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Abstract

Online customer reviews are of growing importance for many businesses in the hospitality indus-
try, particularly restaurants and hotels. Managerial responses to such reviews provide businesses
with the opportunity to influence the public discourse and to attain improved ratings over time.
However, responding to each and every review is a time-consuming endeavour. Therefore, we
investigate automatic generation of review responses in the hospitality domain for two languages,
English and German.

We apply an existing system, originally proposed for review response generation for smartphone
apps. This approach employs an extended neural network sequence-to-sequence architecture
and performs well in the original domain. However, as shown through our experiments, when
applied to a new domain, such as hospitality, performance drops considerably. Therefore, we
analyse potential causes for the differences in performance and provide evidence to suggest that
review response generation in the hospitality domain is a more challenging task and thus requires
further study and additional domain adaptation techniques.

1 Introduction

Online customer reviews play a significant role in e-commerce and specifically in the tourism and hos-
pitality industry. Websites such as TripAdvisor, Booking.com and Yelp offer customers the opportunity
to share their experiences in the form of reviews relating to restaurants, cafés, hotels and other business
types. To date, TripAdvisor boasts more than 860 million customer reviews and opinions worldwide1.

While these reviews serve as an important point of reference for potential customers who value and
rely on electronic word-of-mouth recommendations (Litvin et al., 2008), it has been shown that they also
offer businesses an opportunity to influence the public discourse and foster positive customer relations
by responding to these reviews appropriately (see Li et al. (2017); Li et al. (2018)). However, given the
sheer amount of online reviews, composing these responses is a time-consuming and costly endeavour
for any business.

In this paper, we report on automated response generation for hospitality reviews, specifically restau-
rants and hotels, in both English and German. While a similar task has previously been tackled for
product reviews in online stores in Chinese (Zhao et al., 2019) and for smartphone app reviews in En-
glish (Gao et al., 2019), the application domain of hospitality reviews is, to the best of our knowledge,
novel. In addition, our investigations are applied to two languages, which allows for a valuable idea of
how well the approach generalises across languages.

The experiments conducted in this paper leverage the approach proposed by Gao et al. (2019), who
extend the basic attentional sequence-to-sequence (seq2seq) neural network (Sutskever et al., 2014; Bah-
danau et al., 2015) framework for conditioned text generation. We find that applying the proposed solu-

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1http://ir.tripadvisor.com/static-files/f81e3d8c-2e18-409f-9ca3-8b3148238257 (last ac-
cessed: July 16, 2020)
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tion to hospitality review-response pairs yields a considerable decrease in overall performance compared
to the results reported in the original paper in the context of app reviews. An empirical investigation
into possible causes for the discrepancy provides evidence to suggest that the task is considerably more
challenging in our target domain. Thus, we establish a preliminary baseline for future work on automatic
response generation for hospitality reviews.

2 Seq2Seq Review Response Generation

Following previous work (e.g., Gao et al. (2019); Zhao et al. (2019)), we tackle the task of review
response generation using the popular seq2seq encoder-decoder framework originally proposed by
Sutskever et al. (2014) in the context of neural machine translation (NMT) and successfully applied
in a broad range of NLP tasks, including abstractive text summarisation (Rush et al., 2015) and conver-
sational dialogue systems (Vinyals and Le, 2015), among others. The central idea behind the seq2seq
framework is as follows: Given an input (source) sequence of length n, X = {x1, . . . , xn}, and a
corresponding output (target) sequence of length m, Y = {y1, . . . , ym}, we aim to learn a probabilistic
mapping function g(·) that allows us to predict a probable target sequence Ŷ for a novel source sequence.

2.1 Encoder-Decoder Network

The seq2seq model architecture proposed by Sutskever et al. (2014) comprises two recurrent neural
networks (RNNs) which are jointly optimised during training. The first of these reads in the source
sequence, encoding it into a fixed-length context vector c ∈ R. The second neural network takes the
resulting context vector c as input and effectively decodes it, outputting a sequence of target tokens
over a number of timesteps t ∈ T and stopping as soon as a special end-of-sequence token (<EOS>) is
produced. Thus, the probability of a target token at timestep t is modelled as

log p(yt|y<t, c) = g(h′t, yt−1, c).

