
Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 23–30
November 16-20, 2020. c©2020 Association for Computational Linguistics

23

Wikipedia2Vec: An Efficient Toolkit for Learning and Visualizing
the Embeddings of Words and Entities from Wikipedia

Ikuya Yamada1,2

ikuya@ousia.jp

Akari Asai3
akari@cs.washington.edu

Jin Sakuma4

jsakuma@tkl.iis.u-tokyo.ac.jp

Hiroyuki Shindo5,2

shindo@is.naist.jp

Hideaki Takeda6

takeda@nii.ac.jp

Yoshiyasu Takefuji7
takefuji@sfc.keio.ac.jp

Yuji Matsumoto2

matsu@is.naist.jp

1Studio Ousia 2RIKEN AIP 3University of Washington 4The University of Tokyo
5Nara Institute of Science and Technology 6National Institute of Informatics 7Keio University

Abstract

The embeddings of entities in a large knowl-
edge base (e.g., Wikipedia) are highly benefi-
cial for solving various natural language tasks
that involve real world knowledge. In this
paper, we present Wikipedia2Vec, a Python-
based open-source tool for learning the embed-
dings of words and entities from Wikipedia.
The proposed tool enables users to learn the
embeddings efficiently by issuing a single
command with a Wikipedia dump file as an
argument. We also introduce a web-based
demonstration of our tool that allows users to
visualize and explore the learned embeddings.
In our experiments, our tool achieved a state-
of-the-art result on the KORE entity related-
ness dataset, and competitive results on var-
ious standard benchmark datasets. Further-
more, our tool has been used as a key com-
ponent in various recent studies. We publi-
cize the source code, demonstration, and the
pretrained embeddings for 12 languages at
https://wikipedia2vec.github.io.

1 Introduction

Entity embeddings, i.e., vector representations of
entities in knowledge base (KB), have played a vi-
tal role in many recent models in natural language
processing (NLP). These embeddings provide rich
information (or knowledge) regarding entities avail-
able in KB using fixed continuous vectors. They
have been shown to be beneficial not only for tasks
directly related to entities (e.g., entity linking (Ya-
mada et al., 2016; Ganea and Hofmann, 2017)) but
also for general NLP tasks (e.g., text classification
(Yamada and Shindo, 2019), question answering
(Poerner et al., 2019)). Notably, recent studies have
also shown that these embeddings can be used to
enhance the performance of state-of-the-art con-
textualized word embeddings (i.e., BERT (Devlin
et al., 2019)) on downstream tasks (Zhang et al.,
2019; Peters et al., 2019; Poerner et al., 2019).

In this work, we present Wikipedia2Vec, a
Python-based open source tool for learning the em-
beddings of words and entities easily and efficiently
from Wikipedia. Due to its scale, availability in
a variety of languages, and constantly evolving
nature, Wikipedia is commonly used as a KB to
learn entity embeddings. Our proposed tool jointly
learns the embeddings of words and entities, and
places semantically similar words and entities close
to one another in the vector space. In particular, our
tool implements the word-based skip-gram model
(Mikolov et al., 2013a,b) to learn word embeddings,
and its extensions proposed in Yamada et al. (2016)
to learn entity embeddings. Wikipedia2Vec enables
users to train embeddings by simply running a sin-
gle command with a Wikipedia dump file as an
input. We highly optimized our implementation,
which makes our implementation of the skip-gram
model faster than the well-established implementa-
tion available in gensim (Řehůřek and Sojka, 2010)
and fastText (Bojanowski et al., 2017).

