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Abstract

LIBKGE1 is an open-source PyTorch-based
library for training, hyperparameter optimiza-
tion, and evaluation of knowledge graph em-
bedding models for link prediction. The key
goals of LIBKGE are to enable reproducible
research, to provide a framework for compre-
hensive experimental studies, and to facilitate
analyzing the contributions of individual com-
ponents of training methods, model architec-
tures, and evaluation methods. LIBKGE is
highly configurable and every experiment can
be fully reproduced with a single configura-
tion file. Individual components are decou-
pled to the extent possible so that they can
be mixed and matched with each other. Im-
plementations in LIBKGE aim to be as ef-
ficient as possible without leaving the scope
of Python/Numpy/PyTorch. A comprehensive
logging mechanism and tooling facilitates in-
depth analysis. LIBKGE provides implemen-
tations of common knowledge graph embed-
ding models and training methods, and new
ones can be easily added. A comparative study
(Ruffinelli et al., 2020) showed that LIBKGE
reaches competitive to state-of-the-art perfor-
mance for many models with a modest amount
of automatic hyperparameter tuning.

1 Introduction

Knowledge graphs (KG) (Hayes-Roth, 1983) en-
code real-world facts as structured data. A knowl-
edge graph can be represented as a set of (subject,
relation, object)-triples, where the subject and ob-
ject entities correspond to vertices, and relations to
labeled edges in a graph.

KG embedding (KGE) models represent the
KG’s entities and relations as dense vectors, termed
embeddings. KGE models compute a score based
on these embeddings and are trained with the ob-
jective of predicting high scores for true triples and

1https://github.com/uma-pi1/kge

low scores for false triples. Link prediction is the
task of predicting edges missing in the KG (Nickel
et al., 2015). Some uses of KGE models are: en-
hancing the knowledge representation in language
models (Peters et al., 2019), drug discovery in bio-
medical KGs (Mohamed et al., 2019), as part of
recommender systems (Wang et al., 2017), or for
visual relationship detection (Baier et al., 2017).

KGE models for link prediction have seen a
heightened interest in recent years. Many com-
ponents of the KGE pipeline—i.e., KGE models,
training methods, evaluation techniques, and hy-
perparameter optimization—have been studied in
the literature, as well as the whole pipeline it-
self (Nickel et al., 2016; Wang et al., 2017; Ali
et al., 2020). Ruffinelli et al. (2020) argued that it
is difficult to reach a conclusion about the impact of
each component based on the original publications.
For example, multiple components may have been
changed simultaneously without performing an ab-
lation study, baselines may not have been trained
with state-of-the-art methods, or the hyperparame-
ter space may not have been sufficiently explored.

LIBKGE is an open-source KGE library for re-
producible research. It aims to facilitate meaning-
ful experimental comparisons of all components of
the KGE pipeline. To this end, LIBKGE is faithful
to the following principles:

Modularization and extensibility. LIBKGE is
cleanly modularized. Individual components can
be mixed and matched with each other, and new
components can be easily added.

Configurability and reproducibility. In
LIBKGE an experiment is entirely defined by a
single configuration file with well-documented
configuration options for every component. When
an experiment is started, its current configu-
ration is stored alongside the model to enable
reproducibility and analysis.

https://github.com/uma-pi1/kge
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Profiling and analysis. LIBKGE performs ex-
tensive logging during experiments and monitors
performance metrics such as runtime, memory us-
age, training loss, and evaluation metrics. Addi-
tionally, specific monitoring of any part of the KGE
pipeline can be added via a hook system. The log-
ging is done in both human-readable form and in a
machine-readable format.

Ease of use. LIBKGE is designed to support the
workflow of researchers by convenient tooling and
easy usage with single line commands. Each train-
ing job or hyperparameter search job can be in-
terrupted and resumed at any time. For tuning of
hyperparameters, LIBKGE supports grid search,
quasi-random search and Bayesian Optimization.
All implementations stay in the realm of Python/Py-
Torch/Numpy and aim to be as efficient as possible.

LIBKGE supports the needs of researchers
who want to investigate new components or im-
provements of the KGE pipeline. The strengths
of LIBKGE enabled a comprehensive study that
provided new insights about training KGE mod-
els (Ruffinelli et al., 2020). For an overview about
usage, pretrained models, and detailed documenta-
tion, please refer to LIBKGE’s project page. In this
paper, we discuss the key principles of LIBKGE.

