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Abstract
Clinical trials provide essential guidance for
practicing Evidence-Based Medicine, though
often accompanying with unendurable costs
and risks. To optimize the design of clinical tri-
als, we introduce a novel Clinical Trial Result
Prediction (CTRP) task. In the CTRP frame-
work, a model takes a PICO-formatted clinical
trial proposal with its background as input and
predicts the result, i.e. how the Intervention
group compares with the Comparison group in
terms of the measured Outcome in the studied
Population. While structured clinical evidence
is prohibitively expensive for manual collec-
tion, we exploit large-scale unstructured sen-
tences from medical literature that implicitly
contain PICOs and results as evidence. Specif-
ically, we pre-train a model to predict the dis-
entangled results from such implicit evidence
and fine-tune the model with limited data on
the downstream datasets. Experiments on the
benchmark Evidence Integration dataset show
that the proposed model outperforms the base-
lines by large margins, e.g., with a 10.7% rel-
ative gain over BioBERT in macro-F1. More-
over, the performance improvement is also val-
idated on another dataset composed of clinical
trials related to COVID-19.

1 Introduction

Shall COVID-19 patients be treated with hydrox-
ychloroquine? In the era of Evidence-Based
Medicine (EBM, Sackett 1997), medical prac-
tice should be guided by well-designed and well-
conducted clinical research, such as randomized
controlled trials. However, conducting clinical tri-
als is expensive and time-consuming. Furthermore,
inappropriately designed studies can be devastating
in a pandemic: a high-profile Remdesivir clinical
trial fails to achieve statistically significant con-
clusions (Wang et al., 2020b), partially because it

∗ Work done during internship at Alibaba DAMO
Academy.

does not attain the predetermined sample size when
“competing with” other inappropriately designed
trials that are unlikely to succeed or not so urgent
to test (e.g.: physical exercises and dietary treat-
ments). Therefore, it is crucial to carefully design
and evaluate clinical trials before conducting them.

Proposing new clinical trials requires support
from previous evidence in medical literature or
practice. For example, the World Health Orga-
nization (WHO) has launched a global megatrial,
Solidarity (WHO, 2020), to prioritize clinical re-
sources by recommending only four most promis-
ing therapies1. The rationale for this suggestion
comes from the integration of evidence that they
might be effective against coronaviruses or other
related organisms in laboratory or clinical studies
(Peymani et al., 2016; Sheahan et al., 2017; Morra
et al., 2018). However, manual integration of evi-
dence is far from satisfying, as one study reports
that about 86.2% of clinical trials fail (Wong et al.,
2019) and even some of the Solidarity therapies do
not get expected results (Mehra et al., 2020).

To assist clinical trial designing, we introduce a
novel task: Clinical Trial Result Prediction (CTRP),
i.e. predicting the results of clinical trials without
actually doing them (§3). Figure 1 shows the archi-
tecture of the CTRP task. We define the input to be
a clinical trial proposal2, which contains free-texts
of a Population (e.g.: “COVID-19 patients with
severe symptoms”), an Intervention (e.g.: “Active
remdesivir (i.v.)”), a Comparator (e.g.: “Placebos
matched remdesivir”) and an Outcome (e.g.:“Time
to clinical improvement”), i.e. a PICO-formatted
query (Huang et al., 2006), and the background of
the proposed trial. The output is the trial Result,
denoting how (higher, lower, or no difference) I

1Remdesivir, lopinavir/ritonavir, interferon beta-1a and
chloroquine/hydroxychloroquine.

2The proposals need to be registered and approved before
the clinical trials are conducted.
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Intervention

Population

Comparison

Outcome

Background“Given no specific antiviral therapy 
for COVID-19 […]”

“COVID-19 patients with severe […]”

“Active remdesivir”

“Placebos matched remdesivir”

“Time to Clinical Improvement”

Result →

↑

↓

The CTRP Task
Given a clinical trial proposal (B
and PICO), predict its R, i.e. how I
compares to C in terms of O and P.

All available clinical evidence

Integration

Figure 1: Architecture of the proposed Clinical Trial Result Prediction (CTRP) task.

compares to C in terms of O for P.
One particular challenge of this task is that evi-

dence is entangled with other free-texts in the lit-
erature. Prior works have explored explicit meth-
ods for evidence integration through a pipeline of
retrieval, extraction and inference on structured
{P,I,C,O,R} evidence (Wallace et al., 2016; Singh
et al., 2017; Jin and Szolovits, 2018; Lee and
Sun, 2018; Nye et al., 2018; Marshall et al., 2017;
Lehman et al., 2019; DeYoung et al., 2020; Zhang
et al., 2020). However, they are limited in scale
since getting domain-specific supervision for all
clinical evidence is prohibitively expensive.

In this work, we propose to implicitly learn from
such evidence by pre-training, instead of relying on
explicit evidence with purely supervised learning.
There are more than 30 million articles in PubMed3,
which stores almost all available medical evidence
and thus is an ideal source for learning. We collect
12 million sentences from PubMed abstracts and
PubMed Central4 (PMC) articles with comparative
semantics, which is commonly used to express clin-
ical evidence (§4.1). P, I, C, O, and R are entangled
with other free-texts in such sentences, which we
denote as implicit evidence. Unlike previous ef-
forts that seek to disentangle all of PICO and R,
we only disentangle R out of the implicit evidence
using simple heuristics (§4.2). For better learning
the ordering function of I/C conditioned on P and
O, we also use adversarial examples generated by
reversing both the entangled PICO and the R in
the pre-training (§4.3). Then, we pre-train a trans-
former encoder (Vaswani et al., 2017) to predict the
disentangled R from the implicit evidence, which
still contains PICO (§5.1). The model is named
EBM-Net to reflect its utility for Evidence-Based

3https://pubmed.ncbi.nlm.nih.gov/
4https://www.ncbi.nlm.nih.gov/pmc/

Medicine. Finally, we fine-tune the pre-trained
EBM-Net on downstream datasets of the CTRP
task (§5.2), which are typically small in scale (§6).

