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Abstract

High-quality and large-scale data are key to
success for Al systems. However, large-scale
data annotation efforts are often confronted
with a set of common challenges: (1) design-
ing a user-friendly annotation interface; (2)
training enough annotators efficiently; and (3)
reproducibility. To address these problems,
we introduce CROWDAQ,! an open-source
platform that standardizes the data collection
pipeline with customizable user-interface com-
ponents, automated annotator qualification,
and saved pipelines in a re-usable format. We
show that CROWDAQ simplifies data annota-
tion significantly on a diverse set of data col-
lection use cases and we hope it will be a con-
venient tool for the community.

1 Introduction

Data is the foundation of training and evaluating Al
systems. Efficient data collection is thus important
for advancing research and building time-sensitive
applications.”> Data collection projects typically
require many annotators working independently to
achieve sufficient scale, either in dataset size or
collection time. To work with multiple annotators,
data requesters (i.e., Al researchers and engineers)
usually need to design a user-friendly annotation
interface and a quality control mechanism. How-
ever, this involves a lot of overhead: we often spend
most of the time resolving frontend bugs and man-
ually checking or communicating with individual
annotators to filter out those who are unqualified,
instead of focusing on core research questions.

Another issue that has recently gained more at-
tention is reproducibility. Dodge et al. (2019) and
Pineau (2020) provide suggestions for system re-
producibility, and Bender and Friedman (2018) and

! Crowdsourcing with Automated Qualifcation; https:
//www.crowdaq.com/

2This holds not only for collecting static data annotations,
but also for collecting human judgments of system outputs.

Gebru et al. (2018) propose “data statements” and
“datasheets for datasets” for data collection repro-
ducibility. However, due to irreproducible human
interventions in training and selecting annotators
and the potential difficulty in replicating the an-
notation interfaces, it is often difficult to reuse or
extend an existing data collection project.

We introduce CROWDAQ, an open-source data
annotation platform for NLP research designed to
minimize overhead and improve reproducibility. It
has the following contributions. First, CROWDAQ
standardizes the design of data collection pipelines,
and separates that from software implementation.
This standardization allows requesters to design
data collection pipelines declaratively without be-
ing worried about many engineering details, which
is key to solving the aforementioned problems
(Sec. 2).

Second, CROWDAQ automates qualification con-
trol via multiple-choice exams. We also provide
detailed reports on these exams so that requesters
know how well annotators are doing and can adjust
bad exam questions if needed (Sec. 2).

Third, CROWDAQ carefully defines a suite of
pre-built UI components that one can use to com-
pose complex annotation user-interfaces (Uls) for
a wide variety of NLP tasks without expertise in
HTML/CSS/JavaScript (Sec. 3). For non-experts
on frontend design, CROWDAQ can greatly improve
efficiency in developing these projects.

Fourth, a dataset collected via CROWDAQ can
be more easily reproduced or extended by future
data requesters, because they can simply copy
the pipeline and pay for additional annotations, or
treat existing pipeline as a starting point for new
projects.

In addition, CROWDAQ has also integrated many
useful features: requesters can conveniently mon-
itor the progress of annotation jobs, whether they
are paying annotators fairly, and the agreement
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level of different annotators on CROWDAQ. Finally,
Sec. 4 shows how to use CROWDAQ and Amazon
Mechanical Turk (MTurk)? to collect data for an
example project. More use cases can be found in
our documentation.

2 Standardized Data Collection Pipeline

A data collection project with multiple annotators
generally includes some or all of the following: (1)
Task definition, which describes what should be
annotated. (2) Examples, which enhances annota-
tors’ understanding of the task. (3) Qualification,
which tests annotators’ understanding of the task
and only those qualified can continue; this step is
very important for reducing unqualified annotators.
(4) Main annotation process, where qualified an-
notators work on the task. CROWDAQ provides
easy-to-use functionality for each of these com-
ponents of the data collection pipeline, which we
expand next.

INSTRUCTION A Markdown document that de-
fines a task and instructs annotators how to com-
plete the task. It supports various formatting op-
tions, including images and videos.

