRs
in UNIMER. We have made UNIMER along with
the execution engines publicly available.3 We be-
lieve that UNIMER can provide fertile soil for ex-
ploring MRs and addressing challenges in semantic
parsing.

4 Experimental Setup

Based on UNIMER, we take the first attempt to
study the characteristics of different MRs and their
impact on neural semantic parsing.

4.1 Experimental Design

Meaning Representation Comparison. To un-
derstand the impact of MRs on neural semantic

3Our benchmark, execution engines and and our im-
plementation can be found on: https://github.com/
JasperGuo/Unimer

Rule Description

Shuffle Shuffle expressions in Select, From, Where,
and Having clauses

Argmax Express Argmax/min with OrderBy and
Limit clause instead of subquery

In2Join Replace In clause with Join clause

Table 3: Three basic transformation rules for SQL.

parsing, we first experiment with the two neural
approaches described in Section 2.2 on UNIMER,
and we compare the resulting performance of dif-
ferent MRs with two metrics: exact-match accu-
racy (a logical form is regarded as correct if it is
syntactically identical to the gold standard),4 and
execution-match accuracy (regarded as correct if a
logical form’s execution result is identical to that
of the gold standard).5

Program Alias. To explore the effect of program
alias, we replace a different proportion of logical
forms in a training set with their aliases (semanti-
cally equivalent but syntactically different logical
forms), and we re-train the neural approaches to
quantify its effect. To search for aliases of a logical
form, we first derive multiple transformation rules
for each MR. Then, we apply these rules to the
logical form to get its aliases and randomly sam-
ple one. We compare the execution results of the
resulting logical forms to ensure their equivalence
in semantics. Table 3 presents three transformation
rules for SQL. We provide a detailed explanation
of transformation rules and examples for each MR
in Section A.3 of the supplementary material.
Grammar Rules. To understand the grammar
rules’ impact on grammar-based models, we pro-
vide two sets of grammar rules for each MR. Each
set of rules can cover all the logical forms in the
three domains. We compare the performance of
models trained with different sets of rules. Specif-
ically, Wong and Mooney (2006) and Wong and
Mooney (2007) have induced a set of grammar
rules for Prolog and FunQL in Geo. We directly
use them in Geo and extend them to support logical
forms in ATIS and Job. As for SQL, Bogin et al.
(2019) have induced a set of rules for SQL in the
Spider benchmark, and we adapt it to support the
SQL queries in the three domains that we study.

4Following Dong and Lapata (2016), we sort the sub-
expressions in the conjunction predicate of Lambda Calculus
before comparison.

5It should be acknowledged that using the execution-match
accuracy to evaluate a parser is not enough, as there exist
spurious programs that lead to the same execution results with
the gold standard but have different semantics.

https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer
https://github.com/JasperGuo/Unimer


1525

When it comes to Lambda Calculus, we use the
one induced by Yin and Neubig (2018). For com-
parison, we also manually induce another set of
grammar rules for the four MRs. Section A.4 in
the supplementary material provides definitions of
all the grammar rules.

4.2 Implementations
We implement each approach with the Al-
lenNLP (Gardner et al., 2018) and PyTorch (Paszke
et al., 2019) frameworks. To make a fair compari-
son, we tune the hyper-parameters of approaches
for each MR on the development set or through
cross-validation on the training set, with the NNI
platform.6 Due to the limited number of test data
in each domain, we run each approach five times
and take the average number. Section A.2 in the
supplementary material provides the search space
of hyper-parameters for each approach and the pre-
processing procedures of logical forms.

Multiple neural semantic parsing ap-
proaches (Dong and Lapata, 2016; Iyer et al.,
2017; Rabinovich et al., 2017) adopt the data
anonymization techniques to replace entities
in utterances with placeholders. However, the
techniques are usually ad-hoc and specific for
domains and MRs, and they sometimes require
manual efforts to resolve conflicts (Finegan-Dollak
et al., 2018). Hence, we do not apply data
anonymization to avoid bias.

5 Experimental Results

5.1 Meaning Representation Comparison
Table 4 presents our experimental results
on UNIMER. Since we do not use data anonymiza-
tion techniques, the performance is generally lower
than that shown in Table 1 and Table 8, but the
performance is on par with the numbers reported
in ablation studies of previous work (Dong and
Lapata, 2016; Jia and Liang, 2016; Finegan-Dollak
et al., 2018). We can make the following three
observations from the table.

First, neural approaches exhibit notably differ-
ent performance when they are trained to generate
different MRs. The difference can vary by as much
as 20% in both exact-match and execution-match
metrics. This finding tells us that an apple-to-apple
comparison is extremely important when compar-
ing two neural semantic parsing approaches. How-
ever, we notice that some papers (Sun et al., 2020;

6https://github.com/microsoft/nni
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Figure 2: Statistics of logical forms in the training set
of Prolog (P), Lambda Calculus (L), FunQL (F) and
SQL (S). The y-axis indicates the number of production
rules in each logical form.

Shaw et al., 2019; Chen et al., 2020) do not clearly
note the MRs used in baselines and compare with
them using different metrics; the attained result can
be somewhat misleading.

Second, domain-specific MRs (Prolog, Lambda
Calculus, and FunQL) tend to outperform SQL
(domain-general) by a large margin. For example,
in Geo, the execution-match accuracy of FunQL
is substantially higher than that of SQL in all ap-
proaches. This result is expected because a lot of
domain knowledge is injected into domain-specific
MRs. Consider the logical forms in Table 2. There
is a predicate tomorrow in all three domain-
specific MRs, and this predicate can directly align
to the description in the utterance. However, one
needs to explicitly express the concrete date values
in the SQL query; this requirement can be a heavy
burden for neural approaches, especially when the
values will change over time. In addition, a recent
study (Finegan-Dollak et al., 2018) in Text-to-SQL
has shown that domain-specific MRs are more ro-
bust against generating never-seen logical forms
than SQL, because their surface forms are much
closer to natural language.

Third, among all the domain-specific MRs,
FunQL tends to outperform the others in neural
approaches. In Geo, FunQL outperforms the other
MRs in both metrics by a large margin. In Job,
the grammar-based (w/ copy) model trained with
FunQL achieves the state-of-the-art performance.
One possible reason is that FunQL is more com-
pact than the other MRs, due to its elimination of
variables and quantifiers. Figure 2 shows box plots
about the number of grammars rules in the AST of
a logical form. We can observe that while FunQL
has almost the same number of grammar rules with
the other MRs (Table 5), it has much fewer gram-
mar rules involved in a logical form than the others
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Approach Prolog Lambda Calculus FunQL SQL
Exact Execution Exact Execution Exact Execution Exact Execution

Geo
Seq2Seq 70.0 ±2.1 73.9 ±2.4 64.7 ±2.3 70.1 ±2.1 76.8 ±2.4 79.4 ±2.2 58.0 ±2.4 68.7 ±3.7

w/ Copy 72.9 ±2.1 78.7 ±2.4 75.4 ±0.5 80.1 ±1.3 80.3 ±1.4 87.1 ±0.9 72.3 ±1.1 76.8 ±1.8

Grammar 68.6 ±1.2 75.7 ±2.3 70.7 ±1.1 75.1 ±1.4 76.1 ±0.3 78.2 ±0.3 63.3 ±2.0 70.8 ±1.9

w/ Copy 74.3 ±2.1 79.5 ±1.1 75.6 ±1.5 80.7 ±0.7 81.8 ±0.3 86.2 ±0.4 67.9 ±0.7 72.1 ±1.0

