NeuSpell: A Neural Spelling Correction Toolkit

Sai Muralidhar Jayanthi, Danish Pruthi, Graham Neubig
Language Technologies Institute
Carnegie Mellon University
{sjayanth, ddanish, gneubig}@cs.cmu.edu

Abstract

We introduce NeuSpell, an open-source toolkit
for spelling correction in English. Our
toolkit comprises ten different models, and
benchmarks them on naturally occurring mis-
spellings from multiple sources. We find that
many systems do not adequately leverage the
context around the misspelt token. To remedy
this, (i) we train neural models using spelling
errors in context, synthetically constructed by
reverse engineering isolated misspellings; and
(ii) use contextual representations. By training
on our synthetic examples, correction rates im-
prove by 9% (absolute) compared to the case
when models are trained on randomly sampled
character perturbations. Using richer contex-
tual representations boosts the correction rate
by another 3%. Our toolkit enables practition-
ers to use our proposed and existing spelling
correction systems, both via a unified com-
mand line, as well as a web interface. Among
many potential applications, we demonstrate
the utility of our spell-checkers in combating
adversarial misspellings. The toolkit can be ac-
cessed at neuspell.github.io.'

1 Introduction

Spelling mistakes constitute the largest share of
errors in written text (Wilbur et al., 2006; Flor
and Futagi, 2012). Therefore, spell checkers are
ubiquitous, forming an integral part of many ap-
plications including search engines, productivity
and collaboration tools, messaging platforms, etc.
However, many well performing spelling correc-
tion systems are developed by corporations, trained
on massive proprietary user data. In contrast, many
freely available off-the-shelf correctors such as En-
chant (Thomas, 2010), GNU Aspell (Atkinson,
2019), and JamSpell (Ozinov, 2019), do not ef-
fectively use the context of the misspelled word.

!Code and pretrained models are available at:
https://github.com/neuspell/neuspell

158

Choose a spell checker SC-LSTM +ELMO(input) V\

sutit
\

they fought a deadly waer

they fought a deadly war

""" load spell checkers """
from neuspell import BertsclstmChecker, SclstmChecker
checker = SclstmChecker()
checker = checker.add_("elmo", at="input")
checker. from_pretrained("./data/checkpoints/elmoscrnn-probwordnoise")

"' spell correction """
checker.correct(["I luk foward to receving your reply"])

checker.correct_from_file(src="noisy_texts.txt")

"" evaluation of models """

checker.evaluate(clean_file="bea60k.txt", corrupt_file="bea60k.noise.txt")

"' fine-tuning on domain specific dataset """
checker. finetune(clean_file="clean.txt", corrupt_file="corrupt.txt")

Figure 1: Our toolkit’s web and command line inter-
face for spelling correction.

For instance, they fail to disambiguate thaught to
taught or thought based on the context: “Who
thaught you calculus?” versus “I never thaught I
would be awarded the fellowship.”

In this paper, we describe our spelling correction
toolkit, which comprises of several neural mod-
els that accurately capture context around the mis-
spellings. To train our neural spell correctors, we
first curate synthetic training data for spelling cor-
rection in context, using several text noising strate-
gies. These strategies use a lookup table for word-
level noising, and a context-based character-level
confusion dictionary for character-level noising. To
populate this lookup table and confusion matrix, we
harvest isolated misspelling-correction pairs from
various publicly available sources.

Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 158-164
November 16-20, 2020. (©)2020 Association for Computational Linguistics

neuspell.github.io
https://github.com/neuspell/neuspell

Further, we investigate effective ways to incor-
porate contextual information: we experiment with
contextual representations from pretrained models
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2018) and compare their efficacies with
existing neural architectural choices (§ 5.1).

Lastly, several recent studies have shown that
many state-of-the-art neural models developed for
a variety of Natural Language Processing (NLP)
tasks easily break in the presence of natural or syn-
thetic spelling errors (Belinkov and Bisk, 2017;
Ebrahimi et al., 2017; Pruthi et al., 2019). We
determine the usefulness of our toolkit as a counter-
measure against character-level adversarial attacks
(§ 5.2). We find that our models are better defenses
to adversarial attacks than previously proposed
spell checkers. We believe that our toolkit would
encourage practitioners to incorporate spelling cor-
rection systems in other NLP applications.