TUTORIAL Additional training material pro-
vided in the form of multiple-choice questions
with provided answers that workers can use to
gauge their understanding of the INSTRUCTION.
CROWDAQ received many messages from real an-
notators saying that TUTORIALS are quite helpful
for learning tasks.

ExXAM A collection of multiple-choice questions
similar to TUTORIAL, but for which answers are
not provided to participants. EXAM is used to test
whether an annotator understands the instructions
sufficiently to provide useful annotations. Partic-
ipants will only have a finite number of opportu-
nities specified by the requesters to work on an
ExAM, and each time they will see a random sub-
set of all the exam questions. After finishing an
EXAM, participants are informed of how many
mistakes they have made and whether they have
passed, but they do not receive feedback on individ-
ual questions. Therefore, data requesters should try
to design better INSTRUCTIONS and TUTORIALS
instead of using EXAM to teach annotators.

We restrict TUTORIALS and EXAMS to always
be in a multiple-choice format, irrespective of the

*https://www.mturk.com/
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original task format, because it is natural for hu-
mans to learn and to be tested in a discriminative
setting.* An important benefit of using multiple-
choice questions is that their evaluation can be au-
tomated easily, minimizing the effort a requester
spends on manual inspections. Another convenient
feature of CROWDAQ is that it displays useful statis-
tics to requesters, such as the distribution of scores
in each exam and which questions annotators often
make mistakes on, which can highlight areas of
improvement in the INSTRUCTION and TUTORIAL.
Below is the JSON syntax to specify TUTORIAL-
S/EXAMS (see Fig. 3 and Fig. 4 in the appendix).

[

"question_set":
{
"type": "multiple-choice",
"question_id": ..
"context": [{
"type": "text",
"text": "As of Tuesday, 144 of the state’s
then-294 deaths involved nursing
homes or longterm care facilities."

.

I
"question": {
"question_text": "In \"294 deaths\", what
should you label as the quantity?",
"options": {"A": "294", "B": "294 deaths"}
by
"answer": "A",
"explanation":
"A":
ngn,

{

"Correct",

"In our definition,
should be \"294\"."

the quantity

TASK For example, if we are doing sentence-
level sentiment analysis, then a TASK is to dis-
play a specific sentence and require the annotator
to provide a label for its sentiment. A collection
of TASKS are bundled into a TASK SET that we
can launch as a group. Unlike TUTORIALS and
ExAMS where we only need to handle multiple-
choice questions in CROWDAQ’s implementation,
a major challenge for TASK is how to meet differ-
ent requirements for annotation UI from different
datasets in a single framework, which we discuss
next.

3 Customizable Annotation Interface

It is time-consuming for non-experts on the fron-
tend to design annotation Uls for various datasets.
At present, requesters can only reuse the Uls of
very similar tasks and still, they often need to
make modifications with additional tests and debug-
ging. CROWDAQ comes with a variety of built-in

“E.g., we can always test one’s understanding of a concept
by multiple-choice questions like Do you think something is
correct? or Choose the correct option(s) from below.


https://www.mturk.com/

resources for easily creating Uls, which we will
explain using an example dataset collection project
centered around confirmed COVID-19 cases and
deaths mentioned in news snippets.

3.1 Concepts

The design of CROWDAQ’s annotation Ul is built
on some key concepts. First, every TASK is asso-
ciated with context s—a list of objects of any
type: text, html, image, audio, or video.
It will be visible to the annotators during the en-
tire annotation process before moving to the next
TASK, so a requester can use contexts to show
any useful information to the annotators. Below
is an example of showing notes and a target news
snippet (see Fig. 5 in the appendix for visualiza-
tion). CROWDAQ is integrated with online editors
that can auto-complete, give error messages, and
quickly preview any changes.