ATIS
Seq2Seq 65.9 ±1.5 73.8 ±1.3 68.7 ±1.8 76.3 ±0.9 70.8 ±0.6 76.3 ±1.0 5.6 ±0.3 61.1 ±4.6

w/ Copy 73.7 ±1.9 80.4 ±0.5 75.4 ±2.4 83.1 ±1.3 78.0 ±1.1 82.7 ±1.0 8.0 ±0.6 70.0 ±1.5

Grammar 70.9 ±0.9 76.3 ±1.0 71.7 ±1.5 77.4 ±1.3 72.1 ±0.8 77.5 ±0.9 5.5 ±0.2 63.7 ±1.3

w/ Copy 73.4 ±1.2 79.2 ±1.1 75.7 ±0.4 82.1 ±0.8 76.5 ±0.7 82.7 ±1.2 7.2 ±0.6 61.0 ±1.1

Job
Seq2Seq 68.1 ±2.3 75.7 ±1.7 65.8 ±1.3 78.6 ±1.5 71.4 ±2.1 81.4 ±2.3 68.5 ±3.0 75.6 ±3.0

w/ Copy 71.4 ±3.6 79.1 ±2.2 77.9 ±2.8 88.0 ±1.4 75.6 ±2.4 85.9 ±3.0 78.7 ±2.1 87.3 ±2.3

Grammar 70.4 ±2.4 79.4 ±2.4 68.4 ±3.9 82.9 ±4.1 72.9 ±2.7 86.3 ±2.5 74.6 ±1.5 83.3 ±1.8

w/ Copy 75.9 ±1.1 84.4 ±2.1 80.2 ±1.8 91.0 ±1.3 78.4 ±2.1 92.4 ±1.5 78.7 ±1.4 87.6 ±2.1

Table 4: Experimental results of the seq2seq model and the grammar-based model. We highlight the best perfor-
mance of each approach and MR in both metrics. The poor SQL exact-match accuracy in ATIS is caused by the
different distribution of SQL queries in test set. Iyer et al. (2017) rewrote the SQL queries in test set to improve
their execution efficiency.

MR Geo ATIS Job
# Vo # Ru # Vo # Ru # Vo # Ru

Prolog 146 234 503 732 170 230
Lambda 180 245 466 532 200 208
FunQL 152 188 494 706 195 208
SQL 187 269 530 656 211 227

Table 5: Statistics of logical forms in different MRs.
‘# Vo’ and ‘# Ru’ indicate the vocabulary size and the
number of grammar rules of an MR, respectively.

on average. This statistic is crucial for neural se-
mantic parsing approaches as it directly determines
the number of decoding steps in decoders.

A similar reason can be used to explain that the
performance on SQL is lower than others. As Fig-
ure 2 shows, SQL has larger medians of the number
of grammar rules, and it also has much more out-
liers than domain-specific MRs. It makes neural
models more challenging to learn.

Interestingly, this finding contradicts the
finding in CCG-based semantic parsing ap-
proaches (Kwiatkowksi et al., 2010), in which they
show that Lambda Calculus outperforms FunQL in
the Geo domain. The reason is that compared with
Lambda Calculus, the deeply nested structure of
FunQL makes it more challenging to learn a high-
quality CCG lexicon, which is crucial for CCG
parsing. In contrast, neural approaches do not rely
on a lexicon and directly learn a mapping between
source and target languages.

5.2 Program Alias

Figure 3 shows the execution-match accuracy of
the seq2seq (w/ copy) model with different pro-
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Figure 3: Execution-match accuracy of the seq2seq
(w/ copy) model when different proportions of logical
forms in training set are replaced with their aliases.

MR Geo ATIS
Exact Execution Exact Execution

Prolog 24.2% 15.1% 7.0% 5.4%
Lambda 11.9% 8.6% 6.2% 0.9%
FunQL 24.7% 8.0% 7.0% 4.1%
SQL 19.4% 4.9% 9.1% 3.6%

Table 6: Relative decline of performance when 25% of
logical forms in training data are replaced with aliases.

portions of logical forms in the training set re-
placed with aliases.7 Since not all the logical forms
have aliases, the curves in Figure 3 stop at differ-
ent points. Among all the domain-specific MRs,
FunQL has the fewest logical forms with aliases,
while Prolog has the largest. For example, in Geo,
only 42% of FunQL logical forms in the training
set have aliases, while more than 70% of logical
forms in Lambda Calculus and Prolog have aliases.

7We have experimented with the grammar-based model
and observed similar results.
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MR Grammar Geo ATIS

Prolog G1 72.6 ±1.2 77.5 ±0.9

G2 75.7 ±2.3 76.2 ±1.0

Lambda G1 75.1 ±1.4 74.9 ±1.5

G2 75.6 ±1.5 77.4 ±1.3

FunQL G1 74.5 ±1.7 74.0 ±2.2

G2 78.2 ±0.4 77.5 ±0.9

SQL G1 68.2 ±2.4 63.7 ±1.3

G2 70.2 ±1.0 61.3 ±1.7

Table 7: Execution-match accuracy of the grammar-
based model (w/o Copy). ‘G1’ denotes the grammar
rules induced by (Wong and Mooney, 2006, 2007; Yin
and Neubig, 2018; Bogin et al., 2019); ‘G2’ denotes the
grammar rules induced by ourselves.

From the figure, we have two main observa-
tions. First, in both domains, as more logical forms
are replaced, the performance of all MRs declines
gradually. Among all the MRs, the performance
of Prolog declines more seriously than the others
in both domains. In other words, it suffers from
the program alias problem more seriously. The
trends of Lambda Calculus and FunQL in ATIS
are impressive, as their performance decreases only
slowly. Selecting an MR with the less effect of
program alias could be a better choice when we
need to develop a semantic parser for a new do-
main, because we can save many efforts in defin-
ing annotation protocols and checking consistency,
which could be extremely tedious. Second, the
exact-match accuracy declines more seriously than
execution-match. Table 6 provides the relative de-
clines in both exact-match and execution-match
metrics when 25% of logical forms are replaced.
We find that the exact-match accuracy declines
more seriously than execution-match, indicating
that under the effect of program alias, exact-match
may not be suitable as it may massively under-
estimate the performance. At last, given a large
number of semantically equivalent logical forms,
it would be valuable to explore whether they can
be leveraged to improve semantic parsing (Zhong
et al., 2018).

5.3 Grammar Rules

Table 7 presents the experimental results of the
grammar-based (w/o copy) model trained with dif-
ferent sets of grammar rules. As the table shows,
there is a notable performance discrepancy between
different sets of rules. For example, in ATIS, we
can observe 2.5% absolute improvement when the
model is trained with G2 for Lambda Calculus.
Moreover, G2 is not always better than G1. While
the model trained with G2 for Prolog outperforms

G1 in Geo, it lags behind G1 in ATIS. This obser-
vation motivates us to consider what factors con-
tribute to the discrepancy. We had tried to explore
the search space of logical forms defined by dif-
ferent grammar rules and the distribution drift be-
tween the AST of logical forms in the training and
test set. However, the exploration results cannot
consistently explain the performance discrepancy.
As our important future work, we would explore
whether or not the discrepancy is caused by better
alignments between utterances and grammar rules.
Intuitively, it would be easier for decoders to learn
the set of grammar rules having better alignments
with utterances.

We can learn from these results that similar to
traditional semantic parsers, properly transforming
grammar rules for MRs can also lead to better per-
formance in neural approaches. Therefore, gram-
mar rules should be considered as a very important
hyper-parameter of grammar-based models, and
it is recommended to mention the used grammar
rules in research papers clearly.

