
Proceedings of the Workshop on Natural Language Processing in E-Commerce (EComNLP), pages 66–75
Barcelona, Spain (Online), Dec 12, 2020.

66

BERT-based similarity learning for product matching

Janusz Tracz1, Piotr Wójcik1, Kalina Jasinska-Kobus1, 2,
Riccardo Belluzzo1, Robert Mroczkowski1, Ireneusz Gawlik1, 3

1 ML Research at Allegro.pl
2 Poznan University of Technology

3 AGH University of Science and Technology
{janusz.tracz,piotr.wojcik,kalina.kobus,riccardo.belluzzo,

robert.mroczkowski,ireneusz.gawlik}@allegro.pl

Abstract

Product matching, i.e., being able to infer the product being sold for a merchant-created offer, is
crucial for any e-commerce marketplace, enabling product-based navigation, price comparisons,
product reviews, etc. This problem proves a challenging task, mostly due to the extent of product
catalog, data heterogeneity, missing product representants, and varying levels of data quality.
Moreover, new products are being introduced every day, making it difficult to cast the problem
as a classification task.

In this work, we apply BERT-based models in a similarity learning setup to solve the product
matching problem. We provide a thorough ablation study, showing the impact of architecture and
training objective choices. Application of transformer-based architectures and proper sampling
techniques significantly boosts performance for a range of e-commerce domains, allowing for
production deployment.

1 Introduction

With more and more retailers moving their business online the number of items available on e-commerce
marketplaces, such as Amazon, Alibaba or Allegro.pl, grows exponentially. In an environment with
hundreds of millions of items listed for sale every day, providing a satisfactory search and purchase
experience brings many challenges.

One such huge challenge for e-commerce portals is introducing product-based experience, both for the
buyers and for the merchants. From the buyer’s perspective, this means facilitating the search process
by grouping offers that refer to the same real-world product while being sold by different merchants.
Merchants, on the other hand, benefit by having access to a high-quality product catalog, which allows
them to speed up the listing process and provide the buyers with more complete product descriptions.
Achieving product-based experience in any e-commerce portal is only made possible by being able to
automatically find offers of the same product. This process is often called product matching. Product
matching in e-commerce is a non-trivial task mostly because of the large number of products, their high
heterogeneity, missing product representants, and varying levels of data quality. For a more detailed
overview of challenges that make product matching hard, we refer the reader to (Shah et al., 2018).

Classical approaches to product matching and its generalization (entity matching) often rely on rule-
based methods and hand-crafted features such as string similarity measures (Thor, 2010; Köpcke et al.,
2010; Konda et al., 2016; Brunner and Stockinger, 2019). Recent advances of deep learning in natural
language processing (NLP) sparked increasing interest in end-to-end deep learning approaches both for
entity matching (Brunner and Stockinger, 2020; Li et al., 2020b) and product matching (Shah et al.,
2018; Ristoski et al., 2018; Li et al., 2020a). Here, we follow this trend and present our experiences
with leveraging transformer-based neural language models (Vaswani et al., 2017) combined with the
similarity learning setup for product matching. While transformer architectures have been very recently
applied to entity matching (Brunner and Stockinger, 2020), to the best of our knowledge, we are the first

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



67

to apply them specifically for the product matching problem in e-commerce. Aside from architectural
choices, we show that sampling techniques tailored to the product matching domain prove to be crucial
in the progress of similarity learning.

The contributions of our paper are as follows:

• we apply state-of-the-art BERT-based models (Devlin et al., 2019) in the similarity learning setup
to solve the product matching task in the e-commerce domain,

• we compare the usefulness of modern BERT-based architectures such as BERT and
DistilBERT (Sanh et al., 2019) for the product matching task,

• we propose category hard batch construction strategy, which proves to increase the fraction of active
training triplets and the performance of the final model,

• we adopt and evaluate different batch construction strategies in the similarity learning setup for
solving product matching.

This work is organized as follows. Section 2 introduces the product matching problem. Section 3
describes our approach. In Section 4 we present the experiments and results. Section 5 briefly reviews
the related work on product matching. Finally, we discuss the challenges and conclude our work in
Section 6.