Experimental results demonstrated that our tool
achieved enhanced quality compared to the exist-
ing tools on several standard benchmarks. Notably,
our tool achieved a state-of-the-art result on the
entity relatedness task based on the KORE dataset.
Due to its effectiveness and efficiency, our tool has
been successfully used in various downstream NLP
tasks, including entity linking (Yamada et al., 2016;
Eshel et al., 2017; Chen et al., 2019), named en-
tity recognition (Sato et al., 2017; Lara-Clares and
Garcia-Serrano, 2019), question answering (Ya-
mada et al., 2018b; Poerner et al., 2019), knowl-
edge graph completion (Shah et al., 2019), para-
phrase detection (Duong et al., 2019), fake news
detection (Singh et al., 2019), and text classification
(Yamada and Shindo, 2019).

We also introduce a web-based demonstration
of our tool that visualizes the embeddings by plot-
ting them onto a two- or three-dimensional space

https://wikipedia2vec.github.io

24

using dimensionality reduction algorithms. The
demonstration also allows users to explore the em-
beddings by querying similar words and entities.

The source code has been tested on Linux, Win-
dows, and macOS, and released under the Apache
License 2.0. We also release the pretrained em-
beddings for 12 languages (i.e., English, Arabic,
Chinese, Dutch, French, German, Italian, Japanese,
Polish, Portuguese, Russian, and Spanish).

The main contributions of this paper are summa-
rized as follows:
• We present Wikipedia2Vec, a tool for learning

the embeddings of words and entities easily and
efficiently from Wikipedia.
• Our tool achieved a state-of-the-art result on the

KORE entity relatedness dataset, and performed
competitively on the various benchmark datasets.
• We present a web-based demonstration that al-

lows users to explore the learned embeddings.
• We publicize the code, demonstration, and

the pretrained embeddings for 12 languages at
https://wikipedia2vec.github.io.

2 Related Work

Many studies have recently proposed methods to
learn entity embeddings from a KB (Hu et al., 2015;
Li et al., 2016; Tsai and Roth, 2016; Yamada et al.,
2016, 2017, 2018a; Cao et al., 2017; Ganea and
Hofmann, 2017). These embeddings are typically
based on conventional word embedding models
(e.g., skip-gram (Mikolov et al., 2013a)) trained
with data retrieved from a KB. For example, Ris-
toski et al. (2018) proposed RDF2Vec, which learns
entity embeddings using the skip-gram model with
inputs generated by random walks over the large
knowledge graphs such as Wikidata and DBpe-
dia. Furthermore, a simple method that has been
widely used in various studies (Yaghoobzadeh and
Schutze, 2015; Yamada et al., 2017, 2018a; Al-
Badrashiny et al., 2017; Suzuki et al., 2018) trains
entity embeddings by replacing the entity annota-
tions in an input corpus with the unique identifier
of their referent entities, and feeding the corpus
into a word embedding model (e.g., skip-gram).
Two open-source tools, namely Wiki2Vec1 and
Wikipedia Entity Vectors,2 have implemented this
method. Our proposed tool is based on Yamada
et al. (2016), which extends this idea by using

1https://github.com/idio/wiki2vec
2https://github.com/singletongue/

WikiEntVec

$ wget https://dumps.wikimedia.org/enwiki/latest/
enwiki-latest-pages-articles.xml.bz2

$ wikipedia2vec train enwiki-latest-pages-articles.
xml.bz2 MODEL_FILE

Figure 1: Shell commands to train embeddings from
the latest English Wikipedia dump.

>>> from wikipedia2vec import Wikipedia2Vec
>>> model = Wikipedia2Vec.load(MODEL_FILE)
>>> model.get_entity_vector("Scarlett Johansson")
memmap([-0.1979, 0.3086, ...,], dtype=float32)
>>> model.get_word_vector("tokyo")
memmap([0.0161, -0.0332, ...,], dtype=float32)
>>> model.most_similar(model.get_entity("Python (

programming language)"))[:3]
[(<Word python>, 0.7265),
(<Entity Ruby (programming language)>, 0.6856),
(<Entity Perl>, 0.6794)]

Figure 2: An example that uses the Wikipedia2Vec em-
beddings on a Python interactive shell.

neighboring entities connected by internal hyper-
links of Wikipedia as additional contexts to train
the model. Note that we used the RDF2Vec and
Wiki2Vec as baselines in our experiments, and
achieved enhanced empirical performance over
these tools on the KORE dataset. Additionally,
there have been various relational embedding mod-
els proposed (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015) that aim to learn the entity repre-
sentations that are particularly effective for knowl-
edge graph completion tasks.