A major limitation of the original encoder-decoder architecture is the fact that a given source sequence
of arbitrary length is represented by the fixed-length context vector c. As a result, the longer the source
sequence, the more difficult it becomes to capture and leverage important information from early on in
the sequence when generating the target sequence. The attention mechanism, introduced by Bahdanau
et al. (2015), helps to alleviate this.

2.2 Attention Mechanism

The attention mechanism provides the decoder access to the entire sequence of encoder hidden states
H = {h1, . . . , hn} computed on the input sequence rather than only the final hidden state (Bahdanau
et al., 2015; Luong et al., 2015). At each decoding timestep t, we dynamically calculate a new context
vector ct that considers the relative importance of elements in the source sequence for generating the
current output yt. This essentially allows the decoder to focus on particular parts of the input sequence
during decoding and alleviates the information bottleneck associated with encoding the entire source
sequence into a static fixed-length context vector.

2.3 Review Response Generation

While the attentional seq2seq approach described above has been proven to work well for tasks like
NMT, it poses several challenges in the context of more free-form text generation. For example, in
the context of hospitality reviews, context is typically very limited and responses can range from very
generic, one-size-fits-all responses, e.g.,

“thank you for your kind review . we are glad you enjoyed your visit and hope to see you
again very soon !”, (1)

to far more personalised responses that address specific topics raised in the review and also include
aspects of external factual knowledge that may be relevant for a given response. The response below
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provides such an example, where information relevant to the input review is set in bold and information
that involves external ‘world’ knowledge is underlined.

“thanks for your review . we are very happy to hear that you decided to enjoy the famous
cheese fondue and a classic sausage at our restaurant and , of course , that you liked it so
much . we ’ve been serving traditional swiss cuisine since <DIGIT> and are always happy to
share our passion for it with our guest . <NAME> and the whole team were very glad to
receive such good feedback and we are all looking forward to welcoming you back soon .”

(2)

Therefore, instead of conditioning solely on the input text, as is done in standard NMT, we ideally
want to be able to incorporate additional features that provide relevant contextual knowledge for the
response text. To this end, Zhao et al. (2019) exploit a double-encoder-decoder network in which, in
addition to the typical source text encoder, a second encoder reads in product-related information from a
structured table. At inference time, the decoder has access to both contextual representation vectors by
way of a gated multi-source attention mechanism (Arevalo et al., 2017). However, this approach requires
appropriate factual tables to be generated for all relevant entities (in our case, restaurants and hotels listed
on TripAdvisor), which we do not have access to.

The approach proposed by Gao et al. (2019), on the other hand, relies primarily on information that can
be derived from the review text itself or additional metadata that is readily available. The authors identify
four main attributes which are provided as additional input to the decoder (dubbed the A-component):
(i) the length of the review text, (ii) the review rating, (iii) a sentiment score calculated for the entire
review text, and (iv) the category of the app which is the focus of the review.

The motivation for including these attributes is given by Gao et al. (2019) as follows: review length is
an important indicator for the length of an output response since it should be appropriate given the length
and detail of the review text; the review rating provides valuable information that impacts the response
style directly, e.g., expressing an apology given a negative review or expressing thanks given positive
feedback (where the lower half of the numeric rating scale is interpreted as corresponding to negative
feedback and the upper half to positive feedback, possibly with an ambiguous midpoint in case of odd-
numbered scales); the sentiment score attempts to capture the attitude of the reviewer and accounts
for instances where the review rating and review text are inconsistent with each other with respect to
polarity; and finally, the category attribute provides general contextual information to the decoder since
app reviews of different categories typically address different topics.

Additionally, in order to encourage the decoder to produce responses relevant for the input review, the
authors exploit an external keyword dictionary developed by Di Sorbo et al. (2016) for the purpose of
app review classification. This keyword dictionary (dubbed the K-component) identifies topical words
and maps them to one of twelve aspects relevant for app reviews (e.g., ‘version’, ‘GUI’, ‘pricing’, etc.).

The approach proposed by Gao et al. (2019) is relatively straightforward to adapt to our task of review
response generation for the hospitality domain in English and German. For this reason, we select it as
a basis for our experiments. More details about the implementation of Gao et al. (2019) are given in
Section 3.2.