To evaluate model performance, we introduce a
benchmark dataset, Evidence Integration (§6.1),
by re-purposing the evidence inference dataset
(Lehman et al., 2019; DeYoung et al., 2020). Exper-
iments show that our pre-trained EBM-Net outper-
forms the baselines (§6.2) by large margins (§6.3).
Clustering analyses indicate that EBM-Net can
effectively learn quantitative comparison results
(§6.4). In addition, the EBM-Net model is further
validated on a dataset composed of COVID-19 re-
lated clinical trials (§6.5).

Our contribution is two-fold. First, we propose
a novel and meaningful task, CTRP, to predict clin-
ical trial results before conducting them. Second,
unlike previous efforts that depend on structured
data to understand the totality of clinical evidence,
we heuristically collect unstructured textual data,
i.e. implicit evidence, and utilize large-scale pre-
training to tackle the proposed CTRP task. The
datasets and codes are publicly available at https:
//github.com/Alibaba-NLP/EBM-Net.

2 Related Works

Predicting Clinical Trial Results: Most rele-
vant works typically use only specific types or
sources of information for prediction (e.g.: chemi-
cal structures (Gayvert et al., 2016), drug dosages
or routes (Holford et al., 2000, 2010)). Gayvert
et al. (2016) predicts clinical trial results based on
chemical properties of the candidate drugs. Clinical
trial simulation (Holford et al., 2000, 2010) applies
pharmacological models to predict the results of a
specific intervention with different procedural fac-
tors, such as doses and sampling intervals. Some
use closely related report information, e.g.: interim

https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/pmc/
https://github.com/Alibaba-NLP/EBM-Net
https://github.com/Alibaba-NLP/EBM-Net
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analyses (Broglio et al., 2014) or phase II data for
just phase II trials (De Ridder, 2005). Our task is
(1) more generalizable, since all potential PICO
elements can be represented by free-texts and thus
modeled in our work; and (2) aimed at evaluating
new clinical trial proposals.

Explicit Evidence Integration: It depends on
the existence of structured evidence, i.e.: {P, I, C,
O, R} (Wallace, 2019). Consequently, collecting
such explicit evidence is vital for further analyses,
and is also the objective for most relevant works:
Some seek to find relevant papers through retrieval
(Lee and Sun, 2018); many works are aimed at ex-
tracting PICO elements from published literature
(Wallace et al., 2016; Singh et al., 2017; Marshall
et al., 2017; Jin and Szolovits, 2018; Nye et al.,
2018; Zhang et al., 2020); the evidence inference
task extracts R for a given ICO query using the
corresponding clinical trial report (Lehman et al.,
2019; DeYoung et al., 2020). However, since get-
ting expert annotations is expensive, these works
are typically limited in scale, with only thousands
of labeled instances. Few works have been done to
utilize the automatically collected structured data
for analyses. In this paper, we adopt an end-to-end
approach, where we use large-scale pre-training to
implicitly learn from free-text clinical evidence.

3 The CTRP Task

The CTRP task is motivated to evaluate clinical
trial proposals by predicting their results before ac-
tually conducting them, as discussed in §1. There-
fore, we formulate the task to take as input exactly
the information required for proposing a new clin-
ical trial: free-texts of a background description
and a PICO query to be investigated. Formally, we
denote the strings of the input background as B and
PICO elements as P, I, C, and O, respectively. The
task output is defined as one of the three possible
comparison results: higher (↑), no difference (→),
or lower (↓) measurement O in intervention group
I than in comparison group C for population P. We
denote the result as R, and:

R(B,P,I,C,O) =


↑ O(I) > O(C) | P
↓ O(I) < O(C) | P
→ O(I) ∼ O(C) | P

Main metrics include accuracy and 3-way macro-
averaged F1. We also use 2-way (↑, ↓) macro-
averaged F1 to evaluate human expectations (§6.2).

4 Implicit Evidence Integration

In this section, we introduce the Implicit Evidence
Integration, which is used to collect pre-training
data for comparative language modeling (§5.1).

Instead of collecting explicit evidence with struc-
tured {B,P,I,C,O−R} information, we utilize a
simple observation to collect evidence implicitly:
clinical evidence is naturally expressed by compar-
isons, e.g.: “Blood oxygen is higher in the interven-
tion group than in the placebo group”. Free-texts of
P, I, C, O and R are entangled with other functional
words that connect these elements in such compar-
ative sentences, where R is a free-text version of
the structured result R (e.g.: R = “higher ... than”
translates into R = ↑). We call these sentences
entangled implicit evidence and denote them as
Eent = {PICOR}. Then, we disentangle R out
of the Eent by heuristics, getting R and the left
Edis = {PICO}. We also include adversarial in-
stances generated from the original ones. Several
examples are shown in Table 1.

Details of implicit evidence collection, disentan-
glement, and adversarial data generation are intro-
duced in §4.1, §4.2 and §4.3, respectively.