Correction Time per sentence

Model Rates (milliseconds)

ASPELL (Atkinson, 2019) 48.7 7.3*
JAMSPELL (Ozinov, 2019) 68.9 2.6*
CHAR-CNN-LSTM (Kim et al., 2015) 75.8 4.2
SC-LSTM (Sakaguchi et al., 2016) 76.7 2.8
CHAR-LSTM-LSTM (Li et al., 2018) 71.3 6.4
BERT (Devlin et al., 2018) 79.1 7.1
SC-LSTM

+ELMO (input) 79.8 15.8

+ELMO (output) 78.5 16.3

+BERT (input) 77.0 6.7

+BERT (output) 76.0 7.2

Table 1: Performance of different correctors in the

NeuSpell toolkit on the BEA-60K dataset with real-
world spelling mistakes. * indicates evaluation on a
CPU (for others we use a GeForce RTX 2080 Ti GPU).

2 Models in NeuSpell

Our toolkit offers ten different spelling correction
models, which include: (i) two off-the-shelf non-
neural models, (ii) four published neural models
for spelling correction, (iii) four of our extensions.
The details of first six systems are following:

o GNU Aspell (Atkinson, 2019): It uses a com-
bination of metaphone phonetic algorithm,?
Ispell’s near miss strategy,® and a weighted
edit distance metric to score candidate words.

e JamSpell (Ozinov, 2019): It uses a variant of
the SymSpell algorithm,* and a 3-gram lan-
guage model to prune word-level corrections.

Zhttp://aspell.net/metaphone/

3https://en.wikipedia.org/wiki/Ispell
*https://github.com/wolfgarbe/SymSpell

e SC-LSTM (Sakaguchi et al., 2016): It corrects
misspelt words using semi-character represen-
tations, fed through a bi-LSTM network. The
semi-character representations are a concate-
nation of one-hot embeddings for the (i) first,
(i1) last, and (iii) bag of internal characters.

e CHAR-LSTM-LSTM (Li et al.,, 2018): The
model builds word representations by passing
its individual characters to a bi-LSTM. These
representations are further fed to another bi-
LSTM trained to predict the correction.

e CHAR-CNN-LSTM (Kim et al., 2015): Similar
to the previous model, this model builds word-
level representations from individual charac-
ters using a convolutional network.

e BERT (Devlin et al., 2018): The model uses
a pre-trained transformer network. We aver-
age the sub-word representations to obtain the
word representations, which are further fed to
a classifier to predict its correction.

To better capture the context around a misspelt
token, we extend the SC-LSTM model by aug-
menting it with deep contextual representations
from pre-trained ELMo and BERT. Since the best
point to integrate such embeddings might vary by
task (Peters et al., 2018), we append them either
to semi-character embeddings before feeding them
to the biLSTM or to the biLSTM’s output. Cur-
rently, our toolkit provides four such trained mod-
els: ELMo/BERT tied at input/output with a semi-
character based bi-LSTM model.

Implementation Details Neural models in
NeuSpell are trained by posing spelling correction
as a sequence labeling task, where a correct
word is marked as itself and a misspelt token
is labeled as its correction. Out-of-vocabulary
labels are marked as UNK. For each word in the
input text sequence, models are trained to output
a probability distribution over a finite vocabulary
using a softmax layer.

We set the hidden size of the bi-LSTM network
in all models to 512 and use {50,100,100,100}
sized convolution filters with lengths {2,3,4,5} re-
spectively in CNNs. We use a dropout of 0.4 on
the bi-LSTM’s outputs and train the models using
cross-entropy loss. We use the BertAdam® opti-
mizer for models with a BERT component and the

3 github.com/cedrickchee/pytorch-pretrained-BERT

http://aspell.net/metaphone/
https://en.wikipedia.org/wiki/Ispell
https://github.com/wolfgarbe/SymSpell
https://github.com/cedrickchee/pytorch-pretrained-BERT/blob/master/pytorch_pretrained_bert/optimization.py

Adam (Kingma and Ba, 2014) optimizer for the
remainder. These optimizers are used with default
parameter settings. We use a batch size of 32 ex-
amples, and train with a patience of 3 epochs.

During inference, we first replace UNK predic-
tions with their corresponding input words and then
evaluate the results. We evaluate models for accu-
racy (percentage of correct words among all words)
and word correction rate (percentage of misspelt to-
kens corrected). We use AllenNLP® and Hugging-
face’ libraries to use ELMo and BERT respectively.
All neural models in our toolkit are implemented
using the Pytorch library (Paszke et al., 2017), and
are compatible to run on both CPU and GPU en-
vironments. Performance of different models are
presented in Table 1.