3 Review Response Generation for the Hospitality Domain

3.1 Data
For the purpose of our experiments, we compiled two datasets of review-response pairs for hotels and
restaurants published on TripAdvisor, roughly the same size as that of Gao et al.’s app dataset. We
collected data in both English and German from nine different countries2 and performed simple prepro-
cessing. Specifically, we used spaCy3 to mask personal names, toponyms, emails, urls and numbers.
For English, texts were converted to lowercase, while for German, nouns and proper nouns, which are

2Australia, Canada, Ireland, New Zealand, United Kingdom, United States (for English); Austria, Germany, Switzerland
(for German).

3https://spacy.io/ (last accessed: July 16, 2020)
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Hosp. (en) Hosp. (de) Apps

train 320k 259k 280k
valid 40k 32k 14k
test 40k 32k 15k

Table 1: Overview of review-response pair datasets. For comparison, the size of the app review-response
dataset by Gao et al. (2019) is also given on the right.

capitalised in standard German, were titlecased and all remaining words lowercased. We also removed
duplicate review-response pairs from the dataset before randomly splitting it into training, validation and
test sets at a ratio of 80:10:10. Table 1 provides an overview of the datasets.

3.2 Method

The proposed approach incorporates additional features into the encoder-decoder network, namely the
A-component and the K-component, introduced in Section 2.3. The implementation by Gao et al. (2019)
embeds each of the additional attributes in the A-component into 90-dimensional vectors which are then
concatenated with the hidden representation for the source sequence before being passed to the decoder.
The K-component is incorporated by concatenating a 20-dimensional vector, indicating whether or not a
word represents a certain aspect, with the pre-trained word embeddings. For the most part, we follow the
original implementation and use the same hyper-parameters4. To ensure comparability, we evaluate the
performance of each model after training for three epochs. In this section we describe the few aspects
in which our implementation differs from that of Gao et al.’s, namely the choice of pre-trained word
embeddings, how we compute the external sentiment analysis attribute features, and how we derive
keyword dictionaries for our data set of hospitality review-response pairs in German and English.

Pre-trained Word Embeddings In contrast to the original approach, which uses GloVe pre-trained
word embeddings (Pennington et al., 2014), we opt for fastText pre-trained word embeddings (Grave
et al., 2018). The motivation for this is two-fold. Firstly, fastText embeddings incorporate subword-
level information in the form of character N-gram features. This allows us to derive reasonably well-
estimated word embeddings even for out-of-vocabulary (OOV) words, which is crucial given that our
corpus consists of user-generated web content, where typos and alternative spellings are frequent. For
example, Table 2 shows some examples of commonly found misspellings in our dataset that are largely
OOV and thus fail to receive an informative embedding using the pre-trained GloVe model. Secondly,
pre-trained fastText embeddings are readily available for 157 languages5, including English and
German, whereas pre-trained GloVe embeddings are only available for English.

Sentiment Analysis As mentioned in Section 2.3, an overall sentiment score is provided to the decoder
as part of the A-component. In the original implementation by Gao et al. (2019), the authors make use
of SentiStrength (Thelwall et al., 2010) to automatically calculate the polarity of a given review. While
SentiStrength is available for both English and German, and has been shown to successfully predict
positive or negative sentiment for short social media web texts, where spelling mistakes are frequent,
it is primarily only supported on machines running Microsoft Windows. Therefore, we resort to an
alternative sentiment analysis tool. VADER (Valence Aware Dictionary for sEntiment Reasoning) (Hutto
and Gilbert, 2014) employs a human-validated sentiment lexicon mapping lexical features (e.g., words)
to a valence score, indicating its sentiment polarity and intensity. This lexicon is then combined with
five general rules that consider grammatical and syntactic features which influence sentiment (e.g., use
of punctuation, all-caps and degree modifiers such as ‘very’). VADER has been shown to perform well

4Word embedding size = 100, number of hidden layers = 1, hidden layer size = 200, dropout rate = 0.1 and batch size = 32.
Optimisation is performed with Adam (Kingma and Ba, 2017) with initial learning rate = 0.001 and weight decay = 0.00001.
Since our texts are more varied (see Section 3.4), we limit the source and target vocabulary size to the 20,000 most frequent
words, which is twice the size of the original implementation.

5https://fasttext.cc/docs/en/crawl-vectors.html (last accessed: July 16, 2020)
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Canonical form Common misspellings

restaurant
resturant (707), restuarant (362), restaraunt (163), restraunt (146),
resteraunt (124), restaurent (50), resturaunt (42), restauraunt (28),
restauarant (28), restarant (23), ...

accommodation
accomodation (1,130), accomadation (67), acommodation (12),
accomdation (12), accommadation (9), accomidation (7), ...