4.1 Collection of Implicit Evidence
We collect implicit evidence from PubMed ab-
stracts and PMC articles5, where most of the clini-
cal evidence is published. PubMed contains more
than 30 million abstracts, and PMC has over 6
million full-length articles. Each abstract is chun-
ked into a background/method section and a re-
sult/conclusion section: For the unstructured ab-
stracts, sentences before the first found implicit
evidence are included in the background/method
section. For the semi-structured abstracts where
each section is labeled with a section name, the
chunking is done by mapping the section name to
either background/method or result/conclusion.

Sentences in abstract result/conclusion sections
and main texts that express comparative semantics
(Kennedy, 2004) are collected as implicit evidence.
They are identified by a pattern detection heuristic,
similar to the keyword method described in Jindal
and Liu (2006): For expressions of superiority (↑)
and inferiority (↓), we detect morpheme patterns of
[more/less/-er ... than ...]. For expression of equal-
ity (→), we detect morpheme patterns of [similar
... to ...] and [no difference ... between ... and
...]. The background/method section serves as the

5Articles in downstream experiment datasets are excluded.
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Eent Edis R r R

“Our results also showed that serum
TSH levels were slightly higher in the
chloroquine group than in the placebo
group.”

“Our results also showed that serum
TSH levels were [MASK] in the
chloroquine group [MASK] in the
placebo group.”

“slightly higher
... than”

[HIGHER] ↑

“In conclusion, there is no difference
between IFN treatment and supportive
treatment for MERS patients in terms
of mortality.”

“In conclusion, there is [MASK] IFN
treatment [MASK] supportive treat-
ment for MERS patients in terms of
mortality.”

“no difference
between ...
and”

[NODIFF] →

“Levels of viral antigen staining in
lung sections of GS-5734-treated ani-
mals were significantly lower as com-
pared to vehicle-treated animals.”

“Levels of viral antigen staining in
lung sections of GS-5734-treated ani-
mals were [MASK] vehicle-treated an-
imals.”

“significantly
lower as com-
pared to”

[LOWER] ↓

Table 1: Several examples of implicit evidence. Red, violet and blue denote superiority, equality and inferiority.

corresponding B for the collected implicit evidence.
These sentences are denoted as Eent, which contain
entangled PICO-R.

We have collected 11.8 million such sentences.
Among them, 2.4 million (20.2%), 3.5 million
(29.9%) and 5.9 million (49.9%) express inferiority,
equality and superiority respectively.

4.2 Disentanglement of Implicit Evidence

To disentangle the free-text result R from implicit
evidence Eent, we mask out the detected mor-
phemes that express comparative semantics (e.g.:
“higher than”) as well as other functional tokens that
might be exploited by the model to predict the re-
sult (e.g.: p values). This generates the masked out
result R and the left part Edis ({PICO}) from Eent
({PICOR}), i.e.: R + Edis = Eent. R is mostly a
phrase with a central comparative adjective/adverb
(e.g.: “significantly smaller than”) and can be di-
rectly mapped to R (↓ for the same example).

Nevertheless, R contains richer information than
the sole change direction because of the central ad-
jective/adverb. To utilize such information, we
map free-texts of R to a finer-grained result la-
bel r ∈ C instead of the 3-way direction, where
C = {[POORER],[LONGER],[SLOWER], ...}
is a manually-curated vocabulary for such labels
and |C| = 34. Each element can be mapped
to its antonym in C by a reversing function Rev:
e.g.: Rev([SMALLER]) = [GREATER] and
Rev([NODIFF]) = [NODIFF]. This enables
us to generate adversarial examples used below.

4.3 Adversarial Data Generation

We generate adversarial examples from the original
ones using a simple rule of ordering: if the result
r holds for the comparison I/C conditioned on P

and O, the reversed result Rev(r) must hold for the
reversed comparison C/I on the same condition.
This is similar to generate adversarial examples
for natural language inference task by logic rules
(Minervini and Riedel, 2018; Wang et al., 2019).

However, Since Edis = {PICO} is only partially
disentangled and P, I, C, O are still in their free-
text forms, we cannot explicitly reverse I/C and
generate such examples. As an alternative, we
reverse the entire sentence order while keeping the
word order between any two masked phrases in
Edis, getting Erev. For example, if:
Edis = “[Levels of viral antigen staining in

lung sections of GS-5734-treated animals were]0
[MASK] [vehicle-treated animals]1.”
and r = [LOWER], then the reversed evidence is:
Erev = “[Vehicle-treated animals]1 [MASK]

[levels of viral antigen staining in lung sections
of GS-5734-treated animals were]0.”
and Rev(r) = [HIGHER]. This implicitly re-
verses the ordering direction of I and C without
changing the P and O.

5 EBM-Net

We introduce the EBM-Net model in this section.
Similar to BERT (Devlin et al., 2019), EBM-Net is
essentially a transformer encoder (Vaswani et al.,
2017), and follows the pre-training – fine-tuning
approach: We pre-train EBM-Net by Comparative
Language Modeling (CLM, §5.1) that is designed
to learn the conditional ordering function of I/C.
The pre-trained EBM-Net is fine-tuned to solve the
CTRP task on downstream datasets (§5.2).

5.1 Comparative Language Modeling

We show the CLM architecture in Figure 2. CLM is
adapted from the masked language modeling used
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Implicit Evidence
(contains PICO)

Background
“Emerging viral infections are difficult 

to control because heterogeneous 
members periodically […]”

“Levels of viral antigen staining in lung 
sections of GS-5734-treated animals 
[MASK] vehicle-treated animals.”

...
[HIGHER]
[GREATER]
[MORE]

[NODIFF]
[LESS]

[SMALLER]
[LOWER]

...

CLM Pre-training
of EBM-Net

...
[HIGHER]

...

All available
clinical evidence

“Vehicle-treated animals [MASK]
levels of viral antigen staining in lung 
sections of GS-5734-treated animals.”

