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Abstract
We present a biomedical entity linking (EL)
system BENNERD that detects named enti-
ties in text and links them to the unified
medical language system (UMLS) knowledge
base (KB) entries to facilitate the corona virus
disease 2019 (COVID-19) research. BEN-
NERD mainly covers biomedical domain, es-
pecially new entity types (e.g., coronavirus, vi-
ral proteins, immune responses) by address-
ing CORD-NER dataset. It includes several
NLP tools to process biomedical texts includ-
ing tokenization, flat and nested entity recog-
nition, and candidate generation and rank-
ing for EL that have been pre-trained using
the CORD-NER corpus. To the best of our
knowledge, this is the first attempt that ad-
dresses NER and EL on COVID-19-related
entities, such as COVID-19 virus, potential
vaccines, and spreading mechanism, that may
benefit research on COVID-19. We release
an online system to enable real-time entity
annotation with linking for end users. We
also release the manually annotated test set
and CORD-NERD dataset for leveraging EL
task. The BENNERD system is available at
https://aistairc.github.io/BENNERD/.

1 Introduction

In response to the coronavirus disease 2019
(COVID-19) for global research community to ap-
ply recent advances in natural language processing
(NLP), COVID-19 Open Research Dataset (CORD-
19)1 is an emerging research challenge with a re-
source of over 181,000 scholarly articles that are
related to the infectious disease COVID-19 caused
by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). To facilitate COVID-19 stud-
ies, since NER is considered a fundamental step

∗*Both authors contributed equally.
1https://www.kaggle.com/

allen-institute-for-ai/
CORD-19-research-challenge

in text mining system, Xuan et al. (2020b) created
CORD-NER dataset with comprehensive NE an-
notations. The annotations are based on distant
or weak supervision. The dataset includes 29,500
documents from the CORD-19 corpus. The CORD-
NER dataset gives a shed on NER, but they do not
address linking task which is important to address
COVID-19 research. For example, in the example
sentence in Figure 1, the mention SARS-CoV-2
needs to be disambiguated. Since the term SARS-
CoV-2 in this sentence refers to a virus, it should
be linked to an entry of a virus in the knowledge
base, not to an entry of ‘SARS-CoV-2 vaccination’,
which corresponds to therapeutic or preventive pro-
cedure to prevent a disease.

We present a BERT-based Exhaustive Neural
Named Entity Recognition and Disambiguation
(BENNERD) system. The system is composed
of four models: NER model (Sohrab and Miwa,
2018) that enumerates all possible spans as po-
tential entity mentions and classifies them into en-
tity types, masked language model BERT (Devlin
et al., 2019), candidate generation model to find
a list of candidate entities in the unified medical
language system (UMLS) knowledge base (KB) for
entity linking (EL) and candidate ranking model
to disambiguate the entity for concept indexing.
The BENNERD system provides a web interface to
facilitate the process of text annotation and its dis-
ambiguation without any training for end users. In
addition, we introduce CORD-NERD (COVID-19
Open Research Dataset for Named Entity Recog-
nition and Disambiguation) dataset an extended
version of CORD-NER as for leveraging EL task.

2 System Description

The main objective of this work is to address re-
cent pandemic of COVID-19 research. To facil-
itate COVID-19 studies, we introduce the BEN-

https://aistairc.github.io/BENNERD/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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Figure 1: Workflow of BENNERD System

NERD system that finds nested named entities and
links them to a UMLS knowledge base (KB). BEN-
NERD mainly comprises two platforms: a web in-
terface and a back-end server. The overall workflow
of the BENNERD system is illustrated in Figure 1.

