
Proceedings of the 3rd Workshop on e-Commerce and NLP (ECNLP 3), pages 19–23
Online, July 10, 2020. c©2020 Association for Computational Linguistics

19

Abstract

Alternative recommender systems are critical for
ecommerce companies. They guide customers to
explore a massive product catalog and assist
customers to find the right products among an
overwhelming number of options. However, it is
a non-trivial task to recommend alternative
products that fit customers’ needs. In this paper,
we use both textual product information (e.g.
product titles and descriptions) and customer
behavior data to recommend alternative products.
Our results show that the coverage of alternative
products is significantly improved in offline
evaluations as well as recall and precision. The
final A/B test shows that our algorithm increases
the conversion rate by 12% in a statistically
significant way. In order to better capture the
semantic meaning of product information, we
build a Siamese Network with Bidirectional
LSTM to learn product embeddings. In order to
learn a similarity space that better matches the
preference of real customers, we use co-compared
data from historical customer behavior as labels
to train the network. In addition, we use NMSLIB
to accelerate the computationally expensive kNN
computation for millions of products so that the
alternative recommendation is able to scale across
the entire catalog of a major ecommerce site.

1 Introduction

Recommender systems are pervasive in
ecommerce and other web systems (Zhang et al.
2019). Alternative product recommendation is an
important way to help customers easily find the
right products and speed up their buying decision
process. For example, if a customer is viewing a
“25.5 cu. ft. Counter Depth French Door
Refrigerator in Stainless Steel”, she may also be
interested in other french door refrigerators in
different brands but with similar features such as
capacity, counter depth, material, etc.
 There are two main ways to obtain an
alternative product list for a given product. First
is a content-based recommendation approach. If
two products have similar attributes or content so

that one can be replaced by the other, we can
consider them as alternative products. Word2vec
has been used to learn item embeddings for
comparing item similarities (Caselles-Dupre,
Lesaint, and Royo-Letelier 2018). However, this
unsupervised learning process does not guarantee
the embedding distance is consistent with
customers’ shopping preference. The second way
is to leverage customer behavior to find
alternative products in the style of item-to-item
collaborative filtering (Linden, Smith, and York
2003). If customers frequently consider two
products together, one product can be
recommended as an alternative for the other.
Unfortunately, this approach has a cold start
problem.
 In this work, we formulate the recommendation
problem into a supervised product embedding
learning process. To be specific, we develop a
deep learning based embedding approach using
Siamese Network, which leverages both product
content (including title and description) and
customer behavior to generate Top-N
recommendations for an anchor product. Our
contributions are as follows:

• Recommend alternative products using
both product textual information and
customer behavior data. This allows us to
better handle both the cold start and
relevancy problems.

• Use a Bidirectional LSTM structure to
better capture the semantic meaning of
product textual information.

• Build a Siamese Network to incorporate
co-compared customer behavior data to
guide the supervised learning process and
generate a product embedding space that
better matches customer’s preference.

• Our model outperforms baselines in both
offline validations and an online A/B test.

Deep Learning-based Online Alternative Product
Recommendations at Scale

Mingming Guo, Nian Yan, Xiquan Cui, San He Wu, Unaiza Ahsan,

Rebecca West and Khalifeh Al Jadda

The Home Depot, Atlanta, GA, USA
{mingming_guo, nian_yan, xiquan_cui, san_h_wu, unaiza_ahsan,

rebecca_west, khalifeh_al_jadda}@homedepot.com

20

2 Problem Formulation

We have the textual information 𝑇 = {𝑥!, … , 𝑥"}
(a concatenation of product title and description)
of a catalog of products 𝑃 = {𝑝!, … , 𝑝"} to make
recommendations. The goal of the alternative
recommendation is to learn a embedding
projection function 𝑓# so that the embedding of
an anchor product that is viewed by a customer
𝑓#(𝑥$) is close to the embeddings of its
alternatives 𝑓#(𝑥%) . In this paper, we use the
cosine similarity between the embeddings of
𝑓#(𝑥$) and 𝑓#(𝑥%) as the energy function.

𝐸# =
〈'!()")	,'!()#)	〉
‖'!()")	‖‖'!()#)	‖

 (1)

The problem is how to learn a function as the
embedding projection function 𝑓# to better
capture the semantic meanings of the product
textual information and project a sequence of
tokens 𝑥/ 	into an embedding vector of size d. The
total loss over the training data set 𝑋 =
0𝑥$

(/), 𝑥%
(/), 𝑦(/)2 is given by

𝐿#(𝑋) = ∑ 𝐿#
(/)(0

/1! 𝑥$
(/), 𝑥%

(/), 𝑦(/)) (2)

where the instance loss function 𝐿#
(/) is a

contrastive loss function. It consists of a term
𝐿2	for the positive cases (𝑦(/) = 1), where the
product pair are alternative to each other. In
addition, it consists of a term 𝐿3	for the negative
cases (𝑦(/) = 0), where the product pair are not
often considered together by customers.