3 Overview

Wikipedia2Vec is an easy-to-use, optimized tool
for learning embeddings from Wikipedia. This
tool can be installed using the Python’s pip
tool (pip install wikipedia2vec). Em-
beddings can be learned easily by running
the wikipedia2vec train command with a
Wikipedia dump file3 as an argument. Figure 1
shows the shell commands that download the latest
English Wikipedia dump file and run training of the
embeddings based on this dump using the default
hyper-parameters.4 Furthermore, users can easily
use the learned embeddings. Figure 2 shows the
example Python code that loads the learned embed-
ding file, and obtains the embeddings of an entity
Scarlett Johansson and a word tokyo, as well as the
most similar words and entities of an entity Python.

3The dump file can be downloaded at Wikimedia Down-
loads: https://dumps.wikimedia.org

4The train command has many optional hyper-parameters
that are described in detail in the documentation.

https://wikipedia2vec.github.io
https://github.com/idio/wiki2vec
https://github.com/singletongue/WikiEntVec
https://github.com/singletongue/WikiEntVec
https://dumps.wikimedia.org

25

+
The�neighboring�words�of�each�word�are�

used�as�contexts

+
The�neighboring�words�of�a�hyperlink�
pointing�to�an�entity�are�used�as�contexts

Word-based�skip-gram�model Anchor�context�model

Aristotle�was�a�philosopher� Aristotle�was�a�philosopher�

The�neighboring�entities�of�each�entity�in�
Wikipedia sˏ�link�graph�are�used�as�contexts

Logic�

Science�

Europe� Socrates�
Renaissance�

Metaphysics�

Philosopher�
Philosophy�

Avicenna�Aristotle�
Plato�

Link�graph�model

Figure 3: Wikipedia2Vec learns embeddings by jointly optimizing word-based skip-gram, anchor context, and link
graph models.

3.1 Model

Wikipedia2Vec implements the conventional skip-
gram model (Mikolov et al., 2013a,b) and its ex-
tensions proposed in Yamada et al. (2016) to map
words and entities into the same d-dimensional vec-
tor space. The skip-gram model is a neural network
model with a training objective to find embeddings
that are useful for predicting context items (i.e.,
words or entities in this paper) given each item.
The loss function of the model is defined as:

Ls = −
∑
oi∈O

∑
oc∈Coi

logP (oc|oi), (1)

where O is a set of all items (i.e., words or entities),
Co is the set of context items of o, and the condi-
tional probability logP (oc|oi) is defined using the
following softmax function:

P (oc|oi) =
exp(Voi

>Uoc)∑
o∈O exp(Voi

>Uo)
, (2)

where Vo ∈ Rd and Uo ∈ Rd denote the embed-
dings of item o in embedding matrices V and U,
respectively.

Our tool learns the embeddings by jointly opti-
mizing the three skip-gram-based sub-models de-
scribed below (see also Figure 3). Note that the
matrices V and U contain the embeddings of both
words and entities.

Word-based Skip-gram Model Given each
word in a Wikipedia page, this model learns word
embeddings by predicting the neighboring words
of the given word. Formally, given a sequence
of words w1, w2, ..., wN , the loss function of this
model is defined as follows:

Lw = −
N∑
i=1

∑
−c≤j≤c,j 6=0

logP (wi+j |wi), (3)

where c is the size of the context words, and
P (wi+j |wi) is computed based on Eq.(2).