2.1 BENNERD Web Interface

The user interface of our BENNERD system is a
web application with input panel, load a sample tab,
annotation tab, gear box tab, and .TXT and .ANN
tabs. Figure 2 shows an users’ input interface of
BENNERD. For a given text from users or loading
a sample text from a sample list, the annotation tab
will show the annotations with the text based on
best NER- and EL-based training model. Figure 3
shows an example of text annotation based on the
BENNERD’s NER model. Different colors rep-
resent different entity types and, when the cursor
floats over a coloured box representing an entity

above text, the corresponding concept unique iden-
tifier (CUI) on the UMLS is shown. Figure 3 also
shows an example where entity mention SARS-
CoV-2 links to its corresponding CUI. Users can
save the machine readable text in txt format and
annotation files in the ann format where the ann
annotation file provides standoff annotation output
in brat (Stenetorp et al., 2012)2 format.

2.1.1 Data Flow of Web Interface

We provide a quick inside look of our BENNERD
web interface (BWI). The data flow of BWI is pre-
sented as follows:

Server-side initialization (a) The BWI config-
uration, concept embeddings, and NER and EL
models are loaded (b) GENIA sentence splitter and
BERT basic tokenizer instances are initialized (c)

2https://brat.nlplab.org

https://brat.nlplab.org
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Figure 2: BENNERD Users’ Input Interface

Figure 3: Entity Annotation and Linking with BEN-
NERD

Concept embeddings are indexed by Faiss (Johnson
et al., 2019)

When a text is submitted (a) The text is split
into sentences and tokens (b) Token and sentence
standoffs are identified (c) NER model is run on to-
kenized sentences (d) EL model is run on the result
(e) The identified token spans are translated into
text standoffs (f) The identified concepts’ names
are looked up in the UMLS database (g) A brat
document is created (h) The brat document is trans-
lated into JSON, and sent to the client side (i) The
brat visualizer renders the document

2.2 BENNERD Back-end

The BENNERD back-end implements a pipeline
of tools (e.g., NER, EL), following the data flow
described in Section 2.1.1. This section provides
implementation details of our back-end modules
for NER and EL.

2.2.1 Neural Named Entity Recognition
We build the mention detection, a.k.a NER, based
on the BERT model (Devlin et al., 2019). The layer
receives subword sequences and assigns contextual
representations to the subwords via BERT. We de-
note a sentence by S = (x1, ..., xn), where xi is
the i-th word, and xi consists of si subwords. This

layer assigns a vector vi,j to the j-th subword of the
i-th word. Then, we generate the vector embedding
vi for each word xi by computing the unweighted
average of its subword embeddings vi,j . We gen-
erate mention candidates based on the same idea
as the span-based model (Lee et al., 2017; Sohrab
and Miwa, 2018; Sohrab et al., 2019a,b), in which
all continuous word sequences are generated given
a maximal size Lx (span width). The representa-
tion xb,e ∈ Rdx for the span from the b-th word to
the e-th word in a sentence is calculated from the
embeddings of the first word, the last word, and
the weighted average of all words in the span as
follows:

xb,e =

[
vb;

e∑
i=b

αb,e,ivi;ve

]
, (1)

where αb,e,i denotes the attention value of the i-th
word in a span from the b-th word to the e-th word,
and [; ; ] denotes concatenation.

2.2.2 Entity Linking
In our EL component, for every mention span xb,e

of a concept in a document, we are supposed to
identify its ID in the target KB.3 Let us call the ID
a concept unique identifier (CUI). The input is all
predicted mention spans M = {m1,m2, . . . ,mn},
where mi denotes the i-th mention and n denotes
the total number of predicted mentions. The list of
entity mentions {mi}i=1,...,n needs to be mapped
to a list of corresponding CUIs {ci}i=1,...,n. We
decompose EL into two subtasks: candidate gener-
ation and candidate ranking.

Candidate Generation To find a list of candi-
date entities in KB to link with a given mention,
we build a candidate generation layer adapting a
dual-encoders model (Gillick et al., 2019). Instead
of normalizing entity definition to disambiguate
entities, we simply normalize the semantic types in
both mention and entity sides from UMLS.