2 Product matching

Product matching aims at identifying offers of the same product across many merchants selling it in an
e-commerce portal and integrating the information into a single entry in a product catalog. An offer is
an instance of a specific good described by vendor-provided information. This information may include
but is not limited to, title, its text description, attributes, category, and photos. A product represents a
manufacturer’s description of a good and is described similarly. At a typical e-commerce marketplace,
one may find many offers of the same product. Also, not all products need to have offer representatives
(e.g. legacy or yet unmatched products).

Recent papers mostly focus on using only the information contained in the titles or using both titles
and attributes (Li et al., 2020a). In this work, in addition to using the title and attributes information, we
also make use of the category, i.e., an identifier of a set of goods of the same type.

2.1 Generalized zero-shot multi-class classification
Production use of a product matching system requires that the system is able to operate correctly for
yet unrepresented products. As products are being introduced, the product matching system should be
capable to handle new instances.

Motivated by this requirement, we formalize the product-matching problem as generalized zero-shot
multi-class classification following the definition in (Li et al., 2019). Let O denote the set of offers,
and P = Ps ∪ Pu the set of products consisting of two non-overlapping sets of seen products Ps and
unseen products Pu. Suppose we have three sets of data D = {Ds,Du,Da}, where Ds, Du and Da are
training, test and semantic description sets, respectively. The training and test sets consist of matching
offer-product pairs, i.e.,Ds = {(o, p) : o ∈ O, p ∈ Ps} andDu = {(o, p) : o ∈ O, p ∈ P}. The aim is to
learn transferable knowledge from Ds to be able to predict matching products for offers present in pairs
from Du additionally making use of the semantic descriptions of offers and products Da = {O,P}.

Importantly, as this is a generalized zero-shot classification problem, not all products are observed in
available training data. To be able to classify offers to products not observed during training, not only
offers but also product classes need some representation.

Since the above definition of product matching is general and representation-agnostic, here we also
formalize the specific settings of the product matching problem we solve in this work. We define each
offer o ∈ O and each product p ∈ P as triples (t, a, c), where t is the title, a is the set of attributes and
c ∈ C is the category. The set of attributes a contains triples (aname, avalues, aunit), where aname is the



68

attribute name, avalues is a set of one or more values and aunit is an optional unit. Titles of products
or offers t, attribute names aname, attribute values avalues and attribute units aunit are strings possibly
containing multiple words.

Given an offer o = (to, ao, co) the problem we tackle in this work is to find its matching product
p ∈ P . In the classic product matching problem P = P . Here, we consider a variant of this problem,
where P = {p = (tp, ap, cp) : p ∈ P, co = cp}, i.e., we only look for the matching product in a set of
products that belong to the same category as the offer.

3 Product matching with similarity learning

In this work, we interpret the product matching problem as a similarity learning task. This approach
allows us to cast product matching problem as a zero-shot learning problem, in result avoiding re-training
the model on the introduction of new products or product categories.

3.1 Triplet loss objective
To solve the product matching problem with triplet loss (Hoffer and Ailon, 2015), we introduce a notion
of similarity between offers and products, defined as proximity of their representations in some em-
bedding space. Each training example is defined as a triplet (o, p+, p−), denoting an offer (anchor), a
matching product (positive) and a non-matching product (negative). Given encoders Eθ : O → RN and
Eφ : P → RN , both transforming respective entities to vector representations in some embedding space
(Section 3.3), and distance measure d (in our case the cosine distance), we adjust network parameters θ
and φ to minimise the triplet loss objective:

L(o, p+, p−) = max(0,m+ d(Eθ(o), Eφ(p+))− d(Eθ(o), Eφ(p−))),

where margin m is a hyperparameter. In this work we tie parameters of Eθ and Eφ, employing a single
instance of the encoder for both of them.

One shortcoming of the standard triplet loss objective is that majority of possible triplets prove trivial.
To ensure that loss values do not vanish after the initial phase of training, a proper batch construction
strategy is essential. Properly selected active (non-zero loss) triplets let one effectively evaluate and
optimise the specified loss function (Section 3.4). The batch construction strategy will be an object of
the ablation study.