Anchor Context Model This model aims to
place similar words and entities close to one an-
other in the vector space using hyperlinks and their
neighboring words in Wikipedia. From a given
Wikipedia page, the model extracts the referent
entity and surrounding words (i.e., previous and
next c words) from each hyperlink in the page,
and learns embeddings by predicting surrounding
words given each entity. Consequently, the loss
function of this model is defined as follows:

La = −
∑

(ei,Q)∈A

∑
wc∈Q

logP (wc|ei), (4)

where A denotes a set of all hyperlinks in
Wikipedia, each containing a pair of a referent
entity ei and a set of surrounding words Q, and
P (wc|ei) is computed based on Eq.(2).

Link Graph Model This model aims to learn
entity embeddings by predicting the neighboring
entities of each entity in the Wikipedia’s link graph–
an undirected graph whose nodes are entities and
the edges represent the presence of hyperlinks be-
tween the entities. We create an edge between a
pair of entities if the page of one entity has a hy-
perlink to that of the other entity, or if both pages
link to each other. The loss function of this model
is defined as:

Le = −
∑
ei∈E

∑
eo∈Cei

logP (eo|ei), (5)

where E is the set of all entities in the vocabulary,
and Ce is the neighboring entities of entity e in the
link graph, and P (eo|ei) is computed by Eq.(2).

Finally, we define the loss function of our model
by linearly combining the three loss functions de-
scribed above:

L = Lw + La + Le (6)

The training is performed by minimizing this loss
function using stochastic gradient descent. We use

26

negative sampling (Mikolov et al., 2013b) to con-
vert the softmax function (Eq.(2)) into computa-
tionally feasible ones. The resulting matrix V is
used as the learned embeddings.

3.2 Automatic Generation of Hyperlinks
Because Wikipedia instructs its contributors to cre-
ate a hyperlink only at the first occurrence of the
entity name on a page, many entity names do not
appear as hyperlinks. This is problematic for our
anchor context model because it uses hyperlinks as
a source to learn the embeddings.

To address this problem, our tool automatically
generates hyperlinks using a mention-entity dic-
tionary that maps entity names (e.g., “apple”) to
its possible referent entities (e.g., Apple Inc. or
Apple (food)) (see Section 4 for details). Our tool
extracts all words and phrases from a Wikipedia
page and converts each into a hyperlink to an entity
if either the entity is referred to by a hyperlink on
the same page, or there is only one referent entity
associated with the name in the dictionary.

4 Implementation

Our tool is implemented in Python and most of its
code is compiled into C++ using Cython (Behnel
et al., 2011) to optimize the run-time performance.

As described in Section 3.1, our link graph and
anchor context models are based on the hyperlinks
in Wikipedia. Because Wikipedia contains numer-
ous hyperlinks, it is challenging to use them ef-
ficiently. To address this, we introduce two opti-
mized components–link graph matrix and mention-
entity dictionary–that are used during training.

Link Graph Matrix During training, our link
graph model needs to obtain numerous neighbor-
ing entities of an entity in a large link graph of
Wikipedia. To reduce latency, this component
stores the entire graph in the memory using the
binary sparse matrix in the compressed sparse row
(CSR) format, in which its rows and columns rep-
resent entities and its values represent the presence
of hyperlinks between corresponding entity pairs.
Because the size of this matrix is typically small,
it can easily be stored on the memory.5 Note that
given a row index in the CSR matrix, the time com-
plexity of obtaining its non-zero column indices
(corresponding to the neighboring entities of the
entity that corresponds to the row index) is O(1).

5The size of the matrix of English Wikipedia is less than
500 megabytes with our default hyper-parameter settings.

Mention-entity Dictionary A mention-entity
dictionary is used to generate hyperlinks described
in Section 3.2. The dictionary maps entity names to
their possible referent entities and is created based
on the names and their referent entities obtained
from all hyperlinks in Wikipedia. Our tool extracts
all words and phrases from a Wikipedia page that
are included in the dictionary containing a large
number of entity names. To implement this in an
efficient manner, we use the Aho–Corasick algo-
rithm, which is an efficient string search algorithm
using finite state machine constructed from all en-
tity names. After detecting the words and phrases
in the dictionary, our tool converts them to hyper-
links based on heuristics described in Section 3.2.