6 Related Work

Meaning representations for semantic parsing.
Recent work has shown that properly designing
new MRs often helps improve the performance
of neural semantic parsing. Except for the four
MRs that we study, Liang et al. (2011); Liang
(2013) presented DCS and lambda DCS for query-
ing knowledge bases and demonstrated their ad-
vantages over Lambda Calculus. Guo et al. (2019)
proposed SemQL, an MR for relational database
queries, and they showed improvements in the Spi-
der benchmark. Wolfson et al. (2020) designed an
MR, named QDMR, for representing the meaning
of questions through question decomposition. In-
stead of designing new MRs, Cheng et al. (2019)
proposed a transition-based semantic parsing ap-
proach that supports generating tree-structured log-
ical forms in either top-down or bottom-up man-
ners. Their experimental results on various seman-
tic parsing datasets using FunQL showed that top-
down generation outperforms bottom-up in various
settings. Our work aims to investigate the char-
acteristics of different MRs and their impact on
neural semantic parsing.

Ungrounded semantic parsing. Except for the
grounded MRs studied in this work, there are also
ungrounded MRs that are not tied to any particu-
lar applications, such as AMR (Banarescu et al.,
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2013), MRS (Copestake et al., 2005; Flickinger
et al., 2017), and UCCA (Abend and Rappoport,
2013). Abend and Rappoport (2017) conducted a
survey on ungrounded MRs to assess their achieve-
ments and shortcomings. Hershcovich et al. (2019)
evaluated the similarities and divergences in the
content encoded by ungrounded MRs and syntactic
representation. Lin and Xue (2019) carried out a
careful analysis on AMR and MRS to understand
the factors contributing to the discrepancy in their
parsing accuracy. Partly inspired by this line of
work, we conduct a study on grounded MRs and
investigate their impact on neural semantic pars-
ing. Hershcovich et al. (2018) proposed to leverage
annotated data in different ungrounded MRs to im-
prove parsing performance. With UNIMER, we can
explore whether it is feasible in grounded semantic
parsing.

Extrinsic parser evaluation. Another line of
research that is closely related to our work is extrin-
sic parser evaluation. Miyao et al. (2008) bench-
marked different syntactic parsers and their repre-
sentations, including dependency parsing, phrase
structure parsing, and deep parsing, and evaluated
their impact on an information extraction system.
Oepen et al. (2017) provided a flexible infrastruc-
ture, including data and software, to estimate the
relative utility of different types of dependency
representations for a variety of downstream appli-
cations that rely on an analysis of grammatical
structure of natural language. There has not been
work on benchmarking MRs for grounded seman-
tic parsing in neural approaches, to the best of our
knowledge.

Weakly supervised semantic parsing. In this
paper, we focus on supervised learning for semantic
parsing, where each utterance has its correspond-
ing logical form annotated. But the similar eval-
uation methodology could be applied to weakly
supervised semantic parsing, which receives wide
attention because parsers are only supervised with
execution results and annotated logical forms are
no longer required (Berant et al., 2013; Pasupat and
Liang, 2015; Goldman et al., 2018; Liang et al.,
2018; Mueller et al., 2019). We also notice that
various MRs have been used in weakly supervised
semantic parsing, and it would be valuable to ex-
plore the impact of MRs in such settings.

7 Conclusion

In this work, we propose UNIMER, a unified bench-
mark on meaning representations, based on estab-
lished semantic parsing datasets; UNIMER cov-
ers three domains and four different meaning rep-
resentations along with their execution engines.
UNIMER allows researchers to comprehensively
and fairly evaluate the performance of their ap-
proaches. Based on UNIMER, we conduct an em-
pirical study to understand the characteristics of
different meaning representations and their impact
on neural semantic parsing. By open-sourcing our
source code and benchmark, we believe that our
work can facilitate the community to inform the
design and development of next-generation MRs.

Implications. Our findings have clear impli-
cations for future work. First, according to our
experimental results, FunQL tends to outperform
Lambda Calculus and Prolog in neural semantic
parsing. Additionally, FunQL is relatively robust
against program alias. Hence, when developers
need to design an MR for a new domain, FunQL
is recommended to be the first choice. Second, to
reduce program alias’ negative effect on neural se-
mantic parsing, developers should define a concrete
protocol for annotating logical forms to ensure their
consistency. Specifically, given an MR, develop-
ers should identify as many as possible sources
where program alias can occur. Take SQL as an
example. To express the argmax semantics, one
can either use subquery or the OrderBy clause.8

Having identified these sources, developers need to
determine using which expression in what context,
e.g., argmax is always expressed with subquery,
and the unordered expressions in conjunctions are
always sorted by characters.
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A Supplemental Material

Algorithm 1: Translation of Lambda Cal-
culus Logical Forms to FunQL
Input: A Lambda Calculus logical form p
Output: A FunQL logical form f

1 types = InferTypes(p);
2 tokens = Tokenize(p);
3 expressions, stack = [], [];
4 i = 0;
5 for t ∈ tokens do
6 if t == ‘(’ then
7 Append(stack,i);
8 else if t == ‘)’ then
9 j = = Pop(stack);

10 e = Search(expressions, j, i);
11 Remove(e);
12 ne = Translate(tokens[j : i], e,

types);
13 Append(expressions, ne);
14 i+ = 1;
15 end
16 f = expressions[0];

A.1 Details of Benchmark Construction
Geo. Since the four MRs we study have annotated
logical forms and have execution engines except
for Lambda Calculus in Geo, we directly use them
(SQL taken from (Finegan-Dollak et al., 2018), Pro-
log taken from (Jia and Liang, 2016), FunQL taken
from (Wong and Mooney, 2006), and Lambda Cal-
culus taken from (Kwiatkowksi et al., 2010)). We
implement an execution engine with Haskell for
Lambda Calculus. With these resources, we cross-
validate the correctness of annotations and execu-
tion engines by comparing the execution results
of logical forms. As a result, we found nearly 30
Prolog logical forms with annotation mistakes and
two bugs in the execution engines of Prolog and
FunQL.
ATIS. There are only annotated logical forms
for Lambda Calculus and SQL in ATIS. We di-
rectly use Lambda Calculus logical forms provided
by (Jia and Liang, 2016) and SQL queries provided
by (Iyer et al., 2017). To provide annotations for
FunQL and Prolog, we semi-automatically trans-
late Lambda Calculus logical forms to equivalent
logical forms in FunQL and Prolog. Algorithm 1
presents the pseudo code for translating a Lambda
Calculus logical form to FunQL. Basically, we first
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Approach MR Exact Exec
Geo
Kwiatkowksi et al. (2010) FunQL 84.3 -
Shaw et al. (2019)∗ FunQL 89.3 -
Jia and Liang (2016)∗ Prolog - 89.3

- data augmentation Prolog - 85.0
Chen et al. (2020)∗ Prolog - 89.6
Kwiatkowksi et al. (2010) λ 87.9 -
Wang et al. (2014) λ 90.4 -
Zhao and Huang (2015) λ 88.9 -
Dong and Lapata (2016)∗† λ 87.1 -
Rabinovich et al. (2017)∗† λ 87.1 -
Dong and Lapata (2018)∗† λ 88.2 -
Sun et al. (2020)∗† λ 89.1 -
Iyer et al. (2017)∗† SQL - 82.5
ATIS
Wang et al. (2014) λ 91.3 -
Zhao and Huang (2015) λ 84.2 -
Jia and Liang (2016)∗ λ 83.3 -