3.2 Textual representation
The representation of each offer and product is a concatenated title, attributes values, and units, which is
then lower-cased and pass into a fast byte-pair encoder (Sennrich et al., 2016). We also tested including
descriptions and attributes names in the representation, but in all of our experiments, they deteriorate the
model performance. We fit the tokenizer on our domain offer and product corpora with a vocabulary size
of 30k tokens.

3.3 Encoder architectures
It is important in the similarity learning setting to properly choose the encoder architecture. Our main
focus is the transformer (Vaswani et al., 2017) based encoders, which recently gained a lot of attention
due to achieving state-of-the-art results on Natural Language Understanding benchmarks (Wang et al.,
2018; Rybak et al., 2020). Our BERT usage as an encoder is inspired by (Reimers and Gurevych, 2019).
We use a bag of words (BOW) embeddings model based on StarSpace (Wu et al., 2017b) as a simple
baselines. The attention mechanism used in the transformer allows the model to learn the context and
importance of words in an entity, whereas, in BOW embeddings, all of the words are treated equally
and independently. Transformer architectures also allow the model to track the position of the words in a
sequence, which we find beneficial in product matching task. To leverage our non-annotated data, we use
the masked language model (MLM) pretraining objective described originally in the BERT paper (Devlin
et al., 2019), but follow the improved training procedure from (Liu et al., 2019). We also explore scaling
down the number of parameters with both the number of layers reduction and the knowledge distillation



69

approach (Sanh et al., 2019). For our product matching downstream task, we finetune the standard BERT
model with an additional layer of 768 linear units on top of the mean pooled last layer BERT activations
which we call eComBERT in the rest of the paper.

3.4 Batch construction strategy

The metric learning training aims at embedding similar items closer to each other than to the dissimilar
ones. This objective is not optimized directly, but via a surrogate like margin-based triplet loss on a batch
of triplets. The strategy for choosing which triplets to include in a batch heavily impacts the learning
curve and the final performance of the model. If the negatives are too distant compared to the positives,
the triplet loss is zero, and such triplet does not contribute to the progress of training. If the negatives are
too similar to the anchors or positives, the model may be trained on noise. In our setup, the anchors and
positives are well defined, as they are offer and positive product pairs from a batch of matches. However,
the choice of negatives in non-trivial. One option is to select the negatives uniformly at random (Wu et
al., 2017b). In metric learning, plenty of other strategies for selecting triplets exist, for example, batch
hard (Hermans et al., 2017), semi-hard (Schroff et al., 2015), or distance weighted sampling (Wu et al.,
2017a). Those strategies are designed for anchors and positive and negative items coming from the same
domain, which is not the case in our problem. For a well-structured overview of possible strategies, we
refer the reader to (Musgrave et al., 2019).

In our setup the triplets batch construction begins with sampling a batch of matches used as the anchor-
positive pairs in triplets. For negative item selection we consider three strategies. The simplest strategy
is a modification of the random negative selection. It randomly selects a negative from the non-matching
products in the category of the anchor. For the purpose of this work, we name it category random (CR)
strategy.

The second explored approach is a modification of the batch hard strategy adjusted for our problem
setup. The standard batch hard strategy, as proposed in (Hermans et al., 2017), starts with a batch of
items from K classes, with N items per class. Then, to construct the batch of triplets, it uses each item
as an anchor, and for each anchor selects the least similar matching (from the same class) item as the
hard positive and the most similar mismatching item as the hard negative. As in our setup anchors and
positive/negative items belong to different domains, we need to modify this strategy. As before, it starts
with a batch of anchor-positive pairs and then selects the negative as the most similar product from all
the non-matching products in the sampled batch of matches. We refer to this strategy as batch hard (BH)
in the experiments. The performance of this strategy depends on the batch size, as the larger is batch, the
harder negatives are likely to be found.

For the third batch construction method, we propose the category hard (CH) strategy. It is similar to
the category random strategy, but instead of selecting the negative at random from the products in a given
category, it selects the one that is most similar to the anchor offer. It requires embeddings of all products,
which are time and resource consuming to obtain. However, as the model and the similarity of products
does not change too fast, we recompute the embeddings every several, e.g. 100 or 500, updates. This
value should be set to properly trade-off the time spent in embedding the products, and the mismatch of
the current state of the model and used product embeddings.