3 Synthetic Training Datasets

Due to scarcity of available parallel data for
spelling correction, we noise sentences to gener-
ate misspelt-correct sentence pairs. We use 1.6M
sentences from the one billion word benchmark
(Chelba et al., 2013) dataset as our clean corpus.
Using different noising strategies from existing lit-
erature, we noise ~20% of the tokens in the clean
corpus by injecting spelling mistakes in each sen-
tence. Below, we briefly describe these strategies.

RANDOM: Following Sakaguchi et al. (2016),
this noising strategy involves four character-level
operations: permute, delete, insert and replace. We
manipulate only the internal characters of a word.
The permute operation jumbles a pair of consecu-
tive characters, delete operation randomly deletes
one of the characters, insert operation randomly
inserts an alphabet and replace operation swaps a
character with a randomly selected alphabet. For
every word in the clean corpus, we select one of
the four operations with 0.1 probability each. We
do not modify words of length three or smaller.

WORD: Inspired from Belinkov and Bisk (2017),
we swap a word with its noised counterpart from a
pre-built lookup table. We collect 109K misspelt-
correct word pairs for 17K popular English words
from a variety of public sources.?

For every word in the clean corpus, we replace it
by a random misspelling (with a probability of 0.3)

Sallennlp.org/elmo

"huggingface.co/transformers/model_doc/bert.html

8https://en.wikipedia.org/, dcs.bbk.ac.uk, norvig.com, cor-
pus.mml.cam.ac.uk/efcamdat

160

sampled from all the misspellings associated with
that word in the lookup table. Words not present in
the lookup table are left as is.

PRrROB: Recently, Piktus et al. (2019) released a
corpus of 20M correct-misspelt word pairs, gener-
ated from logs of a search engine.® We use this cor-
pus to construct a character-level confusion dictio-
nary where the keys are (character, context) pairs
and the values are a list of potential character re-
placements with their frequencies. This dictionary
is subsequently used to sample character-level er-
rors in a given context. We use a context of 3
characters, and backoff to 2,1, and 0 characters.
Notably, due to the large number of unedited char-
acters in the corpus, the most probable replacement
will often be the same as the source character.

PROB+WORD: For this strategy, we simply con-
catenate the training data obtained from both
WORD and PROB strategies.

4 Evaluation Benchmarks

Natural misspellings in context Many publicly
available spell-checkers correctors evaluate on iso-
lated misspellings (Atkinson, 2019; Mitton; Norvig,
2016). Whereas, we evaluate our systems using
misspellings in context, by using publicly available
datasets for the task of Grammatical Error Correc-
tion (GEC). Since the GEC datasets are annotated
for various types of grammatical mistakes, we only
sample errors of SPELL type.

Among the GEC datasets in BEA-2019 shared
task!”, the Write & Improve (W&I) dataset along
with the LOCNESS dataset are a collection of texts
in English (mainly essays) written by language
learners with varying proficiency levels (Bryant
et al., 2019; Granger, 1998). The First Certificate
in English (FCE) dataset is another collection of
essays in English written by non-native learners tak-
ing a language assessment exam (Yannakoudakis
et al., 2011) and the Lang-8 dataset is a collection
of English texts from Lang-8 online language learn-
ing website (Mizumoto et al., 2011; Tajiri et al.,
2012). We combine data from these four sources
to create the BEA-60K test set with nearly 70K
spelling mistakes (6.8% of all tokens) in 63044
sentences.

The JHU FLuency-Extended GUG Corpus
(JFLEG) dataset (Napoles et al., 2017) is another

*https://github.com/facebookresearch/moe
0 www.cl.cam.ac.uk/research/nl/bea2019st/

https://allennlp.org/elmo
https://huggingface.co/transformers/model_doc/bert.html
https://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings/For_machines
https://www.dcs.bbk.ac.uk/~ROGER/corpora.html
http://norvig.com/ngrams/spell-errors.txt
https://corpus.mml.cam.ac.uk/efcamdat
https://corpus.mml.cam.ac.uk/efcamdat
https://github.com/facebookresearch/moe
https://www.cl.cam.ac.uk/research/nl/bea2019st/

Spelling correction systems in NeuSpell (Word-Level Accuracy / Correction Rate)