The embeddings are trained by simultaneously
iterating over pages in Wikipedia and entities in
the link graph in a random order. The texts and
hyperlinks in each page are extracted using the mw-
parserfromhell MediaWiki parser.6 We do not use
semi-structured data such as tables and infoboxes.
We also generate hyperlinks using the mention-
entity dictionary. We store the embeddings as a
float matrix in a shared memory and update it using
multiple processes. Linear algebraic operations re-
quired to learn embeddings are implemented using
C functions in Basic Linear Algebra Subprograms
(BLAS).

Additionally, our tool uses a tokenizer to de-
tect words from a Wikipedia page. The following
four tokenizers are currently implemented in our
tool: (1) the multi-lingual ICU tokenizer7 that im-
plements the unicode text segmentation algorithm
(Davis, 2019), (2) a simple rule-based tokenizer
that splits the text using white space characters,
(3) the Jieba tokenizer8 for Chinese, and (4) the
MeCab tokenizer9 for Japanese and Korean.

5 Experiments

We conducted experiments to compare the quality
and efficiency of our tool with those of the existing
tools. To evaluate the quality of the entity embed-
dings, we used the KORE entity relatedness dataset
(Hoffart et al., 2012). The dataset consists of 21
entities, and each entity has 20 related entities with
scores assessed by humans. Following past work,
we reported the Spearman’s rank correlation co-

6https://github.com/earwig/
mwparserfromhell

7http://site.icu-project.org
8https://github.com/fxsjy/jieba
9https://taku910.github.io/mecab

https://github.com/earwig/mwparserfromhell
https://github.com/earwig/mwparserfromhell
http://site.icu-project.org
https://github.com/fxsjy/jieba
https://taku910.github.io/mecab

27

Name Score
Ours 0.71
Ours (w/o link graph model) 0.61
Ours (w/o hyperlink generation) 0.69
RDF2Vec (Ristoski et al., 2018) 0.69
Wiki2vec 0.52

Table 1: The results of Wikipedia2Vec and the baseline
entity embeddings on the KORE dataset.

efficient between the gold scores and the cosine
similarity between the entity embeddings. We used
two popular entity embedding tools, RDF2Vec (Ris-
toski et al., 2018) and Wiki2vec, as baselines.

We also evaluated the quality of the word em-
beddings by employing two standard tasks: (1) a
word analogy task using the semantic subset (SEM)
and syntactic subset (SYN) of the Google Word
Analogy data set (Mikolov et al., 2013a), and (2)
a word similarity task using two standard datasets,
namely SimLex-999 (SL) (Hill et al., 2015) and
WordSim-353 (WS) (Finkelstein et al., 2002). Fol-
lowing past work, we reported the accuracy for
the word analogy task, and the Spearman’s rank
correlation coefficient between the gold scores and
the cosine similarity between the word embeddings
for the word similarity task. As baselines for these
tasks, we used the skip-gram model (Mikolov et al.,
2013a) implemented in the gensim library 3.6.0
(Řehůřek and Sojka, 2010) and the extended skip-
gram model implemented in the fastText tool 0.1.0
(Bojanowski et al., 2017). We used WikiExtrac-
tor10 to create the training corpus for baselines.
To the extent possible, we used the same hyper-
parameters to train our models and the baselines.11

We also reported the time required for train-
ing using our tool and the baseline word embed-
ding tools. Note that the training of RDF2Vec and
Wiki2vec tools are implemented using gensim.

We conducted experiments using Python 3.6 and
OpenBLAS 0.3.3 installed on the c5d.9xlarge in-
stance with 36 CPU cores deployed on Amazon
Web Services. To train our models and the baseline
word embedding models, we used the April 2018
version of the English Wikipedia dump.