- data augmentation λ 76.3 -
Dong and Lapata (2016)∗† λ 84.6 -
Rabinovich et al. (2017)∗† λ 85.9 -
Yin and Neubig (2018)∗† λ 88.2 -
Dong and Lapata (2018)∗† λ 87.7 -
Cao et al. (2019)∗† λ 89.1 -
Sun et al. (2020)∗† λ 89.6 -
Shaw et al. (2019)∗ λ 87.1 -
Iyer et al. (2017)∗† SQL - 79.2
Jobs
Zettlemoyer and Collins (2005) λ 79.3 -
Zhao and Huang (2015) λ 85.0 -
Dong and Lapata (2016)∗† Prolog 90.0 -
Rabinovich et al. (2017)∗† Prolog 91.4 -
Chen et al. (2020)∗ Prolog - 92.1

Table 8: Performance of semantic parsing approaches,
where ∗ denotes neural approaches and † denotes ap-
proaches using data anonymization techniques. ‘λ’ de-
notes Lambda Calculus. ‘Exact’ and ‘Exec’ denote
exact-match and execution-match, respectively.

perform a type inference for variables in the logical
form, since some predicates in Lambda Calculus
can take different types of variables as input, e.g.,
for the predicate to(A,B), variable B can be ei-
ther an airport or a city. Then, we tokenize the
input logical form and recursively translate each
sub-expression in the logical form into FunQL ex-
pressions based on the predicates we design for
FunQL. Translation from Lambda Calculus to Pro-
log is performed in a similar way. The source code
for translation is also available in our Github repos-
itory. We also implement execution engines for
Lambda Calculus, Prolog, and FunQL.
Job. There are only annotated logical forms for
Lambda Calculus and Prolog in Job. We directly
use Prolog logical forms provided on the web-
site.9 To provide annotations for FunQL, we semi-

9http://www.cs.utexas.edu/ ml/nldata/jobquery.html

automatically translate Prolog logical forms to
equivalent logical forms in FunQL with an algo-
rithm similar to Algorithm 1. In terms of SQL, the
logical forms in Job are relatively simple and can
be expressed with the SELECT, FROM and WHERE
clauses of SQL. We simply translate each sub-
expression in Prolog to an expression in WHERE
clause and use a conjunction to join the resulting
expressions. Since we cannot find the annotated
Lambda Calculus logical forms provided by (Zettle-
moyer and Collins, 2005), we also translate the
Prolog logical forms to Lambda Calculus. We im-
plement execution engines for Lambda Calculus
and FunQL.

A.2 Model Configuration

Preprocessing of Prolog and Lambda Calculus
As Prolog and Lambda Calculus have variables, we
need to standardize their variable naming before
training. Following (Jia and Liang, 2016), we pre-
process the Prolog logical forms to the De Brujin
index notation. We standardize the variable nam-
ing of Lambda Calculus based on their occurrence
order in logical forms.
Attention Copying Mechanism. In Geo and Job,
we use the standard copy mechanism, i.e., directly
copying a source word to a logical form. In ATIS,
following (Jia and Liang, 2016), we leverage an ex-
ternal lexicon to identify potential copy candidates,
e.g., slc:ap can be identified as a potential entity
for description “salt lake city airport” in utterance.
When we copy a source word that is part of a phrase
in the lexicon, we write the entity associated with
that lexicon entry to a logical form.
Hyper-Parameters. For the seq2seq model, the
embedding dimension of both source and target
languages ranges over {100, 200}. We select a
one-layer bi-directional LSTM as an encoder. The
hidden dimension of the encoder ranges over {32,
64, 128, 256}. Similarly, a one-layer LSTM is
selected as the decoder. Its hidden dimension is
as same as the encoder. In terms of attention, we
select bi-linear as the activation function, where
the hidden dimension is 2 times that of the encoder.
We employ dropout at training time with rate rang-
ing over {0.1, 0.2, 0.3}. We select batch size from
{16, 32, 48, 64}, and select learning rate from
{0.001, 0.0025, 0.005, 0.01, 0.025, 0.05}. Follow-
ing (Dong and Lapata, 2016), we use the RMSProp
algorithm to update the parameters. The smooth-
ing constant of RMSProp is 0.95. We initialize all
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parameters uniformly at random within the interval
[−0.1, 0.1].

Similarly, for the grammar-based model, a one-
layer bi-directional LSTM is used as an encoder
and another LSTM is employed as a decoder. The
layers of the decoder is selected from {1, 2}. The
hidden dimension of the encoder ranges over {64,
128, 256}. The hidden dimension of the decoder
is 2 times that of the encoder. The hidden dimen-
sion of both the grammar rule and non-terminal
is selected from {64, 128, 256}. We also employ
dropout in the encoder and decoder at training time
with rate selected from {0.1, 0.2, 0.3}. We select
batch size from {16, 32, 48, 64}, and select learn-
ing rate from {0.001, 0.0025, 0.005, 0.01, 0.025,
0.05}. We use the Adam algorithm to update the
parameters.

For both models, gradients are clipped at 5 to
alleviate the exploding gradient problem, and early
stopping is used to determine the number of epochs.
We provide the detailed configurations of the NNI
platform in our Github repository.

A.3 Search for Aliases for Logical Forms.

Algorithm 2: Search for Program Alias
Input: A logical form p
Output: A set of aliases of the input logical

form aliases
1 ast = Parse(p);
2 aliases = [];
3 for r ∈ Rules do
4 C = Apply(ast, r);
5 for c ∈ C do
6 if IsEquivalent(p, c) then
7 Append(aliases,c);
8 end
9 end

Algorithm 2 presents the way we search for
aliases for a logical form. Transformation rules can
be categorized into two groups based on whether
they are domain-specific. Considering the follow-
ing two logical forms:

(lambda A:e (exists B (and (flight B) (fare B
A))))

(lambda A:e (exists B (and (flight B) (equals
(fare B) A))))
they are semantically equivalent due to the multi-
ple meaning definitions of fare. There are also

Rule Description
Prolog
Shuffle Shuffle expressions in conjunction
Remove Remove redundant expressions
Merge Put expressions into higher-order predicates
Lambda Calculus
Shuffle Shuffle expressions in conjunction
Replace Replace semantically equivalent predicates
FunQL
Shuffle Shuffle expressions in conjunction
Remove Remove redundant expressions
Swap Swap unit relation predicate
Replace Replace semantically equivalent predicates
SQL

Shuffle Shuffle expressions in Select, From, Where,
and Having clauses

Argmax Express Argmax/min with OrderBy and
Limit clause instead of subquery

In2Join Replace In clause with Join clause

Table 9: Transformation rules for Prolog, Lambda Cal-
culus and FunQL.

domain-general transformation rules, e.g., permut-
ing the expressions in the conjunction predicate:

(lambda A:e (exists B (and (flight B) (fare B
A))))

(lambda A:e (exists B (and (fare B A) (flight
B))))

In this work, we primarily consider domain-
general transformation rules and only when there
is limited aliases found by domain-general rules,
we use domain-specific rules. Table 9 presents
the transformation rules we used in Geo domains.
Rules in ATIS are similar. We provide examples
below to illustrate the rules.
Prolog Shuffle:

answer(A,(area(B,A),const(B,stateid(Texas))))
answer(A,(const(B,stateid(texas)),area(B,A),))

Prolog Remove:
answer(A,(loc(B,A),city(B),const(B,cityid(Austin, ))))
answer(A,(loc(B,A),const(B,cityid(Austin, ))))

Prolog Merge:
answer(A,(state(A),loc(B,A),highest(B,place(B))))
answer(A,(highest(B,(place(B),loc(B,A),state(A)))))

FunQL Swap:
answer(count(major(city(loc 2(stateid(Texas))))))
answer(count(city(major(loc 2(stateid(Texas))))))

FunQL Replace:
answer(city(loc 2(largest(state(all))))))
answer(city(loc 2(largest one(area 1(state(all))))))

SQL Argmax:
SELECT city.city name FROM city WHERE

city.population = (SELECT MAX(c1.population)
FROM city as c1 WHERE c1.state name = ‘ari-
zona’) and city.state name = ‘arizona’;
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MR Geo ATIS
Prolog 98.0% 96.2%
Lambda Calculus 69.7% 95.3%
FunQL 42.5% 87.9%
SQL 38.5% 95.5%

Table 10: Number of logical forms in training set of
Geo and ATIS that have aliases.