𝐿!
(#) = 𝑦(#)𝐿%$𝑥&

(#), 𝑥'
(#)' + (1 − 𝑦(#))𝐿((𝑥&

(#), 𝑥'
(#)) (3)

The loss functions for the positive and negative
cases are given by:

𝐿2 7𝑥$
(/), 𝑥%

(/)8 = |1 − 𝐸#| (4)

𝐿($𝑥&
(#), 𝑥'

(#)' = -|𝐸𝑤|				𝑖𝑓	𝐸! > 0
		0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

 (5)

Based on the loss function, the problem is how to
build a network that can learn part of the product
information that is important for customers and
project a product to the right embedding space that
is consistent with customers’ preference.

3 Deep Learning Embedding Approach

Textual Data and Co-compared Data
Product Information: From the ecommerce site
catalog data, we extract the product ID, product
title and description as the raw textual data with
an example in Table 1.

Product ID Product Title Product Description

‘12345678’
60 Gal. Electric
Air Compressor

This compressor offers a solid
cast iron, twin cylinder
compressor pump for extreme
durability. It also offers 135
psi maximum pressure and air
delivery 11.5/10.2 SCFM at
40/90 psi.

 Table 1. Product Textual Data
Co-compared Data: Customers can select several
products on a search result page for co-
comparison to verify how they are similar and
different based on their features. Those products
are considered alternative to each other. The co-
compared is a strong signal of the similarity
between products within same product taxonomy.
We extract co-compared data from clickstream to
create the training data. Some examples of the co-
compared data are shown in Table 2.

Product ID Product ID Co-compared

‘12345678’ ‘87654321’ 1

‘32187654’ ‘54321876’ 1

Table 2. Co-compared Example

Siamese Network with Bidirectional LSTM

Fig. 1 Siamese Network with Bidirectional LSTM

21

We build a Siamese Network (Bromley et al.
1994) with Bidirectional LSTM (Graves and
Schmidhuber 2005) components to learn and
generate embeddings for all products. The
product embedding space better captures the
semantic meaning of the product textural
information and customer preferences. Textual
data are in a sequential format and the order of the
texts matters for the network. We choose
Bidirectional LSTM to learn representation in
both directions from the input sequences. We use
Keras with TensorFlow to build and train the
network. We choose RMSprop (Hinton et al.
2012) as the optimizer. The loss function is the
binary cross entropy. The network architecture is
shown in Figure 1.

Creating Training Data by Sampling

Fig. 2 Connected Graphs

Positive and negative sampling: we filter out the
products without titles and/or descriptions from
the co-compared data. We form a connected graph
from the co-compared product pairs. For example,
if product A and B are co-compared and product
B and C are co-compared, then (A, B, C) forms a
connected graph. If products D and E are co-
compared and E and F are co-compared, then (D,
E, F) forms a connection graph. We create positive
samples for each product by randomly sampling
another product within the same set, e.g. [A, C, 1].
We also create negative samples for each product
in a connected graph by randomly sampling a
different connected graph first, then randomly
sampling a product in that graph, e.g. [A, D, -1],
as shown in Figure 2.

How many data
points

How many
products

What’s the time
period (year)

331900 65684 1

Table 3. Training Data Statistics

 The negative sampling space is much larger
than the positive sampling space because only a
small number of products are frequently co-
compared together by our customers. Thus, for
each anchor product, we sample more negative
samples than positive samples. Based on our
experiments and empirically analysis, for each

positive sample, three negative samples are
created which gives the best performance on the
validation loss when training the model. The
statistics of the training data is shown in Table 3.

Training the Model and Generating
Embeddings
The Siamese Network training process takes about
10 hours to converge. The next step is to load the
best model weights to generate product
embeddings. Specifically, from the Siamese
Network, we remove the last cosine similarity
layer and the second input branch which processes
the second product of the product pairs. We only
use the Embedding layer and the Bidirectional
LSTM layer. The final result is the concatenation
of the hidden state of the product title and the
hidden state of the product description.