5.1 Results

Table 1 shows the results of our models and the
baseline entity embedding models of the KORE

10https://github.com/attardi/
wikiextractor

11We used the following settings: dim size = 500,
window = 5, negative = 5, iteration = 5

SEM SYN SL WS Time
Ours 0.79 0.68 0.40 0.71 276min
Ours (w/o link graph model) 0.77 0.67 0.39 0.70 170min
Ours (w/o hyperlink generation) 0.79 0.67 0.39 0.72 211min
Ours (word-based skip-gram) 0.75 0.67 0.36 0.70 154min
gensim (Řehůřek and Sojka, 2010) 0.75 0.67 0.37 0.70 197min
fastText (Bojanowski et al., 2017) 0.63 0.70 0.37 0.69 243min

Table 2: The results of Wikipedia2Vec and the baseline
word embeddings on the word analogy and word simi-
larity datasets.

dataset.12 w/o link graph model and w/o hyper-
link generation are the results of ablation studies
disabling the link graph model and automatic gen-
eration of hyperlinks, respectively.

Our model successfully outperformed the
RDF2Vec and Wiki2vec models and achieved a
state-of-the-art result on the KORE dataset. The
results also indicated that the link graph model and
automatic generation of hyperlinks improved the
performance of the KORE dataset.

Table 2 shows the results of our models with the
baseline word embedding models on the word anal-
ogy and word similarity datasets. We also tested
the performace of the word-based skip-gram model
implemented in our tool by disabling the link graph
and anchor context models.

Our model performed better than the baseline
word embedding models on the SEM dataset, as
well as on both word similarity datasets. This
demonstrates that the semantic signals of entities
provided by the link graph and anchor context mod-
els are beneficial for improving the quality of word
embeddings. Additionally, the feature of the auto-
matic generation of hyperlinks did not generally
contribute to the performance on these datasets.

Our implementation of the word-based skip-
gram model was substantially faster than gensim
and fastText. Furthermore, the training time of our
full model was comparable to that of the baseline
word embedding models.

6 Interactive Demonstration

We developed a web-based interactive demonstra-
tion that enables users to explore the embeddings
of words and entities learned by our proposed tool
(see Figure 4). This demonstration enables users
to visualize the embeddings onto a two- or three-
dimensional space using three dimensionality re-
duction algorithms, namely t-distributed stochastic

12We obtained the results of the RDF2Vec and Wiki2vec
models from Ristoski et al. (2018).

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor

28

Figure 4: The screenshot of our web-based demonstration. Users can select the target embeddings (top left),
configure the dimensionality reduction algorithm (bottom left), explore the visualized embeddings (center), and
query similar words and entities based on an arbitrary word or an entity (right).

neighbor embedding (t-SNE) (Maaten and Hinton,
2008), uniform manifold approximation and projec-
tion (UMAP) (McInnes et al., 2018), and principal
component analysis (PCA). Users can move around
the visualized embedding space by dragging and
zooming using the mouse. Moreover, the demon-
stration also allows users to explore the embed-
dings by querying similar items (words or entities)
of an arbitrary item.

We used the pretrained embeddings of 12 lan-
guages released with this paper as the target embed-
dings. Furthermore, we also provided the English
embeddings trained without the link graph model
to allow users to qualitatively investigate how the
link graph model affects the resulting embeddings.

Our demonstration is developed by extending the
TensorFlow Embedding Projector.13 The demon-
stration is available at https://wikipedia2vec.
github.io/demo.