SELECT city.city name FROM city WHERE
state name = ‘arizona’ ORDER BY city.population
DESC LIMIT 1;
SQL In2Join:

SELECT river.river name FROM river WHERE
river.traverse IN (SELECT state.state name FROM
state WHERE state.area = (SELECT MAX(s1.area)
FROM state as s1));

SELECT river.river name FROM river, state
WHERE river.traverse = state.state name AND
state.area = (SELECT MAX(s1.area) FRORM state
as s1);

Table 10 presents the number of logical forms in
the training set of Geo and ATIS that have aliases,
from which we can see that with these simple rules,
we are able to find a lot of aliases. Since the logical
forms in Geo are generally simpler than that of
ATIS, the number of Geo is lower than ATIS.

A.4 Grammar
We present the grammar rules used in our ex-
periments for Geo (Figure 4-11). The grammar
rules for different MRs in ATIS follow a sim-
ilar definition. It is important to note that al-
though all logical forms in an MR can be mod-
eled by both G1 and G2, they are not neces-
sarily equivalent in expressiveness. For exam-
ple, answer(largest(place(all))) is a
syntactically correct but semantically incorrect
FunQL logical form in Geo, because the predicate
largest is not allowed to take places as input.
However, G2 of FunQL still can accept this logical
form, while G1 cannot, because G1 explicitly en-
codes type constraints in the its rules. Nevertheless,
the performance of G1 is lower than G2 in both
Geo and ATIS domains, which is surprising. For
all the grammar rules we present, G1 and G2 for
Prolog and Lambda Calculus and equivalent. G1
and G2 for FunQL and SQL are not equivalent.

statement   := "answer(" Var "," Form ")"
Form        := "(" Form conjunction ")" | "area(" Var "," Var ")" 

| "capital(" Var ")" | "capital(" Var "," Var ")" 
| "city(" Var ")" | "const(" Var ",countryid(usa))" 
| "const(" Var "," City ")" | "const(" Var "," Place ")" 
| "const(" Var "," River ")" | "const(" Var "," State ")" 
| "count(" Var "," Form "," Var ")" | "country(" Var ")" 
| "density(" Var "," Var ")" | "elevation(" Var "," Num ")" 
| "elevation(" Var "," Var ")" 
| "fewest(" Var "," Var "," Form ")" 
| "high_point(" Var "," Var ")" 
| "higher(" Var "," Var ")" | "highest(" Var "," Form ")" 
| "lake(" Var ")" | "largest(" Var "," Form ")" 
| "len(" Var "," Var ")" | "loc(" Var "," Var ")" 
| "longer(" Var "," Var ")" | "longest(" Var "," Form ")" 
| "low_point(" Var "," Var ")" | "lower(" Var "," Var ")" 
| "lowest(" Var "," Form ")" | "major(" Var ")" 
| "most(" Var "," Var "," Form ")" | "mountain(" Var ")" 
| "next_to(" Var "," Var ")" | "not(" Form ")" 
| "place(" Var ")" | "population(" Var "," Var ")" 
| "river(" Var ")" | "shortest(" Var "," Form ")" 
| "size(" Var "," Var ")" | "smallest(" Var "," Form ")" 
| "state(" Var ")" | "sum(" Var "," Form "," Var ")" 
| "traverse(" Var "," Var ")"

conjunction := "" | "," Form conjunction
City        := "cityid(" CityName "," StateAbbrev ")" 

| "cityid(" CityName ",_)"
Place       := "placeid(" PlaceName ")"
River       := "riverid(" RiverName ")"
State       := "stateid(" StateName ")"
Var := "a" | "b" | "c" | "d" | "e" | "f" | "g" | "nv" | "v0" | "v1" | 
"v2" | "v3" | "v4" | "v5" | "v6" | "v7"
StateName := "Texas" | "illinois" | … | "kentucky"
CityName := "albany" | "chicago" | … | "columbus"
PlaceName := "mount mckinley" | … | "death valley"
RiverName := "ohio" | "colorado” | … | "red"
StateAbbrev := "dc" | "sd" | … | "me"
Number       := "0" | "1.0"

Figure 4: The grammar rules for Prolog in Geo induced
by (Wong and Mooney, 2007) (G1).
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statement     := "answer(" var "," goal ")"
goal          := "(" predicate conjunction ")" | meta | unit_relation
conjunction   := "" | "," predicate conjunction
predicate     := "not" declaration | "not((" predicate conjunction "))" 

| binary_relation | declaration | meta | unit_relation
meta          := count | fewest | highest | largest | longest | lowest 

| most | shortest | smallest | sum
unit_relation := is_capital | is_city | is_lake | is_major

| is_mountain | is_place | is_river | is_state
binary_relation := is_area | is_captial_of | is_density | is_elevation

| is_equal | is_high_point | is_higher | is_len
| is_located_in | is_longer | is_low_point | is_lower
| is_next_to | is_population | is_size | is_traverse

declaration   := "const(" var "," object ")"
object        := "countryid(usa)" | city | place | river | state
retrieve      := area | len | population
var           := "a" | "b" | "c" | "d" | "e" | "f" | "g" | "nv" | "v0" 

| "v1" | "v2" | "v3" | "v4" | "v5" | "v6" | "v7"
is_capital := "capital(" var ")"
is_captial_of := "capital(" var "," var ")"
is_city := "city(" var ")"
is_density := "density(" var "," var ")"
is_elevation := "elevation(" var "," literal ")" 

| "elevation(" var "," var ")"
is_equal := "equal(" var "," var ")"
is_high_point := "high_point(" var "," var ")"
is_higher := "higher(" var "," var ")"
is_lake := "lake(" var ")"
is_len := "len(" var "," var ")"
is_located_in := "loc(" var "," var ")"
is_longer := "longer(" var "," var ")"
is_low_point := "low_point(" var "," var ")"
is_lower := "lower(" var "," var ")"
is_major := "major(" var ")"
is_mountain := "mountain(" var ")"
is_next_to := "next_to(" var "," var ")"
is_place := "place(" var ")"
is_population := "population(" var "," var ")"
is_river := "river(" var ")"
is_size := "size(" var "," var ")"
is_state := "state(" var ")"
is_traverse := "traverse(" var "," var ")"
largest       := "largest(" var "," goal ")"
len := "len(" var ")"
longest       := "longest(" var "," goal ")"
lowest        := "lowest(" var "," goal ")"
most          := "most(" var "," var "," goal ")"
shortest      := "shortest(" var "," goal ")"
smallest      := "smallest(" var "," goal ")"
statement     := "answer(" var "," goal ")"
sum           := "sum(" var "," goal "," var ")"
count         := "count(" var "," goal "," var ")"
fewest        := "fewest(" var "," var "," goal ")"
highest       := "highest(" var "," goal ")”
state         := "stateid(" state_name ")"
river         := "riverid(" river_name ")"
city          := "cityid(" city_name "," state_abbre ")"
place         := "placeid(" place_name ")"
river         := "riverid(" river_name ")"
state_name := "Texas" | "illinois" | … | "kentucky"
city_name := "albany" | "chicago" | … | "columbus"
place_name := "mount mckinley" | … | "death valley"
river_name := "ohio" | "colorado” | … | "red"
state_bbbrev := "dc" | "sd" | … | "me"
literal       := "0" | "1.0"