Scalable Recommendation Generation
We generate millions of embeddings based on
product titles and descriptions. For each product,
the task is to compute distances with the rest of
millions of product embeddings using a similarity
metric, e.g. cosine similarity, and rank the
similarity scores from higher to lower to get the
Top-N recommended products. According to the
detailed analysis from (Aumüller et al. 2019), we
choose NMSLIB (Boytsov et al. 2016) library to
conduct heavy kNN computations because it has
high performance in both recall and queries per
second.

4 Performance Evaluation

In this section, we describe how we evaluate the
effectiveness and efficiency of our deep learning
model with offline evaluation and online A/B test.
We use our production data to validate the results
since this is a unique case for us. We did not find
exact similar open data set with similar customer
behaviors that can be used for our evaluation.

Algorithms:
1) Baseline 1: Attributed Based
This baseline algorithm uses product attributes to
generate recommendations. The attributes contain
numerical and categorical data. The categorical
features are converted into numerical format using
one-hot encoding. The distance between two
products is computed using cosine similarity. This
is the content-based method we compare with.
2) Baseline 2: Frequently Compared
This baseline algorithm uses the actual customer
co-compared data. The recommendations are

22

ranked by the co-comparison counts. Due to the
cold-start problem, many products in the catalog
do not have such recommendations even we create
labels from the co-compared data. This is the
collaborative filtering method we compare with
since it’s based on item-to-item relationships built
by customer browsing behaviors.
3) Proposed: Deep Learning Based
For Deep Learning Based, we choose 0.8 as the
cutting threshold for the cosine similarity score.
This threshold is selected and validated based on
the judgement from our human expert validators
after they examine thousands of random sampled
anchors from the catalog data and the
recommendations generated from our model. We
only keep the recommendations that have at least
0.8 similarity with each anchor product.

Offline Evaluation:
1) Precision and Recall:

 Precision Recall

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

Attribute Based 0.23% 0.13% 0.10% 0.15% 0.34% 0.33%

Frequently Compared 0.75% 0.51% 0.47% 0.51% 0.93% 1.02%

Deep Learning Based 1.47% 0.81% 0.61% 0.91% 2.08% 2.59%

Table 4. Precision and Recall

Comparison 1:

Two weeks of actual customer purchase data from
clickstream data is used to evaluate the
performance of all 3 algorithms based on precision
and recall. There are total 1.1 million purchase
sessions. In this comparison, we use the raw data
regardless if each session has all two baselines.
This is a fair comparison since not all anchors can
be covered by both algorithms. For example, a
product may not have the same set of attributes as
other products so this product cannot be covered
by Attributed Based algorithm. This is because
there are vast variants of similar products without
same set of attributes. Another scenario is that this
product has never been compared with other
products by our customers so this product cannot
be covered by Frequently Compared algorithm.
For the Deep Learning Based, we compare its
recommendations with the purchased items. Table
4 shows our algorithm performs much better than
the baseline algorithms for all top 1, 5, and 10
items precision and recall scores, especially for

precision top 1, recall top 5 and top 10. The main
reasons are: i) Frequently Compared recommends
co-compared products by customers and only
covers small sets of products; ii) Attributed Based
approach has a higher coverage but a lower
relevancy.

Comparison 2:

In this comparison, we select sessions that have
both Attributed Based and Frequently Compared.
Table 5 shows our Deep Learning Based still
performs much better than Attributed Based but
not Frequently Compared. The reason is that the
label we used to train our model is from co-
compared data, so our model has the upbound
from Frequently Compared’s performance. This
experiment validated our hypothesis.

 Precision Recall

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10

Attribute Based 0.21% 0.13% 0.12% 0.16% 0.31% 0.34%

Frequently Compared 2.48% 1.81% 1.75% 1.65% 2.65% 2.76%

Deep Learning Based 1.72% 0.90% 0.67% 1.09% 2.33% 2.85%

Table 5. Precision and Recall

2) Coverage: The anchor coverages of all the
algorithms are also computed. The Attributes
Based and Frequently Compared approaches
cover 31.5% and 47.1% of anchors, respectively,
and those two numbers are increased to 81.2%
and 83.4% with the incremental increase from our
Deep Learning Based approach. Since most of our
products have titles and descriptions, so our Deep
Learning Based significantly boosts the coverage
of anchor products from our catalog to have good
recommendations.

Online A/B Testing:

Conversion Rate: The A/B test was run for three
weeks and success was measured using
conversion rate. Conversion rate is the number of
purchases divided by number of visits which
captures the similarity between anchor and
recommendations. Our deep learning model
outperforms the existing hybrid algorithm which
combined Attribute Based and Frequently
Compared with a 12% higher conversion rate.
This is a very successful test for our business.
We’re implementing the deep learning algorithm
on our production site.