Synthetic Natural Ambiguous
WORD-TEST PROB-TEST BEA-60K JFLEG BEA-4660 BEA-322
ASPELL (Atkinson, 2019) 43.6/169 47.4/275 | 68.0/48.7 73.1/556 | 68.5/10.1 61.1/189
JAMSPELL (Ozinov, 2019) 90.6/55.6 935/68.5 | 97.2/689 983/745 98.5/72.9 96.7/52.3
CHAR-CNN-LSTM (Kim et al., 2015) 97.0/88.0 96.5/84.1 | 96.2/75.8 97.6/80.1 97.5/827 9457573
SC-LSTM (Sakaguchi et al., 2016) 97.6/90.5 96.6/84.8 | 96.0/76.7 97.6/81.1 97.3/86.6 94.9/65.9
CHAR-LSTM-LSTM (Li et al., 2018) 98.0/91.1 97.1/86.6 | 96.5/77.3 97.6/81.6 | 97.8/840 954/63.2
BERT (Devlin et al., 2018) 98.9/953 98.2/91.5 | 934/79.1 97.9/85.0 | 98.4/925 96.0/72.1
SC-LSTM
+ELMO (input) 98.5/94.0 97.6/89.1 | 96.5/79.8 97.8/85.0 | 98.2/91.9 96.1/69.7
+ELMO (output) 979/914 97.0/86.1 | 98.0/78.5 96.4/76.7 97.9/88.1 952/63.2
+BERT (input) 98.7/943 97.9/89.5 | 96.2/77.0 97.8/83.9 98.4/90.2 96.0/67.8
+BERT (output) 98.1/923 97.2/869 | 959/76.0 97.6/81.0 | 97.8/88.1 95.1/67.2

Table 2: Performance of different models in NeuSpell on natural, synthetic, and ambiguous test sets. All models

are trained using PROB+WORD noising strategy.

collection of essays written by English learners
with different first languages. This dataset con-
tains 2K spelling mistakes (6.1% of all tokens) in
1601 sentences. We use the BEA-60K and JFLEG
datasets only for the purposes of evaluation, and do
not use them in training process.

Synthetic misspellings in context From the two
noising strategies described in §3, we additionally
create two test sets: WORD-TEST and PROB-TEST.
Each of these test sets contain around 1.2M spelling
mistakes (19.5% of all tokens) in 273K sentences.

Ambiguous misspellings in context Besides
the natural and synthetic test sets, we create a chal-
lenge set of ambiguous spelling mistakes, which
require additional context to unambiguously cor-
rect them. For instance, the word whitch can be
corrected to “witch” or “which” depending upon
the context. Simliarly, for the word begger, both
“bigger” or “beggar” can be appropriate corrections.
To create this challenge set, we select all such mis-
spellings which are either 1-edit distance away
from two (or more) legitimate dictionary words,
or have the same phonetic encoding as two (or
more) dictionary words. Using these two criteria,
we sometimes end up with inflections of the same
word, hence we use a stemmer and lemmatizer
from the NLTK library to weed those out. Finally,
we manually prune down the list to 322 sentences,
with one ambiguous mistake per sentence. We refer
to this set as BEA-322.

We also create another larger test set where we ar-
tificially misspell two different words in sentences
to their common ambiguous misspelling. This pro-
cess results in a set with 4660 misspellings in 4660
sentences, and is thus referred as BEA-4660. No-
tably, for both these ambiguous test sets, a spelling

161

correction system that doesn’t use any context in-
formation can at best correct 50% of the mistakes.

5 Results and Discussion

5.1 Spelling Correction

We evaluate the 10 spelling correction systems in
NeuSpell across 6 different datasets (see Table 2).
Among the spelling correction systems, all the neu-
ral models in the toolkit are trained using synthetic
training dataset, using the PROB+WORD synthetic
data. We use the recommended configurations for
Aspell and Jamspell, but do not fine-tune them on
our synthetic dataset. In all our experiments, vo-
cabulary of neural models is restricted to the top
100K frequent words of the clean corpus.

We observe that although off-the-shelf checker
Jamspell leverages context, it is often inadequate.
We see that models comprising of deep contextual
representations consistently outperform other exist-
ing neural models for the spelling correction task.
We also note that the BERT model performs con-
sistently well across all our benchmarks. For the
ambiguous BEA-322 test set, we manually evalu-
ated corrections from Grammarly—a professional
paid service for assistive writing.!! We found that
our best model for this set, i.e. BERT, outperforms
corrections from Grammarly (72.1% vs 71.4%)
We attribute the success of our toolkit’s well per-
forming models to (i) better representations of the
context, from large pre-trained models; (ii) swap
invariant semi-character representations; and (iii)
training models with synthetic data consisting of
noise patterns from real-world misspellings. We
follow up these results with an ablation study to
understand the role of each noising strategy (Ta-

Retrieved on July 13, 2020 .