Table 2: Common misspellings found in our corpus. Note, inspecting the two pre-trained embedding
models shows that the most common misspellings ‘restuarant’ and ‘accomodation’ are indeed repre-
sented in the GloVe model, however, both words receive rather low similarity scores to their canonical
forms (0.13 and 0.61, respectively). With the pre-trained fastText model, all variants receive similar-
ity scores above 0.33.

across a broad range of domains, and particularly on social media texts (see Hutto and Gilbert (2014)).
While VADER was primarily developed for English, it is extensible and adaptable to other languages

since it relies on a lexicon-based approach extended with simple heuristics. Tymann et al. (2019) propose
GerVADER, which replaces the standard VADER lexicon with a slightly extended version of the German
sentiment lexicon SentiWS (Remus et al., 2010).

It should be noted that GerVADER is shown to perform reasonably well on the classification of positive
sentiment texts but performs poorly on negative sentiment texts due to the fact that negations in German
often occur after the verb which they modify (e.g., Ich gehe niemals zurück! (‘I go never back!’)) as
opposed to English, where they usually appear before (e.g., ‘I never go back!’). The current version of
GerVADER fails to account for such syntactic differences between the two languages and is thus sub-
optimal. Nevertheless, we make use of this off-the-shelf tool due to its availability and ease of application
in the target domain.

Review Categories Gao et al. (2019) make use of the category attribute feature to distinguish reviews
according to the genre of the relevant app. Since we do not have such fine-grained categories in our
dataset, we simply distinguish between whether the review pertains to a hotel or a restaurant. We note,
however, that a more fine-grained distinction regarding the nature of an establishment (e.g., ‘take-away’,
‘fine-dining’, ‘coffee shop’, etc. for restaurants) could be more beneficial for ensuring that the model
learns relevant patterns from review-response examples.

Keyword Dictionary for Restaurant and Hotel Reviews In order to derive suitable keyword dictio-
naries for the target domain, we leverage a manually annotated corpus of English and German hospitality
reviews in which 6,490 text spans have been categorised with a thematic aspect. For example, the span
‘the waiter was very attentive’ is categorised as Service. We aggregate all text spans for each category
and filter for content words (i.e., nouns and adjectives) that are (a) common for the particular category
and (b) uncommon for the other categories. Lastly, we manually filter out words for which there is no
clear semantic relationship with the category per se.

Table 3 shows the different thematic aspects and the number of text spans associated with each. As
can be seen, there is a large skew in the distribution over the categories such that the number of spans
available ranges from 234 to 1,458 (German) and from 221 to 1,179 (English), which is also reflected
in the resulting keyword dictionaries, whose sizes range from 28 to 120 and 18 to 173, respectively.
This is, on the one hand, rooted in the distribution of the dataset, i.e., the number of text spans per
category results from the overall frequencies in a small subset of reviews. On the other hand, the variety
in the descriptions of the attributes per category is also different. We find a much richer vocabulary
for descriptions of food, its preparation, and quality in comparison to content that refers to the pricing
(cf. Table 4). This is in line with the distributions we found in the resources that were created by Di
Sorbo et al. (2016) and adapted by Gao et al. (2019). Additionally, we keep the size of the dictionaries
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Text Spans Keywords
Category de en de en

Ambiance 519 320 33 34
Facilities 234 221 28 81
Food 1,458 1,179 120 173
Service 1,085 763 98 36
Value 374 337 91 18

Total 3,670 2,820 370 324

Table 3: Overview of annotated text spans for each category in restaurant reviews, and the number of
derived keywords for each dictionary.

Category Keywords

Food

fondue, rosti, spaghetti, risotto, clams, pizzas ..., cappuccino, cocktail,
wine, whisky, ..., coffees, pastries, sauce, ..., meat, fish, ..., taste, flavour,
..., veggie, vegan, gluten, ..., breakfast, brunch, lunch, dinner, ..., starters,
appetiser, entrées, desserts, ... offers, option, combination, specialties, ...
plate, courses, dishes, ..., allergies, ingredients, ...

Value
affordability, money, prices, price, charge, budget, value, fortune, cost,
penny, pricing, price/quality, costs, fee, expense, price-performance,
competitiveprices

Table 4: Example for keyword lists for the two categories Food and Value

approximately in the same range. Although it would be possible to expand these keyword lists further
with corpus-based methods, we opt to compile them in such a way that the approach is comparable to
previous work.