"contexts": [

{

"label": "Note",
"type": "html",
"html": "<p>Remember to ...</p>",
"id": "note"
by
{
"type": "text",
"label": "The snippet was from an article

published on 2020-05-20 10:30:00",
"text": "As of Tuesday, 144 of the state’s
then-294 deaths involved nursing homes
or longterm care facilities.",
"id": "snippet"
}
i

Second, each TASK may have multiple
annotations. Although the number of dataset
formats can be arbitrary, we observe that the most
basic formats fall into the following categories:
multiple-choice, span selection, and free text gener-
ation. For instance, to emulate the data collection
process used for the CoNLL-2003 shared task on
named entity recognition (Tjong Kim Sang and
De Meulder, 2003), one could use a combination
of a span selection (for selecting a named entity)
and a multiple-choice question (selecting whether it
is a person, location, etc.); for the process used for
natural language inference in SNLI (Bowman et al.,
2015), one could use an input box (for writing a hy-
pothesis) and a multiple-choice question (for select-
ing whether the hypothesis entails or contradicts
the premise); for reading comprehension tasks in
the question-answering (QA) format, one could use
an input box (for writing a question) and a multiple-
choice question (for yes/no answers; Clark et al.
(2019)), a span selection (for span-based answers;
Rajpurkar et al. (2016)), or another input box (for

free text answers; Kocisky et al. (2018)).

These annotation types are built in
CROWDAQ,> which requesters can easily use to
compose complex Uls. For our example project,
we would like the annotator to select a quantity
from the “snippet” object in the contexts, and
then tell us whether it is relevant to COVID-19
(see below for how to build it and Fig. 6 in the
appendix for visualization).

"annotations": [
{
"type": "span—-from-text",
"from_context": "snippet"
"prompt": "Select one quantity from below."
"id": "quantity",

"type": "multiple-choice"
"prompt": "Is this quantity related to
COVID-19?",
"options":{
"A": "Relevant"
"B": "Not relevant"
}

"id": "relevance"

Third, a collection of annotations can form
an annotation group and a TASK can have
multiple of them. For complex TASKS, this
kind of semantic hierarchy can provide a big
picture for both the requesters and annotators.
We are also able to provide very useful features
for annotation groups. For example, we
can put the annotations object above into an
annotation group, and require 1-3 responses
in this group. Below is its syntax, and Fig. 7 in the
appendix shows the result.

"annotation_groups": [

{

"annotations": [
{"id": "quantity", ...},
{"id": "relevance", ...}
1y
"id": "quantity_extraction_typing"
"title": "COVID-19 Quantities",
"repeated": true, "min": 1, "max": 3
}
1,
3.2 Conditions
Requesters often need to collect some

annotations only when certain conditions
are satisfied. For instance, only if a quantity is
related to COVID-19 will we continue to ask the
type of it. These conditions are important
because by construction, annotators will not make
mistakes such as answering a question that should
not be enabled at all.

As a natural choice, CROWDAQ has imple-
mented conditions that take as input val-

SFor a complete list, please refer to our documentation.
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ues of multiple-choice annotations. The
field conditions can be applied to any
annotation, which will be enabled only when
the conditions are satisfied. Below we add a
multiple-choice question asking for the type of a
quantity only if the annotator has chosen option “A:
Relevant” in the question whose ID is “relevance”
(see Fig. 8 in the appendix).

"annotations": [
{"id": "quantity", ...},
{"id": "relevance", ...},
{
"id": "typing"
"type": "multiple-choice",
"prompt": "What type is it?",
"options":{
"A": "Number of Deaths",
"B": "Number of confirmed cases",
"C": "Number of hospitalized",

by
"conditions": [

{

"id": "relevance",
"op": "eq",
"yaluem: "AM

}
1,

CROWDAQ actually supports any boolean logic
composed by “AND,” “OR,” and “NOT.” Below is
an example of =(Q1 = AV Q2 = B).

"conditions": [
{
"op™: "not"™, "arg": {
"op": "or", "args":[
("id": "Ql","op": "eqg","value": "A"},
{("id": "Q2","op": "eq","value": "B"}

]
}
}
]

3.3 Constraints

An important quality control mechanism is to im-
plement constraints for an annotator’s work such
that only if the constraints are satisfied will the
annotator be able to submit the instance (and get
paid). An implicit constraint in CROWDAQ is that
all annotations should be finished except for
those explicitly specified as “optional.”

For things that are repeated, CROWDAQ allows
the requester to specify the min/max number of
repetitions. This corresponds to scenarios where,
for instance, we know there is at least 1 quantity
(min=1) in a news snippet or we want to have ex-
actly two named entities selected for relation extrac-
tion (min=max=2). We have already shown usages
of this when introducing annotation group,
but the same also applies to text span selectors.