Sentiment Analysis (1-char attack / 2-char attack)

Defenses No Attack Swap Drop Add Key All

Word-Level Models

SC-LSTM (Pruthi et al., 2019) 79.3 78.6/78.5 69.1/653 65.0/592 69.6/656 63.2/524

SC-LSTM+ELMO(input) (F) 79.6 779/772 722/69.2 655/62.0 71.1/68.3 64.0/58.0
Char-Level Models

SC-LSTM (Pruthi et al., 2019) 70.3 65.8/629 583/542 54.0/44.2 58.8/524 51.6/39.8

SC-LSTM+ELMO(input) (F) 70.9 67.0/64.6 61.2/584 53.0/43.0 58.1/53.3 51.5/41.0
Word+Char Models

SC-LSTM (Pruthi et al., 2019) 80.1 79.0/787 69.5/657 64.0/59.0 66.0/62.0 61.5/56.5

SC-LSTM+ELMO(input) (F) 80.6 79.4/78.8 73.1/69.8 66.0/58.0 72.2/68.7 64.0/54.5

Table 3: We evaluate spelling correction systems in NeuSpell against adversarial misspellings.

ble 4).'2 For each of the 5 models evaluated, we
observe that models trained with PROB noise out-
perform those trained with WORD or RANDOM
noises. Across all the models, we further observe
that using PROB+WORD strategy improves correc-
tion rates by at least 10% in comparison to RAN-
DOM noising.

Spelling Correction (Word-Level Accuracy / Correction Rate)

Model Train Natural test sets
Noise BEA-60K JFLEG
CHAR-CNN-LSTM RANDOM 95.9/66.6 97.4/69.3
(Kim et al., 2015) WORD 95.9/70.2 97.4/74.5
PrROB 96.1/71.4 9747773
PROB+WORD 96.2/75.5 97.4/79.2
SC-LSTM RANDOM 96.1/64.2 97.4/66.2
(Sakaguchi et al., 2016) WORD 95.4/683 97.4/73.7
PRrROB 95.7/71.9 97.2/759
PROB+WORD 95.9/76.0 97.6/80.3
CHAR-LSTM-LSTM RANDOM 96.2/67.1 97.6/70.2
(Lietal., 2018) WORD 96.0/69.8 97.5/74.6
PrROB 96.3/73.5 97.4/78.2
PROB+WORD 96.3/76.4 97.5/80.2
BERT RANDOM 96.9/66.3 98.2/74.4
(Devlin et al., 2018) WORD 95.3/61.1 97.3/704
PrROB 96.2/73.8 97.8/80.5
PROB+WORD 96.1/77.1 97.8/82.4
SC-LSTM RANDOM 96.9/69.1 97.8/73.3
+ELMO (input) WORD 96.0/70.5 97.5/75.6
PROB 96.8/77.0 97.7/80.9
PROB+WORD 96.5/79.2 97.8/83.2

Table 4: Evaluation of models on the natural test sets
when trained using synthetic datasets curated using dif-
ferent noising strategies.

5.2 Defense against Adversarial Mispellings

Many recent studies have demonstrated the suscep-
tibility of neural models under word- and character-
level attacks (Alzantot et al., 2018; Belinkov and
Bisk, 2017; Piktus et al., 2019; Pruthi et al., 2019).
To combat adversarial misspellings, Pruthi et al.
(2019) find spell checkers to be a viable defense.

2To fairly compare across different noise types, in this
experiment we include only 50% of samples from each of
PROB and WORD noises to construct the PROB+WORD noise
set.

162

Therefore, we also evaluate spell checkers in our
toolkit against adversarial misspellings.

We follow the same experimental setup as Pruthi
et al. (2019) for the sentiment classification task
under different adversarial attacks. We finetune
SC-LSTM+ELMO(input) model on movie reviews
data from the Stanford Sentiment Treebank (SST)
(Socher et al., 2013), using the same noising strat-
egy as in (Pruthi et al., 2019). As we observe from
Table 3, our corrector from NeuSpell toolkit (SC-
LSTM+ELMO(input)(F)) outperforms the spelling
corrections models proposed in (Pruthi et al., 2019)
in most cases.

