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Abstract

In this paper, we present two productive and functional recommender methods to improve the ac-
curacy of predicting the right product for the user. One proposal is a survey-based recommender
system that uses k-nearest neighbors. It recommends products by asking questions from the user,
efficiently applying a binary product vector to the product attributes, and processing the request
with a minimum error. The second proposal uses an enriched collaborative-based recommender
system using enriched weighted vectors. Thanks to the style rules, the enriched collaborative-
based method recommends outfits with competitive recommendation quality. We evaluated both
of the proposals on a Kaggle fashion-dataset along with iMaterialist and, results show equivalent
performance on binary gender and product attributes.

1 Introduction

The demanding market of the fashion industry has led to a challenging environment for recommender
systems (Nenni et al., 2013). To say, increasing information in the fashion shopping brings confusion
to users who have to select the right choice among a huge number of available fashion products. Fur-
thermore, to satisfy the excessive desire of users in the fashion industry, recommendation engines are
playing an important role by automating the product selection procedure (Luce, 2018).

A recommender system targets to predict user’s tastes and recommend product items that exceptionally
are interesting for them. In recommendation engines, the product and the user information is gathered
to predict the score or choice of a user to a product. The information collected from a user is either
directly or indirectly while the data for products is collected explicitly. In content-based filtering rec-
ommendations (Schafer et al., 2007), we explicitly gather information for both users and products and
then compare the similarity to recommend the best choice. On the other hand, the collaborative-based
algorithm (Bhagavatula et al., 2018)) uses “User Behavior” for recommending items. They explore the
behavior of users and products in terms of rating, selection, purchase history, and cookies (Isinkaye et
al., 2015)).

We introduce two settings of recommendation systems for the fashion industry using both types of
collaborative and content-based filtering. In the first approach, we propose a survey content-based rec-
ommender system and as a second, we introduce an enriched collaborative-based recommender using a
novel weighted system. Finally, we initiate style rules that bring simplicity in selecting outfits based on
available products.

The rest of the paper is organized as follows. The next section covers an overview of available ap-
proaches in fashion recommending systems. Section[3|describes our proposed methods in detail. Section
M) shows the experimental framework and results and finally, section [5] discusses the conclusions and
future work of the proposed system.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1

Proceedings of the Workshop on Natural Language Processing in E-Commerce (EComNLP), pages 1-10
Barcelona, Spain (Online), Dec 12, 2020.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 Related Works

The wide fashion domain requires studies in the research area to assist the shopping experience. For a
long time, the limitation on computing resources was a drawback for companies to apply deep learning
algorithms on their platform. Fortunately, now technology allows processing a vast amount of data in
a short time. The machine learning field is impacting the fashion industry in several ways including
Apparel designing, Manufacturing process and, Virtual merchandising ﬂ Several fashion retailers are
using question Answering systems (Santoro et al., 2017), Visual search, and automatic product tagging
(Hirtyannaiah et al., 2020). Nowadays, NLP as a machine learning technology improves the field of
personalization by extracting the product characteristics such as attributes, reviews, feedback, and other
information [

Recently, the fashion industry is developing outfit recommenders by using machine learning tech-
niques to decrease the time for exploring and combining products along with trended styles.

Consequently, in (Lin et al., 2018)) they addressed the task of outfit recommendation by suggesting a
bag of lower body clothes to a selected top. That is to say, a neural multi-task learning framework, called
neural outfit recommendation (NOR) has been introduced consisting of two: a convolutional neural
network with an attention mechanism to mine visual attributes of products and then a recurrent neural
network to translate the visual information into text format. As a result, the mutual information among
products is discovered and the system can recommend outfits using these features.

In (Akshaya et al., 2018)) they used K-Nearest Neighbour algorithm to detect the nearest neighbor or
a cluster based on the k£ value. There is also a considerable amount of work on recommending different
types of categories such as dresses, backbags, heels and handbags along with rating top k£ products to
display (Li et al., 2010). One implemented solution uses a text mining approach to improve ranked based
recommender systems. Also, in (Ahuja et al., 2019) a combination of k-means Clustering (Singh et
al., 2020) (Jin and Han, 2010) along with k-Nearest Neighbor is implemented on the movielens dataset
(Harper and Konstan, 20135)) to achieve an improving result. In their proposed technique, the recom-
mender system predicts the user’s preference for a movie based on different parameters which also can
be applied to product categories in the fashion industry.

3 Proposed Methods

This section describes the two proposed methods of our recommender system. The first subsection
explains the survey content-based recommender system architecture within an example. The second
subsection provides the enriched collaborative-based recommender system with the stylist, including
architecture and examples.