Reversed Rev

Adversarial
Implicit Evidence
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M
-N
et
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Edis

B

r
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adv. inst.

Figure 2: Architecture of CLM pre-training for EBM-Net. (ori.: original; adv.: adversarial; inst.: instance)

in BERT (Devlin et al., 2019), but differentiates
from it in that: (1) EBM-Net masks out phrases R
that suggest comparative results and predicts a spe-
cific set of comparative labels C; (2) EBM-Net is
also pre-trained on adversarial examples generated
by comparison rules from the original examples.

During pre-training, EBM-Net takes as input
the concatenation of background B and the corre-
sponding partially disentangled implicit evidence
E, i.e.: Input = [[CLS],B,[SEP],E,[SEP]],
where [CLS] and [SEP] are the special classifi-
cation and separation tokens used in the original
BERT and E ∈ {Edis,Erev}. B and E are associ-
ated with two different segment types. The special
[MASK] tokens are only used as placeholders for
the masked out R. [CLS] hidden state of the EBM-
Net is used to predict the CLM label r with a linear
layer followed by a softmax output unit:

r̂ = SoftMax(W1h[CLS] + b1) ∈ [0, 1]|C|

We minimize the cross-entropy between the esti-
mated r̂ and the empirical r distribution.

At input-level, the adversarial examples only
differ from their original examples in word orders
between Edis and Erev. However, their labels are to-
tally reversed from r to Rev(r). By regularizing the
model to learn such conditional ordering function,
CLM prevents the pre-trained model from learn-
ing unwanted and possibly biased co-occurrences
between evident elements and their results.

5.2 CTRP Fine-tuning
During fine-tuning, EBM-Net takes as input the
[[CLS],B,[SEP],Eexp,[SEP]], where Eexp de-
notes the explicit evidence in the downstream

datasets of the proposed CTRP task. For example,
Eexp = [I,[SEP],O,[SEP],C] on the Evidence
Integration dataset (§6.1). The sequence of PICO
elements in Eexp can be tuned empirically. EBM-
Net learns from scratch another linear layer that
maps from the predicted CLM label probabilities r̂
to 3-way result label R logits. The final predictions
are made by a softmax output unit:

R̂ = SoftMax(W2r̂ + b2) ∈ [0, 1]3

Cross-entropy between the estimated R̂ and the em-
pirical R distribution is minimized in fine-tuning.

5.3 Configuration
The transformer weights of EBM-Net (L=12,
H=768, A=12, #Params=110M) are initialized with
BioBERT (Lee et al., 2020), a variant of BERT that
is also pre-trained on PubMed abstracts and PMC
articles. The maximum sequence lengths for B,
Edis, Erev, Eexp are 256, 128, 128, and 128, re-
spectively. We use Adam optimizer (Kingma and
Ba, 2014) to minimize the cross-entropy losses.
EBM-Net is implemented using Huggingface’s
Transformers library (Wolf et al., 2019) in PyTorch
(Paszke et al., 2019). Pre-training on 12M implicit
evidence takes about 1k Tesla P100 GPU hours.

6 Experiments

6.1 The Evidence Integration Dataset
The Evidence Integration dataset serves as a bench-
mark for our task. We collect this dataset by re-
purposing the evidence inference dataset (Lehman
et al., 2019; DeYoung et al., 2020), which is essen-
tially a machine reading comprehension task for
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extracting the structured result (i.e.: R) of a given
structured ICO query6 from the corresponding clin-
ical trial report article. Since clinical trial reports
already contain free-text result descriptions (i.e.: R)
of the given ICO, solving the original task does not
require the integration of previous clinical evidence.
To test such capability for our proposed CTRP task,
we remove the result/conclusion part and only keep
the background/method part in the input clinical
trial report. 34.6% tokens of the original abstracts
are removed on average and the remained are used
as the clinical trial backgrounds.

Specifically, input of the Evidence Integration
dataset includes free texts of ICO elements I, C and
O which are the same as the original evidence infer-
ence dataset, and their clinical trial backgrounds B.
The output is the comparison result R. Following
the original dataset split, there are 8,164 instances
for training, 1,002 for validation, and 965 for test.

We also do experiments under the adversarial
setting, where adversarial examples generated by
reversing both the I/C order and the R label (simi-
lar to §5.1) are added. This setting is used to test
model robustness under adversarial attack.

6.2 Compared Methods

We compare to a variety of methods, ranging from
trivial ones like Random and Majority to the state-
of-the-art BioBERT model. Two major approaches
in open-domain question answering (QA) are tested
as well: the knowledge base (KB) approach (MeSH
ontology) and the text/retrieval approach (Retrieval
+ Evidence Inference), since solving our task also
requires reasoning over a large external corpus. Fi-
nally, we introduce some ablation settings and the
evaluation of human expectations.

Random: we report the expected performance of
randomly predicting the result for each instance.

Majority: we report the performance of predict-
ing the majority class (→) for all test instances.n

Bag-of-Words + Logistic Regression: we con-
catenate the TF-IDF weighted bag-of-word vectors
of B, P, I, C and O as features and use logistic
regression for learning.

MeSH Ontology: Since no external KB is avail-
able for our task, we use the training set as an inter-
nal alternative: we map the I, C and O of the test

6P is not included in the original dataset as the background
of the trial report contains it.

instances to terms in the Medical Subject Headings
(MeSH)7 ontology by string matching. MeSH is a
controlled and hierarchically-organized vocabulary
for describing biomedical topics. Then, we find
their nearest labeled instances in the training set,
where the distance is defined by:

d(i, j) =
∑

e∈{I,C,O}

min TreeDist(me
i ,m

e
j)

me
i and me

j are MeSH terms identified in ICO ele-
ment e of instance i and j, respectively. TreeDist is
defined as the number of edges between two nodes
on the MeSH tree. The majority label of the nearest
training instances is used as the prediction.