6 Conclusion

In this paper, we describe NeuSpell, a spelling
correction toolkit, comprising ten different mod-
els. Unlike popular open-source spell checkers,
our models accurately capture the context around
the misspelt words. We also supplement mod-
els in our toolkit with a unified command line,
and a web interface. The toolkit is open-sourced,
free for public use, and available at https://
github.com/neuspell/neuspell. A demo of the
trained spelling correction models can be accessed
at https://neuspell.github.io/.

Acknowledgements

The authors thank Punit Singh Koura for insight-
ful discussions and participation during the initial
phase of the project.

References

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

https://github.com/neuspell/neuspell
https://github.com/neuspell/neuspell
https://neuspell.github.io/
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316

pages 2890-2896, Brussels, Belgium. Association
for Computational Linguistics.

Kevin Atkinson. 2019. Gnu aspell.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion.

Christopher Bryant, Mariano Felice, @istein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52-75, Florence, Italy. Association for Com-
putational Linguistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2017. Hotflip: White-box adversarial exam-
ples for text classification.

Michael Flor and Yoko Futagi. 2012. On using context
for automatic correction of non-word misspellings
in student essays. In Proceedings of the Seventh
Workshop on Building Educational Applications Us-
ing NLP, pages 105-115, Montréal, Canada. Associ-
ation for Computational Linguistics.

Sylviane Granger. 1998. The computerized learner cor-
pus: a versatile new source of data for sla research.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2015. Character-aware neural lan-
guage models.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Hao Li, Yang Wang, Xinyu Liu, Zhichao Sheng, and
Si Wei. 2018. Spelling error correction using a
nested rnn model and pseudo training data.

Roger Mitton. Corpora of misspellings.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of 5th International Joint Con-
ference on Natural Language Processing, pages
147-155, Chiang Mai, Thailand. Asian Federation
of Natural Language Processing.

Courtney Napoles, Keisuke Sakaguchi, and Joel
Tetreault. 2017. JFLEG: A fluency corpus and
benchmark for grammatical error correction. In Pro-
ceedings of the 15th Conference of the European

163

Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, pages 229-234,
Valencia, Spain. Association for Computational Lin-
guistics.

Peter Norvig. 2016. Spelling correction system.
Filipp Ozinov. 2019. Jamspell.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers).

Aleksandra Piktus, Necati Bora Edizel, Piotr Bo-
janowski, Edouard Grave, Rui Ferreira, and Fabrizio
Silvestri. 2019. Misspelling oblivious word embed-
dings. Proceedings of the 2019 Conference of the
North.

Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lip-
ton. 2019. Combating adversarial misspellings with
robust word recognition. Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics.

Keisuke Sakaguchi, Kevin Duh, Matt Post, and Ben-
jamin Van Durme. 2016. Robsut wrod reocginiton
via semi-character recurrent neural network.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction
for ESL learners using global context. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 198-202, Jeju Island, Korea. Associa-
tion for Computational Linguistics.

Reuben Thomas. 2010. Enchant.

W. John Wilbur, Won Kim, and Natalie Xie. 2006.
Spelling correction in the pubmed search engine. Inf.
Retr., 9(5):543-564.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational

http://aspell.net/
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
http://arxiv.org/abs/1711.02173
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1712.06751
https://www.aclweb.org/anthology/W12-2012
https://www.aclweb.org/anthology/W12-2012
https://www.aclweb.org/anthology/W12-2012
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1811.00238
http://arxiv.org/abs/1811.00238
https://norvig.com/spell-correct.html
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/I11-1017
https://www.aclweb.org/anthology/E17-2037
https://www.aclweb.org/anthology/E17-2037
https://norvig.com/spell-correct.html
https://github.com/bakwc/JamSpell
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n18-1202
https://doi.org/10.18653/v1/n19-1326
https://doi.org/10.18653/v1/n19-1326
https://doi.org/10.18653/v1/p19-1561
https://doi.org/10.18653/v1/p19-1561
http://arxiv.org/abs/1608.02214
http://arxiv.org/abs/1608.02214
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/P12-2039
https://www.aclweb.org/anthology/P12-2039
https://www.abisource.com/projects/enchant/
https://doi.org/10.1007/s10791-006-9002-8
https://www.aclweb.org/anthology/P11-1019
https://www.aclweb.org/anthology/P11-1019

Linguistics: Human Language Technologies, pages
180-189, Portland, Oregon, USA. Association for
Computational Linguistics.

164