2 Modularization and extensibility

LIBKGE is highly modularized, which allows to
mix and match training methods, models, and eval-
uation methods (see Figure 1). The modularization
allows for simple and clean ways to extend the
framework with new features that will be available
for every model.

For example, LIBKGE decouples the Relation-
alScorer (the KGE scoring function) and KgeEm-
bedder (the way embeddings are obtained) as de-
picted in Figure 1. In other frameworks, the em-
bedder function is hardcoded to the equivalent of
LIBKGE’s LookupEmbedder, in which embed-
dings are explicitly stored for each entity. Due to
LIBKGE’s decoupling, the embedder type can be
freely specified independently of the scoring func-
tion, which enables users to train a KGE model
with other types of embedders. For example, the
embedding function could be an encoder that com-
putes an entity or relation embedding from textual
descriptions or pixels of an image (Pezeshkpour
et al., 2018; Broscheit et al., 2020, inter alia).

Search:Job
+device_pool: str[...*]
+process_pool: TrainingJob
+...

1

*

TrainingJob:Job
+model: KgeModel
+loss: Loss
+optimizer: Optimizer
+valid_job: EvaluationJob
+...

GridSearch

AxSearch
Quasi random

search, Bayesian
Optimization

KgeModel
+scorer: RelationalScorer
+entity_embedder: KgeEmbedder
+relation_embedder: KgeEmbedder
+...
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1

1
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...
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KgeEmbedder
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1

1

LookupEmbedder

ProjectionEmbedder

...
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EntityRanking

1

1

1

1

...

...

...

Figure 1: A brief overview of LIBKGE’s architecture.

3 Configurability and reproducibility

Reproducibility is important, which means that con-
figuration is important. To enable reproducibility,
it is key that the entire configuration of each exper-
iment be persistently stored and accessible. While
this sounds almost obvious, the crux is how this
can be achieved. Typically, source code can and
will change. Therefore, to make an experiment in a
certain setting reproducible, the configuration for
an experiment has to be decoupled from the code
as much as possible.

In LIBKGE all settings are always retrieved
from a configuration object that is initialized from
configuration files and is used by all components
of the pipeline. This leads to comprehensive con-
figuration files that fully document an experiment
and make it reproducible as well.

To make this comprehensive configurabil-
ity feasible—while also remaining modular—
LIBKGE includes a lightweight import function-
ality for configuration files. In Figure 2, we show
an (almost) minimal configuration for an experi-
ment for training a ComplEx KGE model (Trouil-
lon et al., 2016). The main configuration file

https://github.com/uma-pi1/kge
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0 j o b . t y p e : t r a i n
1 d a t a s e t . name: fb15k−237
2

3 t r a i n :
4 o p t i m i z e r : Adagrad
5 o p t i m i z e r a r g s :
6 l r : 0 . 2
7

8 v a l i d :
9 e v e r y : 5

10 m e t r i c :
m e a n r e c i p r o c a l r a n k f i l t e r e d

11

12 complex
13 lookup embedder :
14 dim: 200
15 r e g u l a r i z e w e i g h t : 0 . 8 e−7

0 i m p o r t : [ lookup embedder ]
1

2 complex:
3 c l a s s n a m e : ComplEx
4 e n t i t y e m b e d d e r :
5 t y p e : lookup embedder
6 r e l a t i o n e m b e d d e r :
7 t y p e : lookup embedder

0 lookup embedder :
1 c l a s s n a m e : LookupEmbedder
2

3 dim: 100
4

5 i n i t i a l i z e : n o r m a l
6

7

8
d r o p o u t : 0 .

9

10

r e g u l a r i z e :    ’l p’

11

r e g u l a r i z e w e i g h t : 0 . 0

12

r e g u l a r i z e a r g s :
p:  2

m o d e l:      

imports settings from

my_experiment.yaml complex.yaml

lookup_embedder.yaml

imports settings from

overwrites default value

Figure 2: A minimal configuration my experiment.yaml that defines 10 out of ≈ 100 configurable settings.
All settings from the main configuration file my experiment.yaml and from the imported configurations are
merged and stored in one combined file. No default settings are defined in the code.

my experiment.yaml in Figure 2 will auto-
matically import the model-specific configuration
complex.yaml, which in turn imports the con-
figuration lookup embedder.yaml. The latter
defines the default configurations of the LookupEm-
bedder for entities and relations, which associates
every entity and relation identifier with its respec-
tive embedding. All configurations are merged into
a single configuration object. During merging, the
settings in the main configuration file always have
precedence over the settings from imported files.
The resulting single configuration will be automati-
cally saved in the experiment directory along with
the checkpoints and the log files.