7 Use Cases

The embeddings learned using our proposed tool
have already been used effectively in various recent
studies. Poerner et al. (2019) have recently demon-
strated that by combining BERT with the entity
embeddings trained by our tool outperforms BERT
and knowledge-enhanced contextualized word em-
beddings (i.e., ERNIE (Zhang et al., 2019)) on
unsupervised question answering and relation clas-
sification tasks, without any computationally ex-
pensive additional pretraining of BERT. Yamada

13https://projector.tensorflow.org

et al. (2018b) developed a neural network-based
question answering system based on our tool, and
won a competition held by the NIPS 2017 con-
ference. Sato et al. (2017), Chen et al. (2019),
and Yamada and Shindo (2019) achieved state-of-
the-art results on named entity recognition, entity
linking, and text classification tasks, respectively,
based on the embeddings learned by our tool. Fur-
thermore, Papalampidi et al. (2019) proposed a
neural network model of analyzing the plot struc-
ture of movies using the entity embeddings learned
by our tool. Other examples include entity linking
(Yamada et al., 2016; Eshel et al., 2017), named
entity recognition (Lara-Clares and Garcia-Serrano,
2019), paraphrase detection (Duong et al., 2019),
fake news detection (Singh et al., 2019), and knowl-
edge graph completion (Shah et al., 2019).

8 Conclusions

In this paper, we present Wikipedia2Vec, an open-
source tool for learning the embeddings of words
and entities easily and efficiently from Wikipedia.
Our experiments demonstrate the superiority of
the proposed tool in terms of the quality of the
embeddings and the efficiency of the training com-
pared to the existing tools. Furthermore, our tool
has been effectively used in many recent state-of-
the-art models, which indicates the effectiveness
of our tool on downstream tasks. We also intro-
duce a web-based interactive demonstration that
enables users to explore the learned embeddings.
The source code and the pre-trained embeddings
for 12 languages are released with this paper.

https://wikipedia2vec.github.io/demo
https://wikipedia2vec.github.io/demo
https://projector.tensorflow.org

29

References
Mohamed Al-Badrashiny, Jason Bolton, Arun Tejasvi

Chaganty, Kevin Clark, Craig Harman, Lifu Huang,
Matthew Lamm, Jinhao Lei, Di Lu, Xiaoman Pan,
and others. 2017. TinkerBell: Cross-lingual Cold-
Start Knowledge Base Construction. In Text Analy-
sis Conference.

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith. 2011.
Cython: The Best of Both Worlds. Computing in
Science & Engineering, 13(2):31–39.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi
Li. 2017. Bridge Text and Knowledge by Learning
Multi-Prototype Entity Mention Embedding. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1623–1633.

Haotian Chen, Sahil Wadhwa, Xi David Li, and An-
drej Zukov-Gregoric. 2019. YELM: End-to-End
Contextualized Entity Linking. arXiv preprint
arXiv:1911.03834v1.

Mark Davis. 2019. Unicode Text Segmentation. Uni-
code Technical Reports.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Phuc H. Duong, Hien T. Nguyen, Hieu N. Duong, Khoa
Ngo, and Dat Ngo. 2019. A Hybrid Approach to
Paraphrase Detection. In Proceedings of 2018 5th
NAFOSTED Conference on Information and Com-
puter Science, pages 366–371.

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul
Markovitch, Ikuya Yamada, and Omer Levy. 2017.
Named Entity Disambiguation for Noisy Text. In
Proceedings of the 21st Conference on Computa-
tional Natural Language Learning, pages 58–68.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing Search in Context: The Con-
cept Revisited. ACM Transactions on Information
Systems, 20(1):116–131.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep Joint Entity Disambiguation with Local Neural
Attention. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2619–2629.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating Semantic Models with
Genuine Similarity Estimation. Computational Lin-
guistics, 41(4):665–695.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
KORE: Keyphrase Overlap Relatedness for Entity
Disambiguation. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowl-
edge Management, pages 545–554.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric Xing. 2015. Entity Hierarchy Embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1292–1300.

Alicia Lara-Clares and Ana Garcia-Serrano. 2019.
LSI2 UNED at eHealth-KD Challenge 2019: A Few-
shot Learning Model for Knowledge Discovery from
eHealth Documents. In Proceedings of the Iberian
Languages Evaluation Forum.