Figure 5: The grammar rules that we induce for Prolog
in Geo (G2).

statement   := expression
expression  := abstraction | application | constant | variable
abstraction := "(lambda" variable_definition expression ")"
application := "(" function ")"
constant    := "0:i" | "death_valley:lo" | "usa:co" | city 

| mountain | names | place | river | state
variable    := "$0" | "$1" | "$2" | "$3" | "$4"
polyvariadic_expression := "" | application polyvariadic_expression
variable_definition := "$0:e" | "$0:i" | "$1:e" | "$2:e" 

| "$3:e" | "$4:e"
function    := "<:<i,<i,t>>" expression expression 

| "=:<i,<i,t>>" expression expression 
| ">:<i,<i,t>>" expression expression 
| "and:<t*,t>" application polyvariadic_expression
| "area:<lo,i>" expression 
| "argmax:<<e,t>,<<e,i>,e>>" expression expression 
| "argmin:<<e,t>,<<e,i>,e>>" expression expression 
| "capital2:<s,<c,t>>" expression expression 
| "capital:<c,t>" expression 
| "capital:<s,<c,t>>" expression expression 
| "capital:<s,c>" expression | "city:<c,t>" expression 
| "count:<<e,t>,i>" expression 
| "density:<lo,<i,t>>" expression expression 
| "density:<lo,i>" expression 
| "elevation:<lo,<i,t>>" expression expression 
| "elevation:<lo,i>" expression 
| "equals:<e,<e,t>>" expression expression 
| "exists:<<e,t>,t>" expression 
| "forall:<<e,t>,t>" expression 
| "high_point:<e,<e,t>>" expression expression 
| "high_point:<e,l>" expression 
| "in:<lo,<lo,t>>" expression expression 
| "lake:<l,t>" expression | "len:<r,i>" expression 
| "loc:<lo,<lo,t>>" expression expression 
| "major:<lo,t>" expression | "mountain:<m,t>" expression 
| "named:<e,<n,t>>" expression expression 
| "next_to:<lo,<lo,t>>" expression expression 
| "not:<t,t>" expression 
| "or:<t*,t>" application polyvariadic_expression
| "place:<p,t>" expression 
| "population:<lo,<i,t>>" expression expression 
| "population:<lo,i>" expression 
| "river:<r,t>" expression | "size:<lo,i>" expression 
| "state:<s,t>" expression 
| "sum:<<e,t>,<<e,i>,i>>" expression expression 
| "the:<<e,t>,e>" expression 
| "town:<lo,t>" expression 

state       := "oklahoma:s" | "mississippi:s" | … | "arkansas"  
city        := "albany_ny:c" | "chicago_il:c" | … | "columbus_oh:c"
place       := "mount_mckinley:p" | "mount_whitney:p"
river       := "mississippi_river:r" | … | "colorado_river:r" 
mountain    := "mount_mckinley:m" | … | "mount_whitney:m"
name        := "austin:n" | … | "springfield:n"

Figure 6: The grammar rules that for Lambda Calculus
in Geo (G1).
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statement   := expression
expression  := abstraction | application | constant | variable
abstraction := "(lambda" variable_definition expression ")"
application := "(" function ")"
constant    := "0:i" | "death_valley:lo" | "usa:co" | city 

| mountain | names | place | river | state
variable    := "$0" | "$1" | "$2" | "$3" | "$4"
polyvariadic_expression := "" | application polyvariadic_expression
variable_definition := "$0:e" | "$0:i" | "$1:e" | "$2:e" 

| "$3:e" | "$4:e"
function    := binary_relation | entity_function | meta_predicate

| unit_relation
binary_relation := "capital2:<s,<c,t>>" expression expression 

| "capital:<s,<c,t>>" variable variable 
| "density:<lo,<i,t>>" expression expression 
| "elevation:<lo,<i,t>>" expression expression 
| "high_point:<e,<e,t>>" variable variable 
| "in:<lo,<lo,t>>" expression expression 
| "loc:<lo,<lo,t>>" expression expression 
| "named:<e,<n,t>>" expression expression 
| "next_to:<lo,<lo,t>>" expression expression 
| "population:<lo,<i,t>>" variable variable

entity_function := "area:<lo,i>" expression | "capital:<s,c>" expression 
| "density:<lo,i>" expression 
| "elevation:<lo,i>" expression 
| "high_point:<e,l>" expression 
| "len:<r,i>" expression 
| "population:<lo,i>" expression 
| "size:<lo,i>" expression | "the:<<e,t>,e>" expression

meta_predicate := "<:<i,<i,t>>" expression expression 
| "=:<i,<i,t>>" expression expression 
| ">:<i,<i,t>>" expression expression 
| "and:<t*,t>" application polyvariadic_expression
| "argmax:<<e,t>,<<e,i>,e>>" abstraction abstraction 
| "argmin:<<e,t>,<<e,i>,e>>" abstraction abstraction 
| "count:<<e,t>,i>" abstraction 
| "equals:<e,<e,t>>" variable expression 
| "exists:<<e,t>,t>" abstraction 
| "forall:<<e,t>,t>" abstraction 
| "not:<t,t>" application 
| "or:<t*,t>" application polyvariadic_expression
| "sum:<<e,t>,<<e,i>,i>>" abstraction abstraction

unit_relation := "capital:<c,t>" variable | "city:<c,t>" variable 
| "lake:<l,t>" variable | "major:<lo,t>" variable 
| "mountain:<m,t>" variable | "place:<p,t>" variable 
| "river:<r,t>" variable | "state:<s,t>" variable 
| "town:<lo,t>" variable

state       := "oklahoma:s" | "mississippi:s" | … | "arkansas"  
city        := "albany_ny:c" | "chicago_il:c" | … | "columbus_oh:c"
place       := "mount_mckinley:p" | "mount_whitney:p"
river       := "mississippi_river:r" | … | "colorado_river:r" 
mountain    := "mount_mckinley:m" | … | "mount_whitney:m"
name        := "austin:n" | … | "springfield:n"

Figure 7: The grammar rules that for Lambda Calculus
in Geo (G2).

statement := Query
Query     := "answer(" City ")" | "answer(" Country ")" 

| "answer(" Num ")" | "answer(" Place ")" 
| "answer(" River ")" | "answer(" State ")"

City      := "capital(" City ")" | "capital(" Place ")" | "capital(all)" 
| "capital_1(" Country ")" | "capital_1(" State ")" 
| "city(" City ")" | "city(all)" 
| "cityid(" CityName "," StateAbbrev ")" 
| "cityid(" CityName ",_)" 
| "each(" City ")" | "exclude(" City "," City ")" 
| "fewest(" City ")" | "intersection(" City "," City ")" 
| "largest(" City ")" | "largest_one(density_1(" City "))" 
| "largest_one(population_1(" City "))" 
| "loc_1(" Place ")" | "loc_2(" Country ")" 
| "loc_2(" State ")" | "major(" City ")" 
| "most(" City ")" | "smallest(" City ")" 
| "smallest_one(population_1(" City "))" 
| "traverse_1(" River ")" 