CROWDAQ also allows requesters to specify a
regular expression constraint. For instance, in our
COVID-19 example, when the annotator selects a

text span as a quantity, we want to make sure that
the span selection does not violate some obvious
rules. To achieve this, we define constraints
as a list of requirements and all of them must be
satisfied; if any one of them is violated, the annota-
tor will receive an error message specified by the
description field and also not able to submit
the work.

In addition, users can specify their own con-
straint functions via an API. Please refer to our
documentation for more details.

"annotations": [
{
"id": "quantity"

ey
"constraints": [
{

"description": "The quantity should
only start with digits or
letters.",

"regex": ""[\\w\\d].x$",

"type": "regex"

"description": "The quantity should
only end with digits, letters, or

"regex": " .« [\\w\\d%]$"
"type": "regex"

"description": "The length of your
selection should be within 1 and
30.m,

"regex": "°.{1,30}5",

"type": "regex"

3.4 Extensibility

As we cannot anticipate every possible Ul require-
ment, we have designed CROWDAQ to be extensi-
ble. In addition to a suite of built-in annotation
types, conditions, and constraints, users
can write their own components and contribute to
CROWDAQ easily. All these components are sep-
arate Vue.js® components and one only needs to
follow some input/output specifications to extend
CROWDAQ.

4 Usage

We have already deployed CROWDAQ at https:
/ /www.crowdaq.com With load balancing, backend
cluster, relational database, failure recovery, and
user authentication. Data requesters can simply
register and enjoy the convenience it provides. For
users who need to deploy CROWDAQ, we provide
a Docker compose configuration so that they can
bring up a cluster with all the features with one

*https://vuejs.org/
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Figure 1: Data collection using CROWDAQ and MTurk. Note that this is a general workflow and one can use only
part of it, or use it to build even more advanced workflows.

single command. Users will need to have their own
domain name and HTTPS certificate in that case in
order to use CROWDAQ with MTurk.

Figure 1 shows how a requester collects data
using CROWDAQ and MTurk. The steps are: (1)
identify the requirements of an application and find
the raw data that one wants to annotate; (2) design
the data collection pipeline using the built-in edi-
tors on CROWDAQ’s website, including the Mark-
down INSTRUCTION, TUTORIAL, EXAM, and IN-
TERFACE; (3) launch the EXAM and TASK SET
onto MTurk and get crowd annotators to work
on them; (4) if the quality and size of the data
have reached one’s requirement, publish the dataset.
We have color-coded those components in Fig. 1
to show the responsibilities of the data requester,
CROWDAQ, MTurk, and future requesters who
want to reproduce or extend this dataset. We can
see that CROWDAQ significantly reduces the effort
a data requester needs to put in implementing all
those features.

We have described how to write INSTRUCTIONS,
TUTORIALS, and EXAMS (Sec. 2) and how to de-
sign the annotation UI (Sec. 3). Suppose we have
provided 20 EXAM questions for the COVID-19
project. Before launching the EXAM, we need to
configure the sample size of the EXAM, the passing
score, and total number of chances (e.g., every time
a participant will see a random subset of 10 ques-
tions, and to pass it, one must get a score higher

than 80% within 3 chances). This can be done us-
ing the web interface of CROWDAQ (see Fig. 10 in
the appendix).

It is also very easy to launch the EXAM to MTurk.
CROWDAQ comes with a client package that one
can run from a local computer (Fig. 11 in the ap-
pendix). The backend of CROWDAQ will do the
job management, assign qualifications, and provide
some handy analysis of how well participants are
doing on the exam, including the score distribu-
tion of participants and analysis on each individual
questions (Fig. 12).

The semantic difference between EXAMS and
TASK SETS is handled by the backend of
CROWDAQ. From MTurk’s perspective, EXAMS
and TASK SETS are both EXTERNALQUESTIONS.
Therefore, the same client package shown in Fig. 11
can also be used to launch a TASK SET to MTurk.
CROWDAQ’s backend will receive the annotations
submitted by crowd workers; the website will show
the annotation progress and average time spent on
each TASK, and also provide quick preview of each
individual annotations. If the data requester finds
that the quality of annotations is not acceptable, the
requester can go back and polish the design.