As an example of how configurability also helps
modularization, we come back to the example of
switching the LookupEmbedder with an encoder
that computes entity embeddings from string to-
kens. For this purpose, one may implement a
TokenPoolEmbedder. The simple changes to the
configuration that uses the new embedder type are
demonstrated in Figure 3 (see line 12).

It is worth noting that while the default set-
tings in LIBKGE’s main configuration file reflect

0 t o k e n p o o l e m b e d d e r :
1 c l a s s n a m e : TokenPoolEmbedder
2 dim: 100

0 i m p o r t : [ t o k e n p o o l e m b e d d e r ]
1 j o b . t y p e : t r a i n
2 d a t a s e t . name: fb15k −237
3

4 t r a i n :
5 o p t i m i z e r : Adagrad
6 o p t i m i z e r a r g s . l r : 0 . 2
7

8 model: complex
9 complex:

10 c l a s s n a m e : ComplEx
11 e n t i t y e m b e d d e r :
12 t y p e : t o k e n p o o l e m b e d d e r
13 r e l a t i o n e m b e d d e r :
14 t y p e : lookup embedder

Figure 3: Example of using a token-based embedder.

the currently known best practices, LIBKGE also
includes—and makes configurable—some settings
that might not be considered best practice, e.g.,
different tie breaking schemes for ranking evalua-
tions (Sun et al., 2020). Therefore, with regards to
configurability, the goal is not only that the frame-
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0 j o b . t y p e : s e a r c h
1 s e a r c h :
2 t y p e : ax
3 d e v i c e p o o l : [ cuda:0 , cuda:1 ]
4 num workers : 4
5

6 d a t a s e t . name: wnrr
7

8 model: complex
9

10 t r a i n :
11 o p t i m i z e r : Adagrad
12 t y p e : n e g a t i v e s a m p l i n g
13

14 v a l i d . m e t r i c :
m e a n r e c i p r o c a l r a n k f i l t e r e d

15

16 a x s e a r c h :
17 n u m t r i a l s : 30
18 # r e m a i n i n g t r i a l s a f t e r random
19 # s e a r c h a r e B a y e s i a n O p t i m i z a t i o n
20 n u m s o b o l t r i a l s : 10
21 p a r a m e t e r s :
22 - name: t r a i n . b a t c h s i z e
23 t y p e : c h o i c e
24 v a l u e s : [ 2 5 6 , 512 , 1024]
25 i s o r d e r e d : True
26 - name: t r a i n . o p t i m i z e r a r g s . l r
27 t y p e : r a n g e
28 bounds: [ 0 . 0 0 1 , 1 . 0 ]
29 l o g s c a l e : True
30 - name: n e g a t i v e s a m p l i n g . num . s
31 t y p e : r a n g e
32 bounds: [ 1 6 , 8192]
33 - name: n e g a t i v e s a m p l i n g . num . o
34 t y p e : r a n g e
35 bounds: [ 1 6 , 8192]

Figure 4: An example for a hyperparameter optimiza-
tion job. This configurations first runs 10 trials of a
quasi-random search followed by 10 trials of Bayesian
Optimization (see ax search.num trials
and ax search.num sobol trials). By
setting the keys search.device pool and
search.num workers in lines 3 and 4 the execu-
tion of the trials is parallelized to run 4 parallel trials
distributed over two GPU devices.

work reflects best practices, but also reflects popu-
lar practices that might influence ongoing research.

4 Hyperparameter optimization

Hyperparameter optimization is crucial in empir-
ically investigating the impact of individual com-
ponents of the KGE pipeline. LIBKGE offers
manual search, grid search, random search, and
Bayesian Optimization; the latter two provided by
the hyperparameter optimization framework Ax.2

In this context, LIBKGE further benefits from its
configurability because everything can be treated

2https://ax.dev/

as a hyperparameter, even the choice of model,
score function, or embedder. The example in Fig-
ure 4 shows a simple hyperparameter search with
an initial quasi-random search, and a subsequent
Bayesian Optimization phase over the learning rate,
batch size and negative samples for the ComplEx
model. The trials during the quasi-random search
are independent, which can be exploited by paral-
lelizing their runs over multiple devices. In this
way, a comprehensive search over a large space of
hyperparameters can be sped up significantly (also
shown in the example; for more details, please refer
to the documentation).