3.1 Survey content-based recommender system

In a survey content-based recommender systems, we rely on replies to product survey questions and
try to locate the most similar products. To address this, we require a dataset of product vectors and a
replied-on-survey vector with the same dimension as the product vectors. The product dataset includes
product information in the form of binary vectors. Table|l| shows an example of the database format of
the product table. In this example, there are two different classes each has three sub-classes for totally
three products:

Product_id | Classl Class2

Product_1 Subclass1 | Subclassl
Product_2 Subclass2 | Subclass2
Product_3 Subclass3 | Subclass3

Table 1: Database format of the product table.

"https://medium.com/datadriveninvestor/
2https ://www.information—-age.com/natural-language-processing-explained-123480247/
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To prepare the data for training, we created a binary table from the original one, including only 0 and
1 values. As a result, we extended columns to classes.sub-classes values. Table [2| shows the transformed

format of the original table [T

Product_id | Classl.Subl | Class1.Sub2 | Class1.Subc3 | Class2.Subl | Class2.Sub2 | Class2.Sub3
Product_1 0/1 0/1 0/1 0/1 0/1 0/1
Product_2 0/1 0/1 0/1 0/1 0/1 0/1
Product_3 0/1 0/1 0/1 0/1 0/1 0/1

Table 2: Modified database format of product table.

Let’s consider ?1 as product vectors and ﬁ as a rg)ly vector. As a first step, we train unsupervised
K-Nearest Neighbors (Knn) (Peterson, 2009) on all P; = { ]3; , ... Py} vectors using Euclidean distance
so that fg each ?z the distance is calculated. At this step, we train all categories of products. Considering
P and P; as two sample vectors, the distance D is calculated as shown in equation

D(ELB) = IB - Bl = {/(Br, - P2 + (P~ Pt 4t (B~ Pof* (D)

Afterward, through a survey, we receive information and create a reply vector equivalent to the product
vector in terms of size. More precisely, in the survey, there are questions for each sub-class equivalent to
the product classes. Then, at each session, the user selects the required sub-class in each class. Finally,

for each reply, recommendations are chosen from its n best predictions. The n number of predicted
recommendations can be defined or modified at each training by the e-commerce platform manager.

3.2 Enriched collaborative-based recommender system

The enriched collaborative-based recommender system pretends to take advantage of extra user external
information. Traditional collaborative-based recommender systems reply to users’ historical preferences
on a set of items. Because they are based on historical data, the main assumption is users who have
agreed in the past items to also agree in the future ones (Schafer et al., 2007)). we propose to inject: the
history of clicks and feedback, the clicked product and, styles.

3.2.1 Injected information

History of clicks:
shown in equation 2]

We require the set of past clicked products by each user to track their preference, as

8 - {a\a € ?,and(c, c)=(p,p)}

where 8 is the set of clicked products and ? is the vector of products. Then, we sum up all vectors in
i as @ by considering n as a number of product vectors in the history of clicks, as shown in equation

Bl

2

SC = Zn: c, 3)
=1

where A@ includes sum of all vector elements. Then, executing the algorithm we select maximum

values in all elements of @ as 1 and the rest as 0.
Result: Return SC
for element in SC do
if element is Maximum then
| element=1;
else
| element = 0;
end
end

Algorithm 1: Creating a binary vector from maximum values of the history of clicks
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History of feedback (rating): We assume each user is able to rate each product by its own preference
as shown in equation 4]

1, like
F,, =<0, notrated “)
-1, dislike

where I}, is feedback on product P; by user X;. Further, we discuss in detail the way we use this
data.

Clicked product: The clicked product (C P) returns the corresponded vector of the product so that
we use it to find similar products into our trained model. At this step, we already have trained models
varied by main product categories. Next, n number of similar products to the clicked one is detected by
Euclidean distance.

Styles: Styles are predefined patterns to combine products as an outfit. To say, each style includes
several clothes with predefined category, subcategory and, color. We have styles that ranged from two
to five products to complete any outfit. Table 3 gives a sample of style including three products with
predefined attributes which complete an outfit. Table [3| gives a sample of style including three products
with predefined attributes which complete an outfit.

{ "Product1”:[{ "Category”:"Dress”, ”Subcategory”:”Nightdress”, “Color”:"Blue” }]
J’Product2”: [{ "Category”:”Footwear”, ”Subcategory”:”Sandals”, ”Color”:"Black™}]
“Product3”:[{ "Category”:” Accessory”, "Subcategory”:”Belt”, "Color”:"Black™ }]}

Table 3: Sample of style including 3 products with predefined attributes.