4 Experiments and results

In this section we present our experimental results, focusing on different aspects of the training pipeline.
After briefly introducing the datasets and the baselines, we show different trade-offs that cover both the
architectural choices for the model, and the batch construction strategies.

4.1 Datasets

We perform all the experiments using proprietary datasets composed by offer-product matches originat-
ing from a real-world e-commerce application. We conduct all the experiments using three datasets:
ELECTRONICS, BEAUTY, and CULTURE. The three datasets differ mainly in the number of products and
their main statistics are shown in Table 1.



70

Available matches Products
CULTURE 300K 800K
ELECTRONICS 200K 400K
BEAUTY 300K 200K

Table 1: Datasets used for our experiments. For each dataset, we report the number of training matches
and the number of products.

4.2 Training setup
We split the available matches into train (80%) and test (20%) sets. Unless specified differently, in all
experiments the test set was generated in such a way that half of the products originated from Du, while
the other half did not. This test set better emulates the generalized zero-shot multi-class classification
scenario we are dealing with, i.e., users may create an offer whose matching product already exists in
the product catalog, or not. A deeper analysis of the zero-shot performances of our model is provided in
Section 4.7.

After separately pretraining the specific language model, we trained one encoder for each dataset.
Unless differently stated, we run all the experiments training each model for 5000 steps, setting the batch
size to 32 and Adam optimiser (Kingma and Ba, 2014), with initial learning rate set to 2 · 10−5.

The main evaluation metric we report is accuracy (often referred to as ACC@1 in similarity learning
literature), i.e., the fraction of correctly matched offers. In particular, we consider that an offer matches
a product when, given an offer representation in the embedding space, the closest product representation
in terms of cosine distance is indeed the matching product.

4.3 Baselines
We compare eComBERT against the following baselines:

• a modified implementation of the StarSpace (Wu et al., 2017c) BOW encoder, a commonly used
neural embedding baseline for similarity learning problems,

• non-finetuned1 HerBERT (Rybak et al., 2020) a BERT-based encoder pretrained in RoBERTa’s
fashion on a big Polish language corpus,

• finetuned HerBERT, with an additional 768 dimension linear layer on the top of mean pooled last
layer BERT activations (see Section 3.3),

• non-finetuned eComBERT.

Since language-specific BERT models perform better than general-purpose English models (Rybak et
al., 2020), we do not include the latter among the baselines. To make a fair comparison, we apply the
CR strategy and objective as described in Section 3.1 for all the experiments.

CULTURE ELECTRONICS BEAUTY

BOW 0.8863 0.8032 0.7687
HerBERT-NFT 0.8206 0.6716 0.5542
HerBERT 0.9550 0.8580 0.9064
eComBERT-NFT 0.8208 0.6755 0.6127
eComBERT 0.9777 0.8840 0.9219

Table 2: Test accuracy per each dataset. NFT stands for non-finetuned.

Results shown in Table 2 justify the application of more complex models such as BERT-based archi-
tecture over a simple BOW-based one for a product matching task. Moreover, we see how much we

1By non-finetuned we mean that we did not further train the weights of the encoder, but we used the mean pooled BERT
last layer activations as embeddings for our entities.



71

improve pretrained BERT embeddings with our finetuning procedure. Finally, since the only difference
between HerBERT and eComBERT is the corpus they were trained on, we conclude that pretraining
the language model on a task-specific corpus (such as textual descriptions of offer and products in an
e-commerce platform) leads to more accurate results.

4.4 Pretraining steps vs performance
Standard BERT model needs hundreds of thousands of update steps to converge and longer training gen-
erally translates into better downstream task performance. Since MLM objective is not strictly related
to our product matching task, we check how the number of pretraining iterations affects the downstream
task performance. Figure 1 shows text accuracy for the BEAUTY dataset for BERT models pretrained for
a different number of steps. We see significant gains early on into pretraining, but after 20k steps into
pretraining further optimization of the MLM objective does not translate into better downstream task
performance, as model performance on product matching tasks fluctuates, even though MLM optimiza-
tion does not converge. We have observed similar phenomena for different datasets and different BERT
architectures and it suggests, that longer pretraining does not improve product matching performance.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

Pretraining steps (in thousands)

M
L

M
ac

cu
ra

cy

(a) Masked language model prediction accuracy.