5 Profiling and metadata analysis

LIBKGE provides extensive options for profiling,
debugging, and analyzing the KGE pipeline. While
most frameworks print the current training loss
and some frameworks also record the validation
metrics, LIBKGE aims to make every moving part
of the pipeline observable. Per default, LIBKGE
records during training things such as runtimes,
training loss and penalties (e.g., from the entity
and relation embedders), relevant meta data such
as the PyTorch version and the current commit
hash, and dependencies between various jobs. We
show an example logging output during training
one epoch in Appendix B. For more fine-grained
logging, LIBKGE also can log at the batch level.

During evaluation, the framework records many
variations of the evaluation metrics, such as group-
ing relations by relation type, relation frequency,
head or tail. Additionally, users can extract and
add information by adding their custom function
to one of multiple hooks that are executed before
and after all relevant calls in the framework. In
this way, users can interact with all components
of the pipeline, without risking divergence from
LIBKGE’s master branch.

Finally, LIBKGE provides convenience methods
to export (subsets of) the logged meta data into
plain CSV files.

6 Comparison to other KGE Projects

In this section, we compare LIBKGE to other open
source software (OSS) that provides functionality
around training and evaluating KGE models for
link prediction. The assessments are a snaphot
taken at the end of May 2020. All model-specific
comparisons have been evaluated w.r.t. the Com-
plEx model, which is supported by all projects.

https://ax.dev/
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KGE project Implementation Config- Log- Hyperparam. Res- Act-
language(s) urable ging Optimization ume ive

keys train/eval Grid Rnd BO
Fr

am
ew

or
k LIBKGE (Ours) PyTorch 91 17/414 x x x x 668

PyKeen PyTorch 61 2/27 x x 575
Ampligraph TF 1.x 20 0/8 x x 286
OpenKE PyTorch/C++ 19 1/30 22
SK-libkge TF 1.x 14 5/7 x 24

La
rg

e
Sc

al
e GraphVite C++/PyTorch 34 2/5 14

DGL-KE PyTorch/MxNET 15 10/6 x 134
PyTorch-BG PyTorch 52 12/8 x 102

Pa
pe

r
C

od
e KBC PyTorch 10 4/12 2

Hyperb. KGE TF 2.x/PyTorch 20 6/5 12/19
ConvE PyTorch 15 5/36 x 2
RotatE PyTorch 28 3/5 3

Table 1: Comparing LIBKGE and other OSS that provide functionality around training KGE models for link
prediction. All assessments have been made at the end of May 2020. Frameworks denotes focus on fostering KGE
research with modularization, extensibility and coverage of relevant models and training methods. Large Scale
denotes focus on extremely large-scale graphs, with support of training in multi-node or multi-gpu mode, or both.
Paper Code denotes projects published alongside a KGE model’s publications. Configurable keys are the number
of possible options for training a single ComplEx model, i.e. not counting options for hyperparameter search.
Logging denotes the number of metadata keys that are logged per epoch for training and evaluation in a machine
readable format for later analysis. Hyperparameter optimization shows if the project supports grid search, random
search and Bayesian Optimization. Resume denotes the feature to resume hyperparameter search or training from
checkpoints at any time. Active is the amount of commits to the master branch in the last 12 months.

In Table 1, we provide an overview of other
KGE projects (full references in Appendix C) and
compare them w.r.t. configurability and ease of
use. We mainly included projects that could be
considered as a basis for a researcher’s experi-
ments because they are active, functional, and cover
at least a few of the most common models. All
projects can be extended with models, losses, or
training methods. Large-scale projects and pa-
per code projects—in comparison to more holistic
frameworks—typically have a more narrow scope,
e.g., they often do not feature hyperparameter opti-
mization. Large-scale projects are typically tailored
towards parallelizing training methods and models.

The focus on configurability and reproducibil-
ity in LIBKGE is reflected by the large amount
of configurable keys. For example, in contrast to
other projects, LIBKGE does not tie the regular-
ization weights of the entity and relation embedder
to be the same. For entity ranking evaluation, only
LIBKGE and PyKeen transparently implement dif-
ferent tie breaking schemes for equally ranked en-
tities. This is important, because evaluation under

different tie breaking schemes can result in differ-
ences of ≈ .40 MRR in some models and can lead
to misleading conclusions, as shown by Sun et al.
(2020). OpenKE, for example, only supports the
problematic tie breaking scheme named TOP by
Sun et al. (2020). LIBKGE and PyKeen are the
only frameworks that provide machine-readable
logging. Only LIBKGE offers resuming from a
checkpoint for training and hyperparameter search.
LIBKGE, Ampligraph, and PyKeen are the most
active projects in terms of amount of commits dur-
ing the past 12 months.