Country   := "country(all)" | "countryid('usa')" | "each(" Country ")" 
| "exclude(" Country "," Country ")" 
| "intersection(" Country "," Country ")" 
| "largest(" Country ")" | "loc_1(" City ")" 
| "loc_1(" Place ")" | "loc_1(" River ")" 
| "loc_1(" State ")" | "most(" Country ")" 
| "smallest(" Country ")" | "traverse_1(" River ")"

Num       := "area_1(" City ")" | "area_1(" Country ")" 
| "area_1(" Place ")" | "area_1(" State ")" 
| "count(" City ")" | "count(" Country ")" 
| "count(" Place ")" | "count(" River ")" 
| "count(" State ")" | "density_1(" City ")" 
| "density_1(" Country ")" | "density_1(" State ")" 
| "elevation_1(" Place ")" | "len(" River ")" 
| "population_1(" City ")" | "population_1(" Country ")" 
| "population_1(" State ")" | "size(" City ")" 
| "size(" Country ")" | "size(" State ")" 
| "smallest(" Num ")" | "sum(" Num ")" | Digit

Place     := "each(" Place ")" | "elevation_2(" Num ")" 
| "exclude(" Place "," Place ")" | "fewest(" Place ")" 
| "high_point_1(" State ")" | "higher_1(" Place ")" 
| "higher_2(" Place ")" | "highest(" Place ")" 
| "intersection(" Place "," Place ")" | "lake(" Place ")" 
| "lake(all)" | "largest(" Place ")" | "loc_2(" City ")" 
| "loc_2(" Country ")" | "loc_2(" State ")" 
| "low_point_1(" State ")" | "lower_1(" Place ")" 
| "lower_2(" Place ")" | "lowest(" Place ")" 
| "major(" Place ")" | "mountain(" Place ")" 
| "mountain(all)" | "place(" Place ")" 
| "place(all)" | "placeid(" PlaceName ")" 
| "smallest(" Place ")"

River     := "each(" River ")" | "exclude(" River "," River ")" 
| "fewest(" River ")" | "intersection(" River "," River ")" 
| "loc_2(" Country ")" | "loc_2(" State ")" 
| "longer(" River ")" | "longest(" River ")" 
| "major(" River ")" | "most(" State ")" 
| "river(" River ")" | "river(all)" 
| "riverid(" RiverName ")" | "shortest(" River ")" 
| "traverse_2(" City ")" | "traverse_2(" Country ")" 
| "traverse_2(" State ")"

State     := "capital_2(" City ")" | "each(" State ")" 
| "exclude(" State "," State ")" | "fewest(" State ")" 
| "high_point_2(" Place ")" 
| "intersection(" State "," State ")" 
| "largest(" State ")" | "largest_one(area_1(" State "))" 
| "largest_one(density_1(" State "))" 
| "largest_one(population_1(" State "))" 
| "loc_1(" City ")" | "loc_1(" Place ")" 
| "loc_1(" River ")" | "loc_2(" Country ")" 
| "low_point_2(" Place ")" | "most(" City ")" 
| "most(" Place ")" | "most(" River ")" 
| "most(" State ")" | "next_to_1(" State ")" 
| "next_to_2(" River ")" | "next_to_2(" State ")”
| "smallest(" State ")" | "smallest_one(area_1(" State "))" 
| "smallest_one(density_1(" State "))"  
| "smallest_one(population_1(" State "))" 
| "state(" State ")" | "state(all)" 
| "stateid(" StateName ")" | "traverse_1(" River ")" 

StateName := "Texas" | "illinois" | … | "kentucky"
CityName := "albany" | "chicago" | … | "columbus"
PlaceName := "mount mckinley" | … | "death valley"
RiverName := "ohio" | "colorado” | … | "red"
StateAbbrev := "dc" | "sd" | … | "me"
Digit       := "0" | "1.0"

Figure 8: The grammar rules for FunQL in Geo in-
duced by (Wong and Mooney, 2006) (G1).
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answer     := "answer(" predicate ")"
predicate  := "exclude(" predicate "," predicate ")" 

| "intersection(" predicate "," predicate ")" 
| collection | meta | object | relation 

collection := all_capital_cities | all_cities | all_lakes
| all_mountains | all_places | all_rivers | all_states

meta       := count | fewest | highest | largest | largest_one_area
| largest_one_density | largest_one_population
| longest | lowest | most | shortest | smallest 
| smallest_one_area | smallest_one_density
| smallest_one_population | sum

object     := "countryid('usa')" | city | place | river | state
relation   := is_area_state | is_captial | is_captial_city

| is_captial_country | is_city | is_density_place
| is_elevation_place | is_elevation_value
| is_high_point_place | is_high_point_state
| is_higher_place_2 | is_lake | is_len | is_loc_x
| is_loc_y | is_longer | is_low_point_place
| is_low_point_state | is_lower_place_2 | is_major
| is_mountain | is_next_to_state_1 | is_next_to_state_2  
| is_place | is_population | is_river | is_size
| is_state | is_traverse_river | is_traverse_state

all_capital_cities := "capital(all)"
all_cities := "city(all)"
all_lakes := "late(all)"
all_mountains := "mountain(all)"
all_places := "place(all)"
all_rivers := "river(all)"
all_states := "state(all)"
count              := "count(" predicate ")"
fewest             := "fewest(" predicate ")"
highest            := "highest(" predicate ")"
largest            := "largest(" predicate ")"
largest_one_area := "largest_one(area_1(" predicate "))"
largest_one_density := "largest_one(density_1(" predicate "))"
largest_one_population := "largest_one(population_1(" predicate "))"
longest            := "longest(" predicate ")"
lowest             := "lowest(" predicate ")"
most               := "most(" predicate ")”
shortest           := "shortest(" predicate ")"
smallest           := "smallest(" predicate ")"
smallest_one_area := "smallest_one(area_1(" predicate "))"
smallest_one_density := "smallest_one(density_1(" predicate "))"
smallest_one_population := "smallest_one(population_1(" predicate "))"
sum                := "sum(" predicate ")"
city               := "cityid(" city_name "," state_abbre ")"
state              := "stateid(" state_name ")"
place              := "placeid(" place_name ")"
river              := "riverid(" river_name ")"
is_area_state := "area_1(" predicate ")"
is_captial := "capital(" predicate ")"
is_captial_city := "capital_2(" predicate ")"
is_captial_country := "capital_1(" predicate ")"
is_city := "city(" predicate ")"
is_density_place := "density_1(" predicate ")"
is_elevation_place := "elevation_1(" predicate ")"
is_elevation_value := "elevation_2(" number ")"
is_high_point_place:= "high_point_2(" predicate ")"
is_high_point_state:= "high_point_1(" predicate ")"
is_higher_place_2  := "higher_2(" predicate ")"
is_lake := "lake(" predicate ")"
is_len := "len(" predicate ")"
is_loc_x := "loc_1(" predicate ")"
is_loc_y := "loc_2(" predicate ")"
is_longer := "longer(" predicate ")"
is_low_point_place := "low_point_2(" predicate ")"
is_low_point_state := "low_point_1(" predicate ")"
is_lower_place_2   := "lower_2(" predicate ")"
is_major := "major(" predicate ")"
is_mountain := "mountain(" predicate ")"
is_next_to_state_1 := "next_to_1(" predicate ")"
is_next_to_state_2 := "next_to_2(" predicate ")"
is_place := "place(" predicate ")"
is_population := "population_1(" predicate ")"
is_river := "river(" predicate ")"
is_size := "size(" predicate ")"
is_state := "state(" predicate ")"
is_traverse_river := "traverse_1(" predicate ")"
is_traverse_state := "traverse_2(" predicate ")"
state_name := "Texas" | "illinois" | … | "kentucky"
city_name := "albany" | "chicago" | … | "columbus"
place_name := "mount mckinley" | … | "death valley" 
river_name := "ohio" | "colorado” | … | "red"
state_abbrev := "dc" | "sd" | … | "me"
number             := "0" | "1.0"