When data collection is finished, the requester
can download the annotation pipeline and list of
annotators from CROWDAQ, and get information
about the process such as the average time spent

"EXTERNALQUESTION is a type of HITs on MTurk.
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by workers on the task (and thus their average pay
rate). Future requesters can then use the pipeline as
the starting point for their projects, if desired, e.g.,
using the same EXAM, to get similarly-qualified
workers on their follow-up project.

Although Fig. 1 shows a complete pipeline of
using CROWDAQ and MTurk, CROWDAQ is im-
plemented in such a way that data requesters have
the flexibility to use only part of it. For instance,
one can only use INSTRUCTION to host and render
Markdown files, only use EXAM to test annotators,
or only use TASK SET to quickly build annota-
tion Uls. One can also create even more advanced
workflows, e.g., using multiple EXAMS and filter-
ing annotators sequentially (e.g., Gated Instruction;
Liu et al., 2016), creating a second TASK SET to
validate previous annotations, or splitting a sin-
gle target dataset into multiple components, each
of which has its own EXAM and TASK SET. In
addition, data collection with in-house annotators
can be done on CROWDAQ directly, instead of via
MTurk. For instance, data requesters can conve-
niently create a contrast set (Gardner et al., 2020)
on CROWDAQ by themselves.

We have put more use cases into the appendix, in-
cluding DROP (Dua et al., 2019), MATRES (Ning
et al., 2018), TORQUE (Ning et al., 2020), VQA-E
(Li et al., 2018), and two ongoing projects.

5 Related Work

Crowdsourcing Platforms The most commonly
used platform at present is MTurk, and the features
CROWDAQ provides are overall complementary to
it. CROWDAQ provides integration with MTurk, but
it also allows for in-house annotators and any plat-
form that provides crowdsourcing service. Other
crowdsourcing platforms, e.g., CrowdFlower/Fig-
ureEight,8 Hive,’ and Labelbox,'? also have auto-
mated qualification control as CROWDAQ, but they
do not separate the format of an exam from the for-
mat of a main task; therefore it is impossible to use
its built-in qualification control for non-multiple-
choice tasks like question-answering. In addition,
CROWDAQ provides huge flexibility in annotation
Uls as compared to these platforms. Last but not
least, CROWDAQ is open-source and can be used,
contributed to, extended, and deployed freely.

$https://www.figure—eight.com/
‘https://thehive.ai/
“https://labelbox.com/

Customizable UI To the best of our knowledge,
existing works on customizable annotation Ul e.g.,
MMAX2!! (Miiller and Strube, 2006), PALinkA
(Orasan, 2003), and BRAT!? (Stenetorp et al.,
2012), were mainly designed for in-house anno-
tators on classic NLP tasks, and their adaptability
and extensibility are limited.

AMTI is a command line interface for interact-
ing with MTurk,'® while CROWDAQ is a website
providing one-stop solution including instructions,
qualification tests, customizable interfaces, and job
management on MTurk. AMTI also addresses the
reproducibility issue by allowing HIT definitions
to be tracked in version control, while CROWDAQ
addresses by standardizing the workflow and auto-
mated qualification control.

Sprout by Bragg and Weld (2018) is a meta-
framework similar to the proposed workflow. They
focus on teaching crowd workers, while CROWDAQ
spends most of engineering effort to allow re-
questers specify the workflow declaratively without
being a frontend or backend expert.

6 Conclusion

Efficient data collection at scale is important for
advancing research and building applications in
NLP. Existing workflows typically require multiple
annotators, which introduces overhead in building
annotation Uls and training and filtering annota-
tors. CROWDAQ is an open-source online platform
aimed to reduce this overhead and improve repro-
ducibility via customizable UI components, auto-
mated qualification control, and easy-to-reproduce
pipelines. The rapid modeling improvements seen
in the last few years need a commensurate improve-
ment in our data collection processes, and we be-
lieve that CROWDAQ is well-situated to aid in easy,
reproducible data collection research.
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