Efficiency In Table 2, we show a comparison
of KGE frameworks in terms of time for one full
training epoch. The configuration setting was cho-
sen such that it was supported by all frameworks,
and also facilitates to demonstrate behaviour un-
der varying load. We translate the configurations
faithfully to each framework, ensuring that total
number of embedding parameters per batch are the
same for each framework. Most projects, including
LIBKGE, can handle small numbers of negative
samples efficiently, but LIBKGE seems to scale

https://github.com/uma-pi1/kge
https://github.com/pykeen/pykeen
https://github.com/Accenture/AmpliGraph
https://github.com/thunlp/OpenKE
https://github.com/samehkamaleldin/libkge
https://github.com/DeepGraphLearning/graphvite
https://github.com/awslabs/dgl-ke
https://github.com/facebookresearch/PyTorch-BigGraph
https://github.com/facebookresearch/kbc
https://github.com/tensorflow/neural-structured-learning/tree/master/research/kg_hyp_emb
https://github.com/TimDettmers/ConvE
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
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Number of negative samples per triple
Parallel 64 1024 16384

batch con- ran- pseudo ran- pseudo ran- pseudo
Project struction dom negative dom negative dom negative

LIBKGE (Ours) x 9 s 13 s 14 s 19 s 74 s 113 s
PyKeen x 10 s - 64 s - 930 s -
Ampligraph 21 s - 190 s - OOM -
OpenKE x 7 s 7 s 59 s 63 s OOM OOM
SK-libkge 99 s - 1210 s - OOT -

GraphVite (*) 54 s - 58 s - 82 s -

Table 2: Runtime comparison between frameworks. The runtime is the time per epoch in seconds (averaged over
5 epochs executed on the same machine). The configuration is fixed to be similar for all frameworks (details in
Appendix A). For negative samples, we show runtimes for random, i.e., sampling triples without checking if they
are contained in the KG, and for pseudo-negative, which avoids sampling triples contained in the KG. The column
parallel batch construction indicates whether the code in the training loop for generating the batches is parallelized;
if yes, then we set the number of workers to 4. OOM stands for out-of-memory. OOT is short for out-of-time; we
stopped the run when the first epoch did not finish within 30 minutes. (*) Graphvite is optimized for multi-gpu
training with large batch sizes, therefore the chosen settings might not be optimal.

MRR HITS@10

LIBKGE (Ours) 0.35 0.54
PyKeen - 0.44
Ampligraph 0.32 0.50
OpenKE - 0.43

GraphVite 0.27 0.45

Table 3: The reported best performances (on the
project’s homepage or the related publication as of May
2020) for ComplEx on FB15K-237 for each project.
The performances have been obtained with different
amount of effort for hyperparameter optimization and
should not be compared directly. Reported ranking met-
rics: Mean Reciprocal Rank (MRR) and HITS@10.

better to higher numbers of negative samples. A
large number of negative samples becomes impor-
tant when large KGs with millions of entities are
embedded. Although the runtimes are purely anec-
dotal and should be taken with a grain of salt, they
do show that LIBKGE can provide competitive run-
time performance. Currently, LIBKGE only sup-
ports single-node single-gpu training. It neverthe-
less fares well when compared to GraphVite, one
of the large-scale frameworks that dispatches some
routines into C/C++. LIBKGE also has optimized
versions of negative sampling for large graphs,
which enables it to train ComplEx on Wikidata-5m
(Wang et al., 2019), a large KG with 5M entities.

Predictive performance. In Table 3, we col-
lected the reported performances for ComplEx
on the dataset FB15K-237 (Toutanova and Chen,
2015). The numbers are not comparable due to
different amount of effort to find a good configu-
ration3, but they reflect the performance that the
framework authors achieved in their experiments.
The results show that with LIBKGE’s architecture
and hyperparameter optimization a state-of-the-art
result can be achieved. For more results obtained
with LIBKGE and an in-depth analysis of the im-
pact of hyperparameters on model performance we
refer to the study by Ruffinelli et al. (2020).