0 10 20 30 40 50 60
0.8

0.82

0.84

0.86

0.88

0.9

0.92

Pretraining steps (in thousands)

Te
st

ac
cu

ra
cy

(b) Performance of BERT-based fine-tuned model
(eComBERT) trained with CR batch construction strat-
egy.

Figure 1: Pre-training and downstream task model performance.

4.5 Batch construction strategy
We explore the impact of the sampling strategy on the fraction of active triplets and the performance of
the finetuned models. Particularly, we experiment with the three batch construction strategies proposed
in Section 3.4: category random, batch hard and category hard.

First, we investigate how the fraction of active triplets changes depending on how the batch is con-
structed. In Figure 2, we show the smoothed fraction of active triplets for BERT-based models in the
initial phase of finetuning. In Figure 2a, we compare the batch construction strategies for the HerBERT
model. In the very first steps of finetuning, BH leads to more active triplets than CR, but after around 50
steps those two strategies perform on par. The proposed CH strategy results in much more active triplets,
with nearly all triplets being active in the beginning. Later, the fraction drops, and after the product
embeddings are recomputed after the 100th step, it raises sharply. In the following stage of finetuning,
we do not observe such sudden changes, since the model has already started to converge and there is no
dramatic difference between subsequent recomputations of the embeddings.

Next, in Figure 2b we compare the active triplets fraction for two encoder architectures: eComBERT
and HerBERT, both employing the CH strategy. Interestingly, in the initial 60 training steps training, the
fraction of active triplets is higher for eComBERT than for HerBERT, while later the situation changes,
and the HerBERT encoder consistently yields more active triplets. This may be caused by the fact that



72

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Step

Fr
ac

tio
n

of
ac

tiv
e

tr
ip

le
ts

CH
BH
CR

(a) Active triplet fraction for HerBERT initialised model
for different negative item selection strategies.

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Step

Fr
ac

tio
n

of
ac

tiv
e

tr
ip

le
ts

eComBERT
HerBERT

(b) Active triplet fraction for HerBERT and eComBERT ini-
tialised model for category hard strategy.

Figure 2: Fraction of active triplets in the initial steps of training for BERT based models on
ELECTRONICS dataset. Note: CH was run recomputing products’ embeddings every 100 steps.

eComBERT better understands the e-commerce domain and places similar items closer to each other
from the very beginning. HerBERT is a general model, and may not understand the similarity of product
and offers well. In the later training steps HerBERT yields more active triplets than eComBERT as it
yields worse training and test accuracy.

Finally, in Table 3 we report the test accuracy for HerBERT and eComBERT and different batch con-
struction strategies. After 1000 steps the models are not yet converged, but it is already known which
strategy gives the best performing model. First, we see that for HerBERT and eComBERT initialized
models, the category hard strategy gives the highest accuracy, and the e-commerce eComBERT initial-
ized model performs better. Secondly, we see that the models perform similarly for either batch hard
or category random strategy, as those strategies produce little active triplets that may contribute to the
change of the model. For the same reason, eComBERT trained with category random or batch hard strat-
egy outperforms HerBERT with those strategies: eComBERT was a stronger model in the beginning,
and the models have not changed much during training.

category random batch hard category hard
HerBERT 0.8340 0.8352 0.9096
eComBERT 0.8803 0.8790 0.9270

Table 3: Test accuracy of models trained with different strategies for 1000 steps on ELECTRONICS.

4.6 Encoder architectures

BERT pretraining is very costly and its inference time is quite substantial in comparison to simpler mod-
els. To alleviate those issues, we ran eComBERT pretraining with 4 BERT layers (small eComBERT)
and we pretrained DistilBERT on our own internal data (Distil eComBERT). In Table 4 we report test
accuracies for the models on all of our prepared datasets. Those models still achieve competitive results
across different domains, when cutting the inference time by half and two thirds, for Distil eComBERT
and small eComBERT, respectively.