The representation of a mention m in a document
by the semantic type tm, can be denoted as:

vm = [wm; tm] , (2)

where tm ∈ Rdtm is the mention type embedding.
For the entity (concept) side with semantic type
information, the representation ae, and its entity
type embedding te ∈ Rdte can be computed as:

ve = [ae; te] . (3)
3We used the UMLS KB in the experiments.
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We use cosine similarity to compute the similarity
score between a mention m and an entity e and
feed it into a linear layer (LL) to transform the
score into an unbounded logit as:

sim (m, e) = cos (vm,ve) , (4)

score (m, e) = LL(sim (m, e)). (5)

We employ the in-batch random negatives tech-
nique as described in the previous work (Gillick
et al., 2019). For evaluating the performance of the
model during training, we use the in-batch recall@1
metric (Gillick et al., 2019) on the development set
to track and save the best model.

We calculate the embedding of each detected
mention from the mention detection layer and each
of all entities in KB and then using an approximate
nearest neighbor search algorithm in Faiss (John-
son et al., 2019) to retrieve the top k entities as
candidates for the ranking layer.

Candidate Ranking The cosine similarity score
in the candidate generation is insufficient to dis-
ambiguate the entities in which the correct entity
should be assigned the highest score which is com-
parable from the k candidate entities. We employed
a fully-connected neural network model to aim at
ranking the entity candidate list to select the best
entity linked to the mention. Given a mention m
and a set of candidate entities {e1, e2, ..., ek}, we
concatenate the embedding of m in Equation (2)
with the embedding of each entity ei in Equation (3)
to form a vector vm,ei . Then the vector vm,ei is fed
into a LL to compute the ranking score:

score(m, ei) = LL(vm,ei). (6)

The model is then trained using a softmax loss
to maximize the score of the correct entity com-
pared with other incorrect entities retrieved from
the trained candidate generation model.

3 Experimental Settings

In this section, we evaluate our toolkit on CORD-
NER and CORD-NERD datasets.

3.1 CORD-NER Dataset

We carry out our experiments on CORD-NER,
a distant or weak supervision-based large-scale
dataset that includes 29,500 documents, 2,533,485
sentences, and 10,388,642 mentions. In our exper-
iment, CORD-NER covers 63 fine-grained entity

types4. CORD-NER mainly supports four sources
including 18 biomedical entity types5, 18 general
entity types6, knowledge base entity types, and
nine7 seed-guided new entity types. We split the
CORD-NER dataset into three subsets: train, de-
velopment, and test, which respectively contain
20,000, 4,500, and 5,000 documents.

3.2 CORD-NERD Dataset

CORD-NER dataset comprises only NER task. To
solve the EL task, we expand this dataset by lever-
aging a CUI for each mention in the CORD-NER
dataset, we call this CORD-NERD dataset. We
use the most recent UMLS version 2020AA re-
lease that includes coronavirus-related concepts.
To create CORD-NERD dataset, we use a dictio-
nary matching approach based on exact match us-
ing UMLS KB. CORD-NERD includes 10,470,248
mentions, among which 6,794,126 and 3,676,122
mentions are respectively present and absent in
the UMLS. Therefore, the entity coverage ratio of
CORD-NERD over the UMLS is 64.89%. We an-
notate the entity mentions that are not found in the
UMLS with CUI LESS. To evaluate the EL perfor-
mances on CORD-NERD, 302,166 mentions are as-
signed for 5,000 test set, we call this UMLS-based
test set. The train and development sets of CORD-
NERD dataset, we simply calls UMLS-based train-
and UMLS-based dev-set respectively. Besides, we
assigned a biologist to annotate 1,000 random sen-
tences based on chemical, disease, and gene types
to create a manually annotated test set. This test
set includes 311 disease mentions for the NER task
and 946 mentions8 with their corresponding CUIs
for the EL task.

3.3 Data Prepossessing

Each text and the corresponding annotation file
are processed by BERT’s basic tokenizer. After
tokenization, each text and its corresponding anno-
tation file was directly passed to the deep neural
approach for mention detection and classification.

4In the original CORD-NER paper (Xuan et al., 2020b),
the authors reported 75 fine-grained entity types, but we found
only 63 types.