3.3 Evaluation and Results
We evaluate the performance of the proposed approach using automatic metrics which typically compare
a system output hypothesis to its corresponding ground-truth reference. We report results using the
following metrics:

BLEU (Papineni et al., 2001), a precision-based metric popular in machine translation evaluation, is
commonly used for evaluating performance of response and dialogue generation systems (e.g., Zhao
et al. (2019), Gao et al. (2019), Ghazvininejad et al. (2018), Xu et al. (2017), Li et al. (2016), Sordoni
et al. (2015), among others) since it is claimed to correlate well with human judgements. BLEU-N
calculates the number of N-gram matches between a hypothesis and one or more references and is
commonly reported as the weighted average score for values of N ranging from [1, 4].

ROUGE (Lin, 2004) is, in contrast to BLEU, a recall-oriented metric and is often applied in the eval-
uation of text summarisation systems. There are two main variants of ROUGE, namely ROUGE-N
and ROUGE-L. The first of these considers the number of N-grams in a reference that are matched in
the corresponding hypothesis. Typical values for N are 1 and 2. ROUGE-L, on the other hand, does
not presuppose a defined sequence length, but simply computes the longest common sub-sequence
between a set of references and a hypothesis text.6

Distinct-N was proposed by Li et al. (2016) in order to measure textual diversity in neural dialogue
system output. Calculated over the whole test corpus, it measures the ratio of unique N-grams to

6We use the implementation provided at https://pypi.org/project/rouge-score/ (last accessed: July 16,
2020).



49

Dataset Model BLEU RGE-1 RGE-2 RGE-L DIST-1 DIST-2 BERT-F1

Hosp. (en) s2s (baseline) 8.17 35.62 14.55 28.94 0.00 0.01 4.82
s2s +A +K 2.92 24.24 9.65 20.34 0.00 0.01 -13.07

Hosp. (de) s2s (baseline) 10.19 34.26 15.07 27.14 0.07 0.13 16.81
s2s +A +K 8.22 32.98 14.99 27.39 0.15 0.27 14.86

Apps (orig.) s2s (baseline) 14.22 32.20 13.05 24.16 0.06 0.28 -4.76
s2s +A +K 29.36 44.33 27.29 37.69 0.09 0.62 14.18

Apps (uniq.) s2s (baseline) 15.22 33.82 13.33 25.74 0.05 0.27 -0.36
s2s +A +K 24.84 40.34 22.59 33.90 0.06 0.37 7.17

Table 5: Results of automatic evaluations for hospitality (hosp.) review response generation. ‘s2s’ stands
for the basic attentional seq2seq model with no additional attributes, while ‘s2s +A +K’ stands for
the seq2seq model extended with additional attribute and keyword components, as proposed by Gao
et al. (2019).

the total number of N-grams generated, thus providing an indication of how varied the generated
responses are.

BERTScore was recently proposed by Zhang et al. (2020) for natural language generation evalua-
tion. It utilises contextualised word embeddings from a pre-trained BERT language model (Devlin
et al., 2019)7 and calculates the pairwise cosine similarity score between tokens in a hypothesis
and tokens in a set of references. Furthermore, BERTScore incorporates importance weighting by
applying the inverse document frequency (idf) score to each reference word, which is calculated on
the test corpus references. The major advantage of this metric is that it alleviates the constraint of
surface-form and structural similarity imposed by N-gram matching metrics, and in addition, it is
applicable in multiple settings since it relies solely on a task-agnostic pre-trained BERT model.

Table 5 shows the results of our experiments in which we apply the extended seq2seq model proposed
by Gao et al. (2019) to the domain of hospitality reviews in both English and German. Since we aim
to inspect potential performance improvements gained by incorporating the additional feature attributes
described in Section 2.3, we use the basic attentional seq2seq model as our baseline. As can be seen, the
extended architecture fails to outperform the baseline according to almost all metrics in the hospitality
domain. The starkest difference occurs with English, where the baseline outperforms the extended ap-
proach by considerable margins across the board. The story is slightly different in the case of German,
where the margins are much smaller, but still, the superiority of the baseline seq2seq model is apparent.