Yuezhang Li, Ronghuo Zheng, Tian Tian, Zhiting Hu,
Rahul Iyer, and Katia Sycara. 2016. Joint Embed-
ding of Hierarchical Categories and Entities for Con-
cept Categorization and Dataless Classification. In
Proceedings of the 26th International Conference on
Computational Linguistics, pages 2678–2688.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning Entity and Relation Em-
beddings for Knowledge Graph Completion. In Pro-
ceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 2181–2187.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing Data using t-SNE. Journal of machine
learning research, 9(Nov):2579–2605.

Leland McInnes, John Healy, and James Melville.
2018. UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction. arXiv
preprint arXiv:1802.03426v1.

Tomas Mikolov, Greg Corrado, Kai Chen, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of the
2013 International Conference on Learning Repre-
sentations, pages 1–12.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

30

Pinelopi Papalampidi, Frank Keller, and Mirella Lap-
ata. 2019. Movie Plot Analysis via Turning Point
Identification. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing, pages 1707–
1717.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge Enhanced Contextual
Word Representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint
Conference on Natural Language Processing, pages
43–54.

Nina Poerner, Ulli Waltinger, and Hinrich Schütze.
2019. BERT is Not a Knowledge Base (Yet): Fac-
tual Knowledge vs. Name-Based Reasoning in Unsu-
pervised QA. arXiv preprint arXiv:1911.03681v1.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50.

Petar Ristoski, Jessica Rosati, Tommaso Di Noia,
Renato De Leone, and Heiko Paulheim. 2018.
RDF2Vec: RDF Graph Embeddings and Their Ap-
plications. Semantic Web, 10(4):721–752.

Motoki Sato, Hiroyuki Shindo, Ikuya Yamada, and Yuji
Matsumoto. 2017. Segment-Level Neural Condi-
tional Random Fields for Named Entity Recogni-
tion. In Proceedings of the Eighth International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 97–102.

Haseeb Shah, Johannes Villmow, Adrian Ulges, Ulrich
Schwanecke, and Faisal Shafait. 2019. An Open-
World Extension to Knowledge Graph Completion
Models. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 33:3044–3051.

Iknoor Singh, Deepak P, and Anoop K. 2019. On the
Coherence of Fake News Articles. arXiv preprint
arXiv:1906.11126v1.

Masatoshi Suzuki, Koji Matsuda, Satoshi Sekine,
Naoaki Okazaki, and Kentaro Inui. 2018. A Joint
Neural Model for Fine-Grained Named Entity Clas-
sification of Wikipedia Articles. IEICE Transac-
tions on Information and Systems, E101.D(1):73–
81.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual
Wikification Using Multilingual Embeddings. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 589–598.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph and Text Jointly Em-
bedding. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing,
pages 1591–1601.

Yadollah Yaghoobzadeh and Hinrich Schutze. 2015.
Corpus-level Fine-grained Entity Typing Using Con-
textual Information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 715–725.

Ikuya Yamada and Hiroyuki Shindo. 2019. Neural
Attentive Bag-of-Entities Model for Text Classifica-
tion. In Proceedings of the 23rd Conference on Com-
putational Natural Language Learning, pages 563–
573.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint Learning of the
Embedding of Words and Entities for Named En-
tity Disambiguation. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 250–259.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2017. Learning Distributed
Representations of Texts and Entities from Knowl-
edge Base. Transactions of the Association for Com-
putational Linguistics, 5:397–411.

Ikuya Yamada, Hiroyuki Shindo, and Yoshiyasu Take-
fuji. 2018a. Representation Learning of Entities and
Documents from Knowledge Base Descriptions. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 190–201.

Ikuya Yamada, Ryuji Tamaki, Hiroyuki Shindo, and
Yoshiyasu Takefuji. 2018b. Studio Ousia’s Quiz
Bowl Question Answering System. In The NIPS

’17 Competition: Building Intelligent Systems, pages
181–194.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced Language Representation with Informative
Entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1441–1451.