5https://uofi.app.box.com/s/
k8pw7d5kozzpoum2jwfaqdaey1oij93x/file/
637866394186

6https://spacy.io/api/annotation#
named-entities

7Coronavirus, Viral Protein, Livestock, Wildlife, Evolu-
tion, Physical Science, Substrate, Material, Immune Response

8Among them, 38, 311, and 597 mentions are of chemical,
disease, and gene entity types respectively.

https://uofi.app.box.com/s/k8pw7d5kozzpoum2jwfaqdaey1oij93x/file/637866394186
https://uofi.app.box.com/s/k8pw7d5kozzpoum2jwfaqdaey1oij93x/file/637866394186
https://uofi.app.box.com/s/k8pw7d5kozzpoum2jwfaqdaey1oij93x/file/637866394186
https://spacy.io/api/annotation#named-entities
https://spacy.io/api/annotation#named-entities
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Model Gene Chemical Disease
P R F P R F P R F (%)

SciSpacy(BIONLP13CG) 91.48 82.06 86.51 64.66 39.81 49.28 8.11 2.75 4.11
SciSpacy(BC5CDR) - - - 86.97 51.86 64.69 80.31 59.65 68.46
CORD-NER System 82.14 74.68 72.23 82.93 75.22 78.89 75.73 68.42 71.89

Table 1: Performance comparison of baseline systems on three biomedical entity types in CORD-NER corpus.

Model Development set Test set
P R F P R F (%)

BENNERD + ClinicalCovid BERT (CCB) 84.62 86.43 85.52 82.83 83.23 83.03
BENNERD + SciBERT 84.03 87.05 85.51 82.16 83.81 82.98
BENNERD + Covid BERT Base 78.31 66.80 72.10 77.44 66.80 71.73

Table 2: NER Performances using different pre-trained BERT models.

Model Gene Chemical Disease
P R F P R F P R F (%)

BENNERD + CCB 76.07 74.83 75.45 83.55 84.60 84.07 84.85 84.99 84.92

Table 3: Performance comparison of BENNERD on three major biomedical entity types in CORD-NER corpus.
CCB denotes ClinicalCovid BERT.

Model P R F (%)
SciSpacy(BC5CDR) 36.01 56.27 43.91
BENNERD 49.16 47.27 48.20

Table 4: Performance comparison of BENNERD with
pre-trained SciSpacy over the disease entity types on
the manually annotated test set.

4 Results

4.1 NER Performances on Baseline Model

Table 1 shows the performance of SciSpacy on
CORD-NER dataset. In this table, the results are
based on randomly picked 1,000 manually anno-
tated sentences as the test set.

4.2 NER Performances on BENNERD Model

Table 2 shows the performance comparison of our
BENNERD with different pre-trained BERT mod-
els based on our test set. Since the manually an-
notated CORD-NER test set is not publicly avail-
able, we cannot directly compare our system per-
formance. Instead, in Table 3, we show the per-
formance of gene, chemical, and disease based on
our UMLS-based test set. Besides, in Table 4, we
also show the NER performances comparison of
BENNERD with BC5CDR corpus-based SciSpacy
model on the manually annotated disease entities.

4.3 Candidate Ranking Performance

As we are the first to perform EL task on CORD-19
dataset, we present different scenarios to evaluate
our candidate ranking performance. The results
of EL are depicted in Table 5. In this table, we
evaluate our candidate ranking performances based
on two experiment settings. In setting1, we train
the CUIs based on manually annotated MedMen-
tion (Murty et al., 2018) dataset. In setting2, the
BENNERD model is trained on automatically an-
notated CORD-NERD dataset. Table 5 also shows
that our BENNERD model with setting2 is outper-
formed in compare to setting1 in every cases in
terms of accuracy@(1, 10, 20, 30, 40, 50). Table 6
shows the EL performance on the manually anno-
tated test set. In this table, it also shows that our
system with setting2 is outperformed in compare
to setting1. Besides, we also evaluate the manually
annotated test set simply with string matching ap-
proach where the results of the top 10, 20, 30, 40 or
50 predictions for a gold candidate are unchanged.