The low scores for both Distinct-N metrics, particularly for English hospitality responses suggest
extensive N-gram repetition. Manual inspection of the system outputs confirms that the current seq2seq
models tend to generate overly generic and uninformative responses such as in Example 1, as well as
showing other signs of text degeneration (Holtzman et al., 2020). For this reason, we avoid conducting
human evaluation on these outputs and aim to address this issue in future work.

As a point of reference, we also reproduce the experiment by Gao et al. (2019) on their original app
review-response dataset and on a deduplicated version which removes overlap between train and test
splits (shown as ‘uniq.’ in Table 5)8. Here, we see a convincing boost in performance over the vanilla
seq2seq model (15.14 BLEU points), demonstrating that the additional features do indeed help for app
review response generation.

7For English, BERTScore uses a 24-layer RoBERTa Large model, while for German, a 12-layer multilingual BERT model
is used to compute the contextualised embedding representations.

8Note, the deduplicated app dataset ensures that there is no information leakage between training, test and validation splits.
As expected, there is a slight drop in performance for all metrics. However, the benefits of the extended seq2seq archticure are
still clearly visible over the baseline.
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Figure 1: Distribution of review and response text lengths in the app dataset compared to the English and
German hospitality datasets.

The large drop in performance of 20+ BLEU points when applying the proposed approach to a different
domain and also another language is conspicuous. Therefore, in the following section, we discuss the
nature of the different datasets and conduct an empirical investigation to determine potential causes.

3.4 Discussion

Given the results presented in Table 5, it is clear that the extended seq2seq architecture has difficulty
generating suitable review responses when applied to the target domain. In order to investigate why this
is the case, we take a closer look at the two different types of datasets and identify two potential causes,
namely review length and textual variance in the responses.

Review Length The first noticeable difference between the review-response data for apps and that
for the hospitality domain is the length of the source and target texts. Figure 1 shows the distribution
of text lengths for all the three datasets. As can be seen, reviews for apps (blue on left) are generally
much shorter in length than reviews for hotels and restaurants, with an average length of 16 tokens for
the former and approximately 100 tokens for the latter. Furthermore, the distribution of app review
response lengths (blue on right) is also far from a normal distribution, with multiple peaks corresponding
to response text lengths of approximately 3, 45 and 70 tokens. This is largely due to a high number of
frequently occurring template responses (e.g., ‘thank you !’).

In theory, an attentional encoder-decoder network should be able to comfortably handle source texts of
200 tokens in length. However, we conjecture that the brevity of app reviews contributes to the simplicity
of generating these responses as the input signal is far less complex in many cases.

Textual Variance in Responses The non-normal distribution of app review response lengths raises
considerable suspicion into the composition of the original app dataset. Inspecting the textual variance,
i.e., the ratio of unique texts to the total number of texts, reveals that a large portion of reviews, responses
and even review-response pairs occur multiple times in the app dataset. Table 6 shows textual variance
among the three datasets.

As can be seen, only 40% of the responses in the app dataset are unique in contrast to approximately
94% for both English and German hospitality responses. This finding clearly indicates extensive repeti-
tion in the app dataset due to the frequent use of templated responses by app developers, which has also
been reported by Hassan et al. (2018). For restaurant and hotel reviews, the story is closer to what we
would expect, showing that the vast majority of responses are indeed unique. Naturally, this makes the
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Hosp. (en) Hosp. (de) Apps

Reviews 100.0% 99.99% 70.04%
Responses 94.2% 94.5% 40.07%
Review-response pairs 100.0% 100.0% 88.09%

Table 6: Percentage of unique review, response and review-response pair texts in each dataset.

task of learning to generate suitable responses in the hospitality domain much more challenging.

4 Conclusion and Future Work

We have applied a system designed for app review response generation to the domain of hospitality
reviews in both English and German. According to a range of automatic evaluation metrics, the results
of our experiments indicate that the benefits provided by the extended seq2seq model proposed by Gao
et al. (2019) for their application domain do not transfer to our target domain. A subsequent empirical
investigation into the different datasets has revealed that the nature of review-response pairs in the domain
of smartphone app reviews differs significantly to that of the hospitality domain.

Given our results, we have established a preliminary baseline for automated review response gener-
ation in the domain of English and German hospitality reviews that uses a classic attentional seq2seq
architecture. In future work, we intend to continue investigating potential improvements for this task,
incorporating improved aspect-level sentiment detection and knowledge grounding techniques, as well
as conducting more detailed evaluations with the help of human judges.
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