4.7 Zero-shot performance

In this section, we evaluate the zero-shot performance of our best eComBERT model against the BOW-
based model and eComBERT without fine-tuning. To properly compare the performance, we prepare
a separate dataset, where the test set consists only of products not seen in training. We use CH batch



73

ELECTRONICS BEAUTY CULTURE

eComBERT 0.9429 0.9674 0.9873
Distil eComBERT 0.9410 0.9666 0.9873
small eComBERT 0.9400 0.9656 0.9865

Table 4: Accuracy of models with different BERT architectures trained for 5k steps with category hard
sampling strategy.

construction and standard training procedure as discussed previously. To avoid leakage, we exclude test
products from sampling. We report training and test accuracy in table 5. Based on those results, we
conclude that the BOW model is not complex enough to overfit the training data and we observe similar
results both on training and test data. Moreover, we see how much we improve pretrained embeddings
with our finetuning procedure. After 5k update steps BERT starts to overfit to the data, while still
generalizing fairly well on Du.

Training accuracy Zero-shot accuracy
BOW 0.7929 0.8016
eComBERT-NFT 0.6519 0.6656
eComBERT 0.9086 0.8873

Table 5: Zero-shot performance of models trained for 5k steps using CH batch construction strategy on
ELECTRONICS dataset.

5 Related work

E-commerce is inherently bound to products, and many challenges of this area are related to them. Such
challenges include product entity resolution. Product entity resolution task is not well defined, and it
is often formulated as one of the following problems: understanding which items from various sources
(e.g. e-commerce platforms) correspond to the same real-world entity, i.e., a product (Li et al., 2020a;
Fu et al., 2019); understanding which items (e.g. offers) from a single platform correspond to the same
real-world entity (Shah et al., 2018). Last but not least, products and offers have normally multi-modal
representations, i.e., they may be described by partially structured text and images at the same time. The
way such representations are used when extracting information is a design choice, that highly influences
the chosen algorithms and prepossessing strategies.

The former problem, product entity resolution of items from various sources, usually requires not
only text matching but also understanding differently structured textual information. To this end, many
solutions were proposed. Here we only mention works that use specific language models (Fu et al., 2019);
that apply different machine translation techniques (Li et al., 2018), or other methods for comparison of
attributes and titles (Li et al., 2020a). For more references related to this problem, we refer the reader
to (Ristoski et al., 2018; Fu et al., 2019; Li et al., 2020a).

The latter problem, product matching, i.e., product entity resolution among items from a single plat-
form, normally includes matching the item to a product defined in some product catalog. Such a problem
was considered by (Shah et al., 2018), which compares two approaches to solve this task: classification
based on fastText-based (Joulin et al., 2017) features; and similarity learning using BiLSTM neural net-
work trained with contrastive loss. Many other case studies of this problem exist, for example (More,
2017), which describes a combination of learned similarities of texts and images neural networks.

6 Conclusions

In this work, we leverage the transformer architecture combined with the similarity learning approach
to solve the product matching task in e-commerce. We show that finetuning even general-purpose trans-
formers yields models that perform significantly better than other similarity learning baselines such as



74

StarSpace. These models can be further improved by employing BERT models pretrained on domain-
specific data. Our experiments emphasize the importance of the employed batch construction strategy.
Particularly, in our specific problem setup, a tailored batch construction strategy called category hard
proved to significantly improve the percentage of active triplets and consequently the model perfor-
mance.

One particular challenge that we encountered during our work with the product matching problem, and
one which we believe has not been adequately addressed in the product matching literature is concept
drift. This problem, also called covariate shift or nonstationarity, refers to the change in the relationship
between input and output variables over time. In the case of product matching, it ultimately leads to
a gradual drop in accuracy of the predicted product matches. Apart from the degradation of the model
performance, another important issue arising from concept drift is the difficulty of evaluating new model
versions. For a stationary problem, the standard procedure involves preparing a potentially costly human-
annotated dataset once and using it for comparing the subsequent model version. Unfortunately, this is
not a viable strategy if the test set cannot be fixed. We plan to investigate the concept drift problem in
our future work.