Retrieval + Evidence Inference: State-of-the-
art method on the evidence inference dataset (DeY-
oung et al., 2020) is a pipeline based on SciBERT
(Beltagy et al., 2019): (1) find the exact evidence
sentences in the clinical trial report for the given
ICO query, using a scoring function derived from
a fine-tuned SciBERT; and (2) predict the result
R based on the found evidence sentences and the
given ICO query by fine-tuning another SciBERT.

Our task needs an additional retrieval step to find
relevant documents that might contain useful re-
sults of similar trials, as the input trial background
does not contain the result information for the given
ICO query. Documents are retrieved from the en-
tire PubMed and PMC using a TF-IDF matching
between their indexed MeSH terms and the MeSH
terms identified in the ICO queries. We then apply
the pipeline described above on the retrieved docu-
ments. This baseline is similar to but more domain-
specific than BERTserini (Yang et al., 2019).

BioBERT: For this setting, we feed BioBERT
with similar input to EBM-Net as is described in
§5 and fine-tune it to predict the R using its special
[CLS] hidden state.

Ablations: We conduct two sets of ablation ex-
periments with EBM-Net: (1) Pre-training level,
where we exclude the adversarial examples in pre-
training, to analyze the utility of CLM against tra-
ditional LM. (2) Input level, where we exclude
different input elements (B, I, C, O) to study their
relative importance.

Human Expectations: We define the expected
result (Re) of a clinical trial (e.g.: Re = ↓ for O =
“mortality rate”) as the Human Expectation (HE),

7https://www.nlm.nih.gov/mesh

https://www.nlm.nih.gov/mesh
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Model Standard Evidence Integration Adversarial Evidence Integration |∆|
Accuracy F1 (3-way) F1 (2-way) Accuracy F1 (3-way) F1 (2-way)

Majority (→) 41.76 19.64 – 41.76 19.64 – –
Random (expected) 33.33 32.77 30.62 33.33 32.77 30.62 –

BoW + Logistic Regression 43.73 41.04 35.84 41.97 39.87 34.01 4.0
MeSH Ontology 38.55 36.33 31.01 34.46 33.19 34.77 10.6
Retrieval + Evidence Inference

(DeYoung et al., 2020) 50.57 49.91 48.30 50.62 50.13 48.46 0.0

BioBERT (Lee et al., 2020) 55.96 54.33 51.98 53.11 52.84 51.59 5.1

EBM-Net (ours) 61.35 60.15 59.42 59.59 59.36 58.67 2.7
w/o adversarial pre-training 60.73 59.04 58.52 58.91 58.81 58.34 3.0
w/o B (background) 55.65 54.31 52.48 53.83 53.32 51.26 3.3
w/o I (intervention) 59.59 58.59 58.08 57.30 56.74 54.87 3.8
w/o C (comparison) 57.72 56.77 56.15 57.51 57.10 55.47 0.4
w/o O (outcome) 48.91 44.88 39.57 47.31 46.40 43.66 3.3

Human Expectations 56.79 – 68.86 56.79 – 68.86 –

Table 2: Main results on the benchmark Evidence Integration dataset. |∆| denotes the absolute value of relative
accuracy decrease from the standard to the adversarial setting. All numbers are percentages. (w/o: without)

which is the underlying motivation for conducting
the corresponding trial. Generally, Re ∈ {↑, ↓}
since significant results are expected. To make fair
comparisons, we use the 2-way macro-average F1:
F1 (2-way) = (F1(↑) + F1(↓))/2 as a main metric
for evaluations of HE. HE performance is an over-
estimation of human performance: main biases are
due to the shift of input trial distribution from the
targeted proposal stage to the actual report stage,
which contains fewer trials with unexpected results.

6.3 Main Results

Table 2 shows the main results on the Evidence
Integration dataset, where accuracy and F1 (3-way)
are used to compare model performance and F1
(2-way) is used for evaluating human expectations.

Results show that EBM-Net outperforms other
baselines by large margins in both standard and
adversarial settings. While being the strongest
baseline, BioBERT is 10.7% relatively lower in
macro-F1 (54.33% v.s. 60.15%) and 9.6% rela-
tively lower in accuracy (55.96% v.s. 61.35%) than
EBM-Net. The open-domain QA baselines per-
form even worse: for the MeSH Ontology method,
the internal KB of only 8k entries is far from
complete; for the Retrieval + Evidence Inference
method, the PICO queries are so specific that no ex-
actly relevant evidence can be found in other trials
and retrieving only a few trials has limited utilities.

We use |∆|, the absolute value of relative accu-
racy decrease to measure model robustness under
adversarial attacks. The higher the |∆|, the more
vulnerable a model is. BioBERT has about twice

as much (5.1% v.s. 2.7%) |∆| in the adversarial set-
ting as EBM-Net does. It suggests that EBM-Net
is more robust to adversarial attacks, which is a vi-
tal property for healthcare applications. EBM-Net
without adversarial pre-training is less robust than
EBM-Net as well (3.0% v.s. 2.7%), but not as vul-
nerable as BioBERT, indicating that robustness can
be learned by pre-training with original implicit
evidence to some extent and further consolidated
by the adversarial evidence.