After retrieving a bag of similar products to the clicked one, we look for the best style to create an
outfit.

3.2.2 Method to inject information

In the next, we explain how the communication between injected parts is done. The proposed system
works using three main steps to recommend an outfit to a specific user.

Stepl : In this step, the product information is taken as input and we create the new data by trans-
forming the raw data into a binary matrix. In tables {] and [5| we illustrate a real example of normal and
transformed matrix table of products respectively.

Product_id | Cat Subcat Color
Product_1 | shirt tshirt red
Product_2 | dress blazer black
Product_3 | footwear | sanadals | white
Product 4 | pants boots black
Product_5 | shirt boots white

Table 4: A normal form of the product table

Product.id Cat.Shirt Cat.Dress Cat.Footwear Cat.Pants Subcat. Tshirt Color.Red Color.Black Color.white
Product_] 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Product_2 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Product_3 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Product_4 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
Product_5 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Table 5: A transformed form of the product table [4]

Then, a history of feedback for each user is stored in the database by each feedback (like or dislike). As
mentioned, a product can be rated by each user so that its user based to respect the other user’s feedback.
In the initial point, when there is no feedback, we select all of the products to perform similarity detection,
but once we reach a considerable amount of feedback on a product, we select 80% of liked and 20% of
unrated products to recommend. The disliked products are ignored and marked as a blacklist in the
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database. using user-based feedback, we ensure disliked products are still available for other users.
Later, the history of clicks is another input stored in the database to keep a track of user preferences. By
using this information, we give a higher weight to the features in which the user has a higher interest.
As an example, user a has clicked more on products with black color and leather material, so we try
to recommend products including these features. However, these features are being changed during the
lifetime of a user in the system so that their preferences are dynamic for different categories. For instance,
the recommended color will change once the weight of the current color is less than the previous one due
to the clicks on the other type of colors. Afterward, the styles are injected into the database to combine
recommended products as outfits. we started with 1000 style patterns with the mentioned format. In
the discussion part, we explain the future available tasks for this part. And finally, once a user clicks on
a product, we keep the vector of this product as a temporary value to detect its similar products. The
important point at this step is the way we store the product information. That is, in order to prevent
recommending the same category (for example, recommending always shirt to a clicked shirt product),
we store products by different categories and detect similar products in different categories. In the next
step, we explain the algorithm we used.

Step 2:  After storing the recommended information, we follow Algorithm [2| procedure to prepare the
recommended products. Considering k£ as a number of required products in each category, C'P as a
current clicked product by the user, P, as a list of products divided by categories(c), SC as a binary list
of history of clicks and F' as a list of user’s feedback.

Result: ReturnRecommendedList(recommendedproductsbycategory)
initialization;
input(k);
open(Pe);
open(SC);
open(F);
open(CP);
for (categoryinP.) do
for productincategory do
if ((Fp == 1)and(SCisinproduct)) then
| ListLiked = add(product);
end
if ((Fp == 0)and(SCisinproduct)) then
| ListUnrated = add(product);
end

end
Trainset = 80%(k)(ListLiked) + 20%(k)(ListUnrated);
RecommendedList = insert(Knearestneighbors(Trainset));

end
Algorithm 2: Creating a list of the recommended products per category

Step3: Having the list of recommended products we try to fit products in style rules. We look for a
match between recommended products in styles in terms of C'ategory, Subcategory and Color, as soon
as a match is found, we return that list as a total look. Algorithm [3|describes the approach we produce
outfit out of recommended products. Table [6] shows an example of a recommended outfit including four
products:

{"Product133”:[{ "Category”:"tops”, ”Subcategory”: formaltop”, "Color”:"red” "Fabrics:”Cotton” }]
“Product87”: [{ "Category”:”"Footwear”, ”Subcategory”:boot”, "Color”:”Blue”, “Fabrics:”Foam” }]
“Product91”: [{ ”Category”:”pants”, ”Subcategory”:”jeans”, "Color”:"Blue”, “Fabrics:"Denim” }]}

Table 6: Example of recommended outfit.
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Result: Alistofclothesasout fit
initialization;
open(Styles);
open(RecommendedList);
for styleinStyles do
if (RecommendedListisinstyle) then
| Returnlistofproducts;
end

end
Algorithm 3: Creating outfit out of recommended products with Style rules

4 Experiments

Data We perform our experiment on Kaggle fashion—datase along with iMaterialisﬂ with totally
around 90k rows and 8 columns. The information of each of the columns included gender, master
category, subcategory, article type, base color, year, season, and usage. In total, there are 15 product
categories: accessories, bag, beachwear, coats, hat, hosiery, footwear, apparel set, bottom wear, dress,
innerwear, loungewear, saree, socks, and topwear. This is a gender-balanced dataset (considering bi-
nary classification), we have approximately 48% women and 52% men proportion entries. We are aware
of the limitation of the binarization in gender, where other communities from LGTB+ are disregarded,
unfortunately non-binary gender is not currently included in this data.