References
Ursin Brunner and Kurt Stockinger. 2019. Entity matching on unstructured data: an active learning approach. In

2019 6th Swiss Conference on Data Science (SDS), pages 97–102. IEEE.

Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer architectures - A step forward in data
integration. In Advances in Database Technology - EDBT, volume 2020-March, pages 463–473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4171–4186, Minneapolis, Minnesota, June. Association for Computational Linguistics.

Cheng Fu, Xianpei Han, Le Sun, Bo Chen, Wei Zhang, Suhui Wu, and Hao Kong. 2019. End-to-End Multi-
Perspective Matching for Entity Resolution. In Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, {IJCAI-19}, pages 4961–4967. International Joint Conferences on Artificial
Intelligence Organization.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. 2017. In defense of the triplet loss for person re-
identification. CoRR, abs/1703.07737.

Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In International Workshop on
Similarity-Based Pattern Recognition, pages 84–92. Springer.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2017. Bag of tricks for efficient text classi-
fication. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431, Valencia, Spain, April. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. cite
arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han Li, Fatemah
Panahi, Haojun Zhang, Jeff Naughton, et al. 2016. Magellan: Toward building entity matching management
systems. Proceedings of the VLDB Endowment, 9(12):1197–1208.

Hanna Köpcke, Andreas Thor, and Erhard Rahm. 2010. Evaluation of entity resolution approaches on real-world
match problems. Proceedings of the VLDB Endowment, 3(1-2):484–493.

Maggie Yundi Li, Stanley Kok, and Liling Tan. 2018. Don’t classify, translate: Multi-level e-commerce product
categorization via machine translation. arXiv preprint arXiv:1812.05774.

Kai Li, Martin Renqiang Min, and Yun Fu. 2019. Rethinking zero-shot learning: A conditional visual classifica-
tion perspective. In Proceedings of the IEEE International Conference on Computer Vision, pages 3583–3592.



75

Juan Li, Zhicheng Dou Dou, Yutao Zhu, and Ji-Rong Wen Zuo, Xiaochen Wen. 2020a. Deep cross-platform
product matching in e-commerce. Information Retrieval Journal, 23(2):136–158.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020b. Deep entity matching with
pre-trained language models. arXiv preprint arXiv:2004.00584.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

Ajinkya More. 2017. Product matching in ecommerce using deep learning. https://medium.com/
walmartlabs/product-matching-in-ecommerce-4f19b6aebaca.

Kevin Musgrave, Ser-Nam Lim, and Serge Belongie. 2019. Pytorch metric learning. https://github.com/
KevinMusgrave/pytorch-metric-learning.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In
EMNLP/IJCNLP.

Petar Ristoski, Petar Petrovski, Peter Mika, and Heiko Paulheim. 2018. A machine learning approach for product
matching and categorization. Semantic Web, 9:707–728.

Piotr Rybak, Robert Mroczkowski, Janusz Tracz, and Ireneusz Gawlik. 2020. KLEJ: Comprehensive benchmark
for polish language understanding. In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1191–1201, Online, July. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified embedding for face recogni-
tion and clustering. CoRR, abs/1503.03832.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1715–1725, Berlin, Germany, August. Association for Computational Linguistics.

Kashif Shah, Selcuk Kopru, and Jean-David Ruvini. 2018. Neural network based extreme classification and
similarity models for product matching. In Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers),
pages 8–15, New Orleans - Louisiana, jun. Association for Computational Linguistics.

Andreas Thor. 2010. Toward an adaptive string similarity measure for matching product offers. INFORMATIK
2010. Service Science–Neue Perspektiven für die Informatik. Band 1.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and
Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461.

Chao-Yuan Wu, R. Manmatha, Alexander J. Smola, and Philipp Krähenbühl. 2017a. Sampling matters in deep
embedding learning. CoRR, abs/1706.07567.

L. Wu, A. Fisch, S. Chopra, K. Adams, A. Bordes, and J. Weston. 2017b. Starspace: Embed all the things! arXiv
preprint arXiv:1709.03856.

Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. 2017c. Starspace:
Embed all the things! CoRR, abs/1709.03856.