Unsurprisingly, EBM-Net with full input consis-
tently outperforms all input-level ablations. Among
them, O is the most important input element as the
performance decreases dramatically on its ablation.
This is expected as O is the standard of comparisons.
B is the second most important element, since B
contains methodological details of how the clinical
trials will be conducted, which is also vital for re-
sult prediction. The performance does not decrease
as much without I or C, since there is redundant
information of them in B.

On the one hand, the accuracy of EBM-Net sur-
passes that of HE, mainly because the latter is prac-
tically a 2-way classifier. On the other hand, HE
outperforms EBM-Net in terms of 2-way F1, but is
still unsatisfying (68.86%). This suggests that the
proposed CTRP task is hard and there is still room
for further improvements.

6.4 Discussions

We study how different numbers of pre-training and
fine-tuning instances influence the EBM-Net per-
formance, in comparison to the BioBERT. Figure 3
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Pre-training Sizes (in log scale) Data (%) Used in Fine-tuning

Figure 3: Left: EBM-Net 3-way macro-F1 v.s. pre-
training sizes compared to BioBERT; Right: EBM-Net
and BioBERT 3-way macro-F1 v.s. fine-tuning sizes.

shows the results: (Left) The final performance of
EBM-Net improves log-linearly as the pre-training
dataset size increases, suggesting that there can be
further improvements if more data is collected for
pre-training but the marginal utility might be small.
EBM-Net surpasses BioBERT when pre-trained by
about 50k to 100k instances of implicit evidence,
which are 5 to 10 times as many as the fine-tuning
instances. (Right) EBM-Net is more robust in
a few-shot learning setting: using only 10% of
the training data, EBM-Net outperforms BioBERT
fine-tuned with 100% of the training data. From
zero-shot8 to using all the training data, EBM-Net
improves only by 26.6% relative F1 (from 47.52%
to 60.15%) while BioBERT improves largely by
60.0% relative F1 (from 32.77% to 54.33%).

We use t-SNE (Maaten and Hinton, 2008) to
visualize the test instance representations derived
from EBM-Net [CLS] hidden state in Figure 4.
It shows that EBM-Net effectively learns the rela-
tionships between comparative results: the points
cluster into three results (↑, ↓,→). While there is a
clear boundary between the ↓ cluster (dashed-blue
circle) and the ↑ cluster (dashed-red circle), the
boundaries between the→ cluster (dashed-black
circle) and the other two are relatively vague. It
suggests that the learnt manifold follows a quanti-
tatively continuous “↓ –→ – ↑” pattern.

Out of the 373 mistakes EBM-Net makes on
the test set, significantly less (11.8%, p<0.001 by
permutation test) predictions are opposite to the
ground-truth (e.g.: predicting ↑ when the label is
↓), also suggesting that EBM-Net effectively learn
the relationship between comparison results. In ad-
dition, we notice that there is a considerable propor-
tion of instances whose results are not predictable

8Zero-shot performance of BioBERT is defined as the
expected results from random predictions.

Figure 4: T-SNE visualizations of EBM-Net represen-
tations of Evidence Integration test set instances. Red
colored N, blue colored H, and green colored refer to
the corresponding R equaling ↑, ↓ and→, respectively.

without their exact reports. For example, some
I and C differ only quantitatively, e.g.: “4% li-
docaine” and “2% lidocaine”, and modeling such
differences is beyond the scope of our task.

6.5 Validation on COVID-19 Clinical Trials

For analyzing COVID-19 related clinical trials, we
further pre-train EBM-Net on the CORD-19 dataset
(Wang et al., 2020a)9, also using the comparative
language modeling (§5.1). It leads to a COVID-19
specific EBM-Net that is used in this section.

We use leave-one-out validation to evaluate
EBM-Net on the 22 completed clinical trials in
COVID-evidence10, which is an expert-curated
database of available evidence on interventions
for COVID-19. Again, EBM-Net outperforms
BioBERT by a large margin (59.1% v.s. 50.0% ac-
curacy). Expectedly, their 3-way F1 results (45.5%
v.s. 36.1%) are close to those in the zero-shot learn-
ing setting since not many trials have finished. Ac-
curacy and 2-way F1 performance of HE are 54.5%
and 68.9%, and are close to those in Table 2. These
further confirm the performance improvement of
EBM-Net and the difficulty of the CTRP task.

7 Conclusions

In this paper, we introduce a novel task, CTRP,
to predict clinical trial results without actually do-
ing them. Instead of using structured evidence
that is prohibitively expensive to annotate, we
heuristically collect 12M unstructured sentences

9The 05/12/2020 version.
10covid-evidence.org (visited on 05/18/2020).

covid-evidence.org
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as implicit evidence, and use large-scale CLM pre-
training to learn the conditional ordering function
required for solving the CTRP task. Our EBM-Net
model outperforms other strong baselines on the
Evidence Integration dataset and is also validated
on COVID-19 clinical trials.
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A Collection of Implicit Evidence

We show several mapping examples from section
names to background/method or result/conclusion
in Table 4. The implicit evidence collection algo-
rithm is shown in Algorithm 1, which uses the evi-
dence detection algorithm described in Algorithm
2. Dataset statistics are shown in Table 3.

B Disentanglement of Implicit Evidence

Disentanglement of implicit evidence seeks to
mask out the R in the implicit evidence and map it
to r, which is a finer-grained label of comparison
results. We show the distribution of the collected r
in Figure 5.

When disentangling the free-text result R, we
also mask out the following words:

• Numbers (e.g.: p-values);

• tokens within parentheses (e.g.: interpreta-
tions of results);

• Adverb before the central comparative adv/adj
(e.g.: “significantly”).

which can be exploited by the model to predict the
r during pre-training.