23

5 Related Work

The traditional method for recommender systems
is content-based recommendations (Lops et al.
2011). This method can handle the cold start
problem well. Collaborative Filtering is another
method based on user behaviors. For example,
Matrix Factorization (Koren et al. 2009) is a
widely used method for collaborative filtering.
Our two baseline algorithms, one is considered as
content-based and the other is considered as
collaborative filtering using user behavior data
with the co-compared format. Deep learning now
has been widely used not only in the academic
community, but also in industrial recommender
system settings, such as Airbnb’s listing
recommendations (Grbovic and Cheng 2018) and
Pinterest’s recommendation engine (Ying et al.
2018). Most of recent deep learning papers (e.g.,
Wang et al. 2019; Ebesu, Shen, and Fang 2018)
have been focused on sequential
recommendations. (Neculoiu et al. 2016) presents
a deep network using Siamese architecture with
character-level Bidirectional LSTM for job title
normalization. (Mueller and Thyagarajan 2016)
also presents a Siamese adaptation of the LSTM to
learn sentence embedding. However, this work
needs human annotated labels while our labels are
extracted from clickstream data. Our work more
focuses on providing alternative recommendations
by learning product embedding from product
textual data and customer signals.

6 Conclusion

Recommender Systems are core functions for
online retailers to increase their revenue. To help
customers easily find alternative products in an
automated way, we develop a deep learning
approach to generate product embeddings based
on a Siamese Network with Bidirectional LSTM.
We extract co-compared data from customer
clickstream and product textual data to train the
network and generate the embedding space. Our
approach significantly improves the coverage of
similar products as well as improving recall and
precision. Our algorithm also shows promising
results on conversion rate in an online A/B test.

References
Aumüller, M.; Bernhardsson, E.; Faithfull, A.

2019. ANN-Benchmarks: A Benchmarking Tool for
Approximate Nearest Neighbor Algorithms.
Information Systems.

Boytsov, L.; Novak, D.; Malkov, Y.; Nyberg, E.
2016. Off the Beaten Path: Let’s Replace Term-

Based Retrieval with k-NN Search. In proceedings
of CIKM.

Bromley, J.; Guyon, I.; LeCun, Y.; Sackinger, E.; and
Shah, R. 1994. Signature verification using a
“Siamese” time delay neural network. In
Proceedings of Advances in Neural Information
Processing Systems, 737-744.

Caselles-Dupre, H.; Lesaint, F.; and Royo-Letelier, J.
2018. Word2vec applied to recommendation:
hyperparameters matter. In Proceedings of RecSys,
352-356.

Ebesu, T.; Shen, B.; and Fang, Y. 2018. Collaborative
memory network for recommendation systems. In
Proceedings of SIGIR, 515-524.

Graves, A. and Schmidhuber, J. 2005. Framewise
phoneme classification with Bidirectional LSTM
and other neural network architectures. In
Proceedings of IEEE International Join Conference
on Neural Networks, July 31-Aug 4.

Grbovic, M. and Cheng, H. 2018. Real-time
personalization using embeddings for search
ranking at Airbnb. In Proc. Of the 24th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, 311-320.

Hinton, G.; Srivastava, N.; and Swersky, K. 2012.
Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent.

Keras, the python deep learning library: http://keras.io.

Koren, Y.; Bell, R.; and Volinsky C. 2009. Matrix
factorization techniques for recommender systems.
In Proceedings of IEEE Computer, Vol. 42, No. 8,
30-37.

Linden, G.; Smith, B.; and York, J. 2003. Amazon.com
Recommendations: Item-to-Item Collaborative
Filtering. In IEEE Internet Computing, Vol. 7, Issue
1, 76-80.

Lops, P.; Gemmis, M. de; and Semeraro, G. 2011.
Content-based recommender systems: state of the
art and trends. In Recommender Systems Handbook,
73-100.

Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua T.S.
2019. Neural graph collaborative filtering. In
Proceedings of SIGIR, July 21-25.

Ying, R.; He, R.; Chen, K.; Eksombatchai, P.;
Hamilton W. L.; and Leskovec, J. 2018. Graph
convolutional neural networks for web-scale
recommender systems. In 24th SIGKDD, 974-983.

Zhang, S.; Yao, L.; Sun, A.; Tay, Y. 2019. Deep
learning based recommender system: a survey and
new perspectives. In Journal of ACM Computing
Surveys (CSUR), Vol 52, Issue 1, No. 5.