7 Conclusions

In this work, we presented LIBKGE, a config-
urable, modular, and efficient framework for repro-
ducible research on knowledge graph embedding
models. We briefly described the internal structure
of the framework and how it facilitates LIBKGE’s
goals. The framework is efficient and yields state-
of-the-art performance. We hope that LIBKGE
is a helpful ingredient to gain new insights into
knowledge graph embeddings, and that a lively
community gathers around this project to improve
and extend it further.

3We did not attempt to use our best configuration with
other frameworks because they only partly support the settings,
e.g., they do not offer dropout or independent regularization
for entity and relation embeddings.

https://github.com/uma-pi1/kge
https://github.com/pykeen/pykeen
https://github.com/Accenture/AmpliGraph
https://github.com/thunlp/OpenKE
https://github.com/samehkamaleldin/libkge
https://github.com/DeepGraphLearning/graphvite
https://github.com/uma-pi1/kge
https://github.com/pykeen/pykeen
https://github.com/Accenture/AmpliGraph
https://github.com/thunlp/OpenKE
https://github.com/DeepGraphLearning/graphvite


171

References
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Lau-

rent Vermue, Mikhail Galkin, Sahand Sharifzadeh,
Asja Fischer, Volker Tresp, and Jens Lehmann. 2020.
Bringing light into the dark: A large-scale evaluation
of knowledge graph embedding models under a uni-
fied framework. arXiv preprint arXiv:2006.13365.

Stephan Baier, Yunpu Ma, and Volker Tresp. 2017. Im-
proving visual relationship detection using seman-
tic modeling of scene descriptions. In Proceedings
of the 16th International Semantic Web Conference
(ISWC).

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013. Pro-
ceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States, pages 2787–
2795.

Samuel Broscheit, Kiril Gashteovski, Yanjie Wang, and
Rainer Gemulla. 2020. Can we predict new facts
with open knowledge graph embeddings? A bench-
mark for open link prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2296–2308, Online. As-
sociation for Computational Linguistics.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
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B Logging

0 {
1 "entry_id":84d75bf2-c3fe-4c6f-ac5e-001e1edb85de,
2 "event":"job_created",
3 "folder":/home/USER/kge/local/experiments/20200705-215353-toy-complex-train,
4 "git_head":7fad132,
5 "hostname":USER-Workstation,
6 "job":"eval",
7 "job_id":683d00bf-520d-4919-937e-d9b634c11d2e,
8 "parent_job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
9 "timestamp":1593978837.304522,

10 "torch_version":1.5.0,
11 "username":"USER"
12 }{
13 "entry_id":418889f0-728b-486f-9977-48795f6ed5fa,
14 "event":"job_created",
15 "folder":/home/USER/kge/local/experiments/20200705-215353-toy-complex-train,
16 "git_head":7fad132,
17 "hostname":USER-Workstation,
18 "job":"train",
19 "job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
20 "timestamp":1593978837.4033182,
21 "torch_version":1.5.0,
22 "username":"USER"
23 }{
24 "avg_cost":1.06542689547832,
25 "avg_loss":1.0650610147438764,
26 "avg_penalties":{
27 complex.entity_embedder.L2_penalty:0.00031927969330354246,
28 complex.relation_embedder.L2_penalty:4.6601041140093004e-05
29 },
30 "avg_penalty":0.0003658807344436354,
31 "backward_time":0.0765678882598877,
32 "batches":20,
33 "entry_id":4b07adfa-3e2b-42f4-a994-2b4f02e1b3f4,
34 "epoch":1,
35 "epoch_time":1.161754846572876,
36 "event":"epoch_completed",
37 "forward_time":0.7509596347808838,
38 "job":"train",
39 "job_id":dc960211-9cbe-4ba1-ad62-7ffd41d2017e,
40 "lr":[ 0.2 ],
41 "optimizer_time":0.015013933181762695,
42 "other_time":0.2690012454986572,
43 "prepare_time":0.05021214485168457,
44 "scope":"epoch",
45 "size":1949,
46 "split":"train",
47 "timestamp":1593978838.5940151,
48 "type":"KvsAll"
49 }

Figure 5: Example for training logging output for one epoch. Evaluation logging output is too verbose to add
an example here. Please see https://github.com/uma-pi1/kge/blob/master/docs/examples/train_
and_valid_trace_after_one_epoch.yaml for an example for the output after one epoch of training and
evaluation.

https://github.com/uma-pi1/kge/blob/master/docs/examples/train_and_valid_trace_after_one_epoch.yaml
https://github.com/uma-pi1/kge/blob/master/docs/examples/train_and_valid_trace_after_one_epoch.yaml
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C Related projects
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