C Comparative Language Modeling

In Table 5, we show several originally collected
instances Edis, r, together with their adversarially
reversed instances Erev, Rev(r).

D The Evidence Integration Dataset

In Table 6, we show several examples of Evidence
Integration instances and their corresponding ones
in evidence inference. The Evidence Integration
dataset statistics are also shown in Table 3.

E Settings

We show the searched hyper-parameters and their
chosen values of different experiments in Table
7. We manually tune the hyper-parameters where
the best combination is chosen based on macro-F1
metric in the validation set. The number of hyper-
parameter search trials is about 100. Training time

of EBM-Net is about 3 min/epoch of standard Evi-
dence Integration and 6 min/epoch of adversarial
Evidence Integration on 2 Tesla P100 GPUs at the
optimal hyper-parameter setting, and the Inference
time is about 100 instances/s on 1 Tesla P100 GPU.

All evaluation metrics are calculated by the
sklearn.metrics package in Python.

F Results

Validation results of EBM-Net in comparison to
BioBERT are shown in Table 8. Results on 22 com-
pleted clinical trials in COVID-evidence dataset
are shown in Table 9.
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Statistic Pre-training (original) Standard Evidence Integration (training)

Avg. Length of B 129.0 182.8
Avg. Length of E 16.8 16.7*
Avg. Length of I NA 5.7
Avg. Length of C NA 3.7
Avg. Length of O NA 5.3
% of ↑ 49.9 31.4
% of→ 29.9 44.3
% of ↓ 20.2 24.3

Table 3: This table shows the statistics of the pre-training and the downstream Evidence Integration dataset. *Con-
catenation of I, C, O and two [SEP] tokens.

Section Name Section Type

“BACKGROUND” background/method
“METHODS” background/method
“OBJECTIVES” background/method
“INTRODUCTION” background/method
“DESIGN” background/method
“RESULTS” result/conclusion
“CONCLUSIONS” result/conclusion
“FINDINGS” result/conclusion
“DISCUSSIONS” result/conclusion
“SIGNIFICANCE” result/conclusion

Table 4: Several examples of section name to background/method or result/conclusion mapping.
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Figure 5: The frequency (in log scale) of different comparative language modeling labels. Red, green and blue
colors denote the corresponding label expressing superiority, equality and inferiority, respectively.
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Edis r Erev Rev(r)

“Our results also showed
that serum TSH levels were
[MASK] in the chloroquine
group [MASK] in the placebo
group.”

[HIGHER] “In the placebo group [MASK]
in the chloroquine group
[MASK] our results also showed
that serum TSH levels were.”

[LOWER]

“In conclusion, there is [MASK]
IFN treatment [MASK] support-
ive treatment for MERS patients
in terms of mortality.”

[NODIFF] “Supportive treatment for MERS
patients in terms of mortal-
ity [MASK] IFN treatment
[MASK] in conclusion, there is”

[NODIFF]

“Levels of viral antigen stain-
ing in lung sections of GS-5734-
treated animals were [MASK]
vehicle-treated animals.”

[LOWER] “Vehicle-treated animals
[MASK] levels of viral antigen
staining in lung sections of
GS-5734-treated animals were.”

[HIGHER]

Table 5: Several examples of comparative language modeling instances.
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Algorithm 1 Implicit Evidence Collection
Input: An abstract A which is a sequence of words (from PubMed).
Output: A list of collected implicit evidence E and its background B from the input article.
E ← []
B← “”
if A is structured then

let A = [[S1, L1], [S2, L2], ...] where Si is the i-th sentence and Li is its section type label
for [Si, Li] in A do

if Li = background/method then
B← B + Si

else
if EvidenceDetector(Si) 6= False then
E.append(EvidenceDetector(Si))

end if
end if

end for
else

let A = [S1, S2, ...] where Si is the i-th sentence
BG← True
# BG controls whether a sentence is included in the background
for Si in A do

if EvidenceDetector(Si) 6= False then
BG← False
E.append(EvidenceDetector(Si))

else
if BG then
B← B + Si

end if
end if

end for
end if
if Full article F is available in PMC then

let F = [s1, s2, ...] where si is the i-th sentence
for si in A do

if EvidenceDetector(si) 6= False then
E.append(EvidenceDetector(si))

end if
end for

end if
return E, B



1475

Algorithm 2 EvidenceDetector
Input: A sentence S which is a sequence of words; Sets of adj/adv that suggest superiority (H),
inferiority (L) and equality (E)
Output: False if the sentence is not a piece of implicit evidence; Central comparison word c and the
change direction R if the sentence is a piece of implicit evidence.
if “than” in S then