Data Privacy We undertake to comply with the legislation in force regarding the protection of personal
data contained in the RGPD 2016/679 UE. The basis for legitimizing the processing of the data is the
consent of the interested party. We carry out the treatments related to the scope of the consent and
informed purposes. The data provided will be kept for the duration of the contractual relationship and
during the years necessary to comply with legal obligations. The data will not be transferred to third
parties, except for group companies. We perform the recommender on the data provided by the business
to business partners with all of the privacy respects and regulations accepted by them and their final users.

Survey content-based recommender system results In our first experiment we evaluated our survey
content-based recommender described in Section [3.1| with 1,000 random answered surveys. Then, we
compared the results by Root Mean Square Error (RMSE) based on equation 3]

n

_l - ‘/2
MSE=—-3% (¥;-Y]) ©)

i=1
We compared the MSE between requested and queried products when assigning k£ number of nearest
neighbors to the surveyed product. Figure [1| shows the MSE difference for two settings with £ = 5 and

k = 10.

3https://www.kaggle.com/paramaggarwal/fashion-product-images-dataset?
*https://www.kaggle.com/c/imaterialist-fashion-2019-FGVC6/data?select=train
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Figure 1: Mean square error for 1,000 surveys on 90k data in two settings: k=5 and k£ = 10

To visualize results, we provided five random surveys (expected) and its 5 nearest neighbors found
with knn recommender system from section [3.1] We selected random products as input with related
vector and performed the experiment. Figure [2]illustrates the expected products in the first row and the
recommended ones in the rest in five different requests per column. We can see the category and other
attributes in the recommendations are close to the expected product.

Test 1

Test 2 | Test3 ‘ Test4 ’ Test 5 ‘

|
Clicked product/
survey

Recommended
products

3

urz

o
S=N

£

Figure 2: A visualization of k = 5 recommended products for random requests

Collaborative-based recommender system results. We evaluated our second recommender system
explained in the section[3.2] In this experiment, we grouped the dataset by product categories such that
we find similar products to each clicked-product in different product catalogs. To perform our analysis,
totally we created 8 categories out of 10 available in the dataset. Next, the proposed approach performed
on the clicked-product and outfits was achieved by using our pre-defined style patterns. We selected five
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random output samples from the proposed recommender in figure 3

Test 1 Test 2 Test 3 Test4 Test 5

Clicked product . I ,

Recommended
To complete
outfit
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Figure 3: A visualization of full outfit recommendations for the clicked-product using the style rules for
five random cases

As shown in Figure [d] the average MSE has decreased by 4.5%, which is a significant decrease in the
error.
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Figure 4: Average MSE in the Collaborative-based recommender in two different settings

Gender analysis. In our setting, once a user clicks on a product should get some recommendations.
The system is not aware of any information about the gender of this person and there is no gender filter
on products. We want to evaluate the performance of our system desegregated by gender. Referring
to the details in [5] we achieved more than 99% accuracy in recommending the product to the correct
gender. The results indicated on the bar chart shows similar performance on men-women which is due to
a balanced dataset. Moreover, we have improved the gender selection by up to 100% by giving a higher
weight to the gender vectors in the clicked product.
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Figure 5: Results of recommending the correct product gender to men and women in normal and
weighted modes of vectors

5 Conclusions

Recommender systems are becoming one of the main key points in e-commerce and today customers
are demanding more personalized products. In our approach, two recommender systems were introduced
where each one has specific usage in the e-commerce platform. The survey content-based recommender
system suggests the nearest product based on the replies on the survey with the least distance. On the
other hand, the enriched collaborative-based recommender system uses more filters and style rules to
create outfits based on the clicked product with similar performance on a gender basis (assuming binary
gender). However, there are remaining challenges in updating style rules or missing some products in
case of using a few numbers of neighbors. As future work, we plan to develop an enriched collaborative-
based recommender system by using more external information and dynamically updating styles based
on the local trends.
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