Figure 9: The grammar rules that we induce for FunQL
in Geo (G2).
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statement  := mquery
mquery := select_clause from_clause groupby_clause having_clause orderby_clause limit 

| select_clause from_clause groupby_clause having_clause orderby_clause
| select_clause from_clause groupby_clause having_clause
| select_clause from_clause groupby_clause orderby_clause limit 
| select_clause from_clause groupby_clause orderby_clause
| select_clause from_clause groupby_clause
| select_clause from_clause orderby_clause limit 
| select_clause from_clause orderby_clause
| select_clause from_clause where_clause groupby_clause having_clause orderby_clause limit 
| select_clause from_clause where_clause groupby_clause having_clause orderby_clause
| select_clause from_clause where_clause groupby_clause having_clause
| select_clause from_clause where_clause groupby_clause orderby_clause limit 
| select_clause from_clause where_clause groupby_clause orderby_clause
| select_clause from_clause where_clause groupby_clause
| select_clause from_clause where_clause orderby_clause limit 
| select_clause from_clause where_clause orderby_clause
| select_clause from_clause where_clause
| select_clause from_clause

select_clause := select_with_distinct select_results
select_with_distinct := "select distinct" | "select"
select_results := select_result "," select_results | select_result
select_result := subject "as" column_alias | subject selectop subject | subject
selectop := "+" | "-" | "/"
subject              := col_ref | function
col_ref := column_name | table_alias "." column_name
function             := fname "(distinct" col_ref ")" | fname "(" col_ref ")"
table_alias := "border_infoalias0" | … | "statealias3" | "statealias4" | "statealias5" | "tmp"
table_name := "border_info" | "city" | "highlow" | "lake" | "mountain" | "river" | "state"
column_alias := "derived_fieldalias0" | "derived_fieldalias1"
column_name := "*" | "area" | "border" | "capital" | … | "population" | "river_name" | "state_name"
from_clause := "from" source | "from" table_source join_clauses
source               := single_source "," source | single_source
single_source := source_subq | table_source
source_subq := "(" mquery ") as" table_alias | "(" mquery ")" table_alias | "(" mquery ")"
table_source := table_name "as" table_alias | table_name
join_clauses := join_clause join_clauses | join_clause
join_clause := joinop table_source "on" join_condition_clause
joinop := "join" | "left outer join"
join_condition_clause := join_condition "and" join_condition_clause | join_condition
join_condition := col_ref "=" col_ref
groupby_clause := "groupby" group_clause
group_clause := subject "," group_clause | subject
where_clause := "where" expr where_conj | "where" expr
where_conj := "and" expr where_conj | "and" expr | "or" expr where_conj | "or" expr
expr                 := subject "in (" mquery ")" | subject "not in(" mquery ")" 

| subject binaryop "(" mquery ")" | subject binaryop "all(" mquery ")" 
| subject binaryop "any(" mquery ")" | subject binaryop value

value                := col_ref | non_literal_number | string
binaryop := "!=" | "<" | "<=" | "<>" | "=" | ">" | ">=" | "like" | "not like"
having_clause := "having" expr having_conj | "having" expr
having_conj := "and" expr having_conj | "and" expr | "or" expr having_conj | "or" expr
orderby_clause := "orderby" order_clause
order_clause := ordering_term "," order_clause | ordering_term
ordering_term := subject ordering | subject
ordering             := "asc" | "desc"
limit                := "limit" non_literal_number
non_literal_number.  := "150000" | "750" | "0" | "1" | "2" | "3" | "4"
string               := "\'chattahoochee\'" | … | "\'rio grande\'" | "\'potomac\'"

Figure 10: The grammar rules that we adapt from (Bogin et al., 2019) for SQL Geo (G1).
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statement  := mquery
mquery := query
query := select_core groupby_clause orderby_clause "limit 1" | select_core groupby_clause orderby_clause

| select_core groupby_clause | select_core orderby_clause "limit 1" | select_core orderby_clause
| select_core

select_core := select_with_distinct select_results from_clause where_clause
| select_with_distinct select_results from_clause

select_with_distinct := "select distinct" | "select”
select_results := select_result "," select_results | select_result
select_result := col_ref selectop col_ref | col_ref | function "as" column_alias

| function selectop function | function
selectop := "+" | "-" | "/"
col_ref := column_name "as" column_alias | column_name | table_alias "." column_name
function     := fname "(distinct" arg_list_or_star ")" | fname "(" arg_list_or_star ")"
fname := "all" | "avg" | "count" | "max" | "min" | "sum"
arg_list_or_star := "*" | col_ref
column_alias := "derived_fieldalias0" | "derived_fieldalias1"
column_name := "*" | "area" | "border" | "capital" | … | "population" | "river_name" | "state_name"
table_alias := "border_infoalias0" | … | "statealias3" | "statealias4" | "statealias5" | "tmp"
table_name := "border_info" | "city" | "highlow" | "lake" | "mountain" | "river" | "state"
from_clause := "from" source | "from" table_source join_clauses
table_source := table_name "as" table_alias
source := single_source "," source | single_source
single_source := "(" mquery ") as" table_alias | table_source
join_clauses := join_clause join_clauses | join_clause
join_clause := joinop table_source "on" join_condition_clause
join_condition_clause:= join_condition "and" join_condition_clause | join_condition
join_condition := col_ref "=" col_ref
joinop := "join" | "left outer join"
where_clause := "where" expr where_conj | "where" expr
where_conj := "and" expr where_conj | "and" expr | "or" expr where_conj | "or" expr
expr := col_ref "in" source_subq | col_ref "not in" source_subq

| col_ref binaryop "all" source_subq | col_ref binaryop "any" source_subq
| col_ref binaryop source_subq | col_ref binaryop value

source_subq := "(" query ")"
binaryop := "!=" | "*" | "+" | "-" | "/" | "<" | "<=" | "<>" | "=" | ">" | ">=" | "like" 

| "not like"
value := col_ref | string
groupby_clause := "group by" group_clause having_clause | "group by" group_clause
group_clause := col_ref "," group_clause | col_ref
having_clause := "having" having_expr having_conj | "having" having_expr
having_conj := "and" having_expr having_conj | "and" having_expr | "or" having_expr having_conj

| "or" having_expr
having_expr := function "in" source_subq | function "notin" source_subq

| function binaryop "all" source_subq | function binaryop "any" source_subq
| function binaryop source_subq

orderby_clause := "orderby" order_clause
order_clause := ordering_term "," order_clause | ordering_term
ordering_term := ordering_expr ordering | ordering_expr
ordering             := "asc" | "desc"
ordering_expr := col_ref | function
string := "'red'" | "'usa'" | city_name | digit_value | mountain_name | place 

| river_name | state_name
city_name := "\'detroit\'" | … | "\'plano\'" | "\'des moines\'"
digit_value := "750" | "0" | "150000"
mountain_name := "\'mckinley\'" | "\'whitney\’”
place                := "\'death valley\'" | "\'mount mckinley\'" | "\'guadalupe peak\'"
river_name := "\'north platte\'" | "\'chattahoochee\'" | "\'rio grande\'" | "\'potomac\'"
state_name := "\'oregon\'" | "\'georgia\'" | … | "\'wisconsin\'" | "\'montana\'"

Figure 11: The grammar rules that we induce for SQL Geo (G2).