if S ∩H 6= ∅ and S ∩ L = ∅ then
c← S ∩H
R← “ ↑ ”
return c, R

else if S ∩H = ∅ and S ∩ L 6= ∅ then
c← S ∩ L
R← “ ↓ ”
return c, R

else
return False

end if
else if S ∩ E 6= ∅ then

c← S ∩ E
R← “→ ”
return c, R

else
return False

end if
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B I C O R

“Background: Self-management programs for patients with heart
failure can reduce hospitalizations and mortality. However, no pro-
grams have analyzed their usefulness for patients with low literacy.
We compared the efficacy of a heart failure self-management pro-
gram designed for patients with low literacy versus usual care. Meth-
ods: We performed a 12-month randomized controlled trial. From
November 2001 to April 2003, we enrolled participants aged 30–80,
who had heart failure and took furosemide. Intervention patients
received education on self-care emphasizing daily weight measure-
ment, diuretic dose self-adjustment, and symptom recognition and
response. Picture-based educational materials, a digital scale, and
scheduled telephone follow-up were provided to reinforce adherence.
Control patients received a generic heart failure brochure and usual
care. Primary outcomes were combined hospitalization or death, and
heart failure-related quality of life. Results: 123 patients (64 control,
59 intervention) participated; 41% had inadequate literacy. Patients
in the intervention group had a lower rate of hospitalization or death
(crude incidence rate ratio (IRR) = 0.69; CI 0.4, 1.2; adjusted IRR =
0.53; CI 0.32, 0.89). This difference was larger for patients with low
literacy (IRR = 0.39; CI 0.16, 0.91) than for higher literacy (IRR =
0.56; CI 0.3, 1.04), but the interaction was not statistically significant.
At 12 months, more patients in the intervention group reported mon-
itoring weights daily (79% vs. 29%, p ¡ 0.0001). After adjusting for
baseline demographic and treatment differences, we found no differ-
ence in heart failure-related quality of life at 12 months (difference
= -2; CI -5, +9). Conclusion: A primary care-based heart failure
self-management program designed for patients with low literacy
reduces the risk of hospitalizations or death.”

“Follow-up and
thorough education
on self-care”

“Standard
informa-
tion about
self-care”

“Knowledge
about
heart
failure”
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“Background: Afghanistan’s national guidelines recommend
chloroquine for the treatment of Plasmodium vivax infection, the par-
asite responsible for the majority of its malaria burden. Chloroquine
resistance in P. vivax is emerging in Asia. Therapeutic responses
across Afghanistan have not been evaluated in detail. Methods:
Between July 2007 and February 2009, an open-label, randomized
controlled trial of chloroquine and dihydroartemisinin-piperaquine
in patients aged three months and over with slide-confirmed P. vivax
mono-infections was conducted. Consistent with current national
guidelines, primaquine was not administered. Subjects were fol-
lowed up daily during the acute phase of illness (days 0-3) and
weekly until day 56. The primary endpoint was the overall cumula-
tive parasitological failure rate at day 56 after the start of treatment,
with the hypothesis being that dihydroartemisinin-piperaquine was
non-inferior compared to chloroquine (δ = 5% difference in propor-
tion of failures). Results: Of 2,182 individuals with positive blood
films for P. vivax, 536 were enrolled in the trial. The day 28 cure rate
was 100% in both treatment groups. Parasite clearance was more
rapid with dihydroartemisinin-piperaquine than chloroquine. At day
56, there were more recurrent infections in the chloroquine arm
(8.9%, 95% CI 6.0-13.1%) than the dihydroartemisinin-piperaquine
arm (2.8%, 95% CI 1.4-5.8%), a difference in cumulative recur-
rence rate of 6.1% (2-sided 90%CI +2.6 to +9.7%). The log-rank
test comparing the survival curves confirmed the superiority of dihy-
droartemisinin-piperaquine over chloroquine (p = 0.003). Multivari-
ate analysis showed that a lower initial haemoglobin concentration
was also independently associated with recurrence. Both regimens
were well tolerated and no serious adverse events were reported.
Conclusions: Chloroquine remains an efficacious treatment for the
treatment of vivax malaria in Afghanistan. In a setting where radi-
cal therapy cannot be administered, dihydroartemisinin-piperaquine
provides additional benefit in terms of post-treatment prophylaxis,
reducing the incidence of recurrence from 4-8 weeks after treatment.
Trial Registration: The trial was registered at ClinicalTrials.gov
under identifier NCT00682578.”

“Dihydroartemisinin
- piperaquine”

“Chloroquine” “Parasite
clearance
at day 2”

→

Table 6: Several examples of dataset instances. Strickethroughed texts are in the original evidence inference dataset
but not in the Evidence Integration dataset.
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Hyper-parameter Pre-training Standard Evid. Integ. Adversarial Evid. Integ.

# Training Epochs 4 8, 10, 12, 16, 20, 24 8, 10, 12, 16, 20, 24
Optimizer Adam Adam Adam
Adam Learning Rate 5e-5 2e-5, 3e-5, 4e-5 5e-5 2e-5, 3e-5, 4e-5 5e-5
Adam Epsilon 1e-8 1e-8 1e-8
Learning Rate Schedule Cosine Cosine, Linear Cosine, Linear
Warm-up Steps 10000 400, 600, 800, 1000, 1200 400, 600, 800, 1000, 1200
Max. Gradient Norm 1.0 1.0 1.0
Batch Size 144 96 96
I,C,O Sequence NA I-O-C, I-C-O, O-I-C I-O-C

Table 7: Hyper-parameters of different experiments. Searched hyper-parameters are listed and the bolded ones
denote the optimal. We have not tuned the hyper-parameters of the pre-training due to high computation costs.

Model Standard Evidence Integration Adversarial Evidence Integration

Accuracy F1 (3-way) F1 (2-way) Accuracy F1 (3-way) F1 (2-way)

BioBERT 54.29 53.24 51.17 54.24 53.61 51.35
EBM-Net (ours) 59.78 58.99 57.95 59.48 58.94 57.41

Table 8: Validation results on the benchmark Evidence Integration dataset. All numbers are percentages.

Model COVID-evidence

Acc F1 (3) F1 (2)

Majority (→) 45.45 20.83 –
Random (expected) 33.33 31.58 28.54

BoW + Logistic Regression 45.45 32.00 20.00
BioBERT 50.00 36.11 30.43
EBM-Net (ours) 59.09 45.51 30.77

Human Expectations 54.54 – 68.87

Table 9: Prediction performance on the completed COVID-19 clinical trials. All numbers are percentages.