4.4 Performances on COVID-19 Entity Types

Finally, in Table 7, we show the performance of
nine new entity types discussed in Section 3.1 re-
lated to COVID-19 studies, which may benefit re-
search on COVID-19 virus, spreading mechanism,
and potential vaccines.
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Model UMLS-based Test set
A@1 A@10 A@20 A@30 A@40 A@50 (%)

BENNERD + NER’s Pred. + Setting1 27.61 44.56 49.74 51.88 53.08 54.19
BENNERD + Gold NEs + Setting1 29.78 48.33 53.89 56.22 57.53 58.74
BENNERD + NER’s TP + Setting1 30.31 48.91 54.60 56.95 58.27 59.49
BENNERD + NER’s Pred. + Setting2 47.46 64.32 67.70 69.87 71.12 72.07
BENNERD + Gold NEs + Setting2 50.73 69.31 73.10 75.58 77.03 78.13
BENNERD + NER’s TP + Setting2 53.90 73.06 76.90 79.36 80.79 81.87

Table 5: EL performance on test set. We report Accuracy@n, where n = 1, 10, 20, 30, 40, 50. Accuracy@1, gold
candidate was ranked highest. Accuracy@{10, 20, 30, 40, 50} indicates, gold candidate was in top 10, 20, 30,
40 or in 50 predictions of the ranker. Pred., NEs, and TP refers to predictions, named entities, and true positive
respectively. Setting1 and 2 denotes model is trained on MEDMention and CORD-NERD datasets respectively.

Model Manually Annotated Test set
A@1 A@10 A@20 A@30 A@40 A@50 (%)

BENNERD + Setting1 24.27 42.95 47.07 48.81 50.00 50.92
BENNERD + Setting2 31.84 50.25 54.53 56.87 58.39 60.12
BENNERD + String Matching 30.21 41.00 41.00 41.00 41.00 41.00

Table 6: EL performance on our manually annotated test set.

Model UMLS-based Test set
P R F (%)

Coronovirus 98.46 98.94 98.70
Viral Protein 89.39 91.09 90.23
Livestock 96.67 97.26 96.96
Wildlife 98.43 97.56 97.99
Evolution 97.16 98.46 97.80
Physical Science 96.80 93.08 94.90
Substrate 95.99 98.46 97.21
Material 94.80 90.46 92.58
Immune Response 97.29 99.42 98.35

Table 7: Performances on nine types of COVID-19

5 Related Work

To facilitate the biomedical text mining research on
COVID-19, recently a few works have reported to
address text mining tasks. Xuan et al. (2020b) cre-
ated CORD-NER dataset with distant or weak su-
pervision and reported first NER performances on
different NER models. Motivated by this work, we
presented a first web-based toolkit that addresses
both NER and EL. In addition, we also extend the
CORD-NER dataset to solve EL task.

Xuan et al. (2020a) created EvidenceMiner sys-
tem that retrieves sentence-level textual evidence
from CORD-NER dataset. Tonia et al. (2020)
developed an NLP pipeline to extract drug and

vaccine information about SARS-CoV-2 and other
viruses to help biomedical experts to easily track
the latest scientific publications. To the best of our
knowledge, this work is our first effort to solve both
NER and EL models in a pipeline manner.

6 Conclusion

We presented the BENNERD system for entity
linking, hoping that we can bring insights for the
COVID-19 studies on making scientific discoveries.
To the best of our knowledge, BENNERD repre-
sents the first web-based workflow of NER and EL
for NLP research that addresses CORD-19 dataset
that leads to create CORD-NERD dataset to facili-
tate COVID-19 work. The online system is avail-
able for meeting real-time extraction for end users.
The BENNERD system is continually evolving; we
will continue to improve the system as well as to im-
plement new functions such as relation extraction
to further facilitate COVID-19 research. We re-
fer to visit https://aistairc.github.io/BENNERD/ to
know more about BENNERD and CORD-NERD.
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