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Abstract 

Alternative recommender systems are critical for 
ecommerce companies. They guide customers to 
explore a massive product catalog and assist 
customers to find the right products among an 
overwhelming number of options. However, it is 
a non-trivial task to recommend alternative 
products that fit customers’ needs. In this paper, 
we use both textual product information (e.g. 
product titles and descriptions) and customer 
behavior data to recommend alternative products. 
Our results show that the coverage of alternative 
products is significantly improved in offline 
evaluations as well as recall and precision. The 
final A/B test shows that our algorithm increases 
the conversion rate by 12% in a statistically 
significant way. In order to better capture the 
semantic meaning of product information, we 
build a Siamese Network with Bidirectional 
LSTM to learn product embeddings. In order to 
learn a similarity space that better matches the 
preference of real customers, we use co-compared 
data from historical customer behavior as labels 
to train the network. In addition, we use NMSLIB 
to accelerate the computationally expensive kNN 
computation for millions of products so that the 
alternative recommendation is able to scale across 
the entire catalog of a major ecommerce site. 

1 Introduction 

Recommender systems are pervasive in 
ecommerce and other web systems (Zhang et al. 
2019). Alternative product recommendation is an 
important way to help customers easily find the 
right products and speed up their buying decision 
process. For example, if a customer is viewing a 
“25.5 cu. ft. Counter Depth French Door 
Refrigerator in Stainless Steel”, she may also be 
interested in other french door refrigerators in 
different brands but with similar features such as 
capacity, counter depth, material, etc. 
 There are two main ways to obtain an 
alternative product list for a given product. First 
is a content-based recommendation approach. If 
two products have similar attributes or content so  
 
 

 
 
that one can be replaced by the other, we can 
consider them as alternative products. Word2vec  
has been used to learn item embeddings for 
comparing item similarities (Caselles-Dupre, 
Lesaint, and Royo-Letelier 2018). However, this 
unsupervised learning process does not guarantee 
the embedding distance is consistent with 
customers’ shopping preference. The second way 
is to leverage customer behavior to find 
alternative products in the style of item-to-item 
collaborative filtering (Linden, Smith, and York 
2003). If customers frequently consider two 
products together, one product can be 
recommended as an alternative for the other. 
Unfortunately, this approach has a cold start 
problem. 
 In this work, we formulate the recommendation 
problem into a supervised product embedding 
learning process. To be specific, we develop a 
deep learning based embedding approach using 
Siamese Network, which leverages both product 
content (including title and description) and 
customer behavior to generate Top-N 
recommendations for an anchor product. Our 
contributions are as follows: 

• Recommend alternative products using 
both product textual information and 
customer behavior data. This allows us to 
better handle both the cold start and 
relevancy problems. 

• Use a Bidirectional LSTM structure to 
better capture the semantic meaning of 
product textual information.  

• Build a Siamese Network to incorporate 
co-compared customer behavior data to 
guide the supervised learning process and 
generate a product embedding space that 
better matches customer’s preference. 

• Our model outperforms baselines in both 
offline validations and an online A/B test. 
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2 Problem Formulation 

We have the textual information 𝑇 = {𝑥!, … , 𝑥"} 
(a concatenation of product title and description) 
of a catalog of products 𝑃 = {𝑝!, … , 𝑝"} to make 
recommendations. The goal of the alternative 
recommendation is to learn a embedding 
projection function 𝑓#  so that the embedding of 
an anchor product that is viewed by a customer 
𝑓#(𝑥$)  is close to the embeddings of its 
alternatives 𝑓#(𝑥%) . In this paper, we use the 
cosine similarity between the embeddings of 
𝑓#(𝑥$) and 𝑓#(𝑥%)  as the energy function. 

𝐸# =
〈'!()")	,'!()#)	〉
‖'!()")	‖‖'!()#)	‖

        (1) 

The problem is how to learn a function as the 
embedding projection function 𝑓#  to better 
capture the semantic meanings of the product 
textual information and project a sequence of 
tokens 𝑥/ 	into an embedding vector of size d. The 
total loss over the training data set 𝑋 =
0𝑥$

(/), 𝑥%
(/), 𝑦(/)2 is given by 

𝐿#(𝑋) = ∑ 𝐿#
(/)(0

/1! 𝑥$
(/), 𝑥%

(/), 𝑦(/))    (2)                                     

where the instance loss function 𝐿#
(/)  is a 

contrastive loss function. It consists of a term 
𝐿2	for the positive cases (𝑦(/) = 1), where the 
product pair are alternative to each other. In 
addition, it consists of a term 𝐿3	for the negative 
cases (𝑦(/) = 0), where the product pair are not 
often considered together by customers. 

𝐿!
(#) = 𝑦(#)𝐿%$𝑥&

(#), 𝑥'
(#)' + (1 − 𝑦(#))𝐿((𝑥&

(#), 𝑥'
(#))  (3) 

The loss functions for the positive and negative 
cases are given by:  

𝐿2 7𝑥$
(/), 𝑥%

(/)8 = |1 − 𝐸#|      (4)                                      

𝐿($𝑥&
(#), 𝑥'

(#)' = -|𝐸𝑤|				𝑖𝑓	𝐸! > 0
		0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

       (5)                               

Based on the loss function, the problem is how to 
build a network that can learn part of the product 
information that is important for customers and 
project a product to the right embedding space that 
is consistent with customers’ preference. 

3 Deep Learning Embedding Approach 

Textual Data and Co-compared Data 
Product Information: From the ecommerce site 
catalog data, we extract the product ID, product 
title and description as the raw textual data with 
an example in Table 1.  
 

Product ID Product Title Product Description 

‘12345678’ 
60 Gal. Electric 
Air Compressor 

This compressor offers a solid 
cast iron, twin cylinder 
compressor pump for extreme 
durability. It also offers 135 
psi maximum pressure and air 
delivery 11.5/10.2 SCFM at 
40/90 psi.  

 Table 1. Product Textual Data 
Co-compared Data: Customers can select several 
products on a search result page for co-
comparison to verify how they are similar and 
different based on their features. Those products 
are considered alternative to each other. The co-
compared is a strong signal of the similarity 
between products within same product taxonomy. 
We extract co-compared data from clickstream to 
create the training data. Some examples of the co-
compared data are shown in Table 2. 
   

Product ID Product ID Co-compared 

‘12345678’ ‘87654321’ 1 

‘32187654’ ‘54321876’ 1 

Table 2. Co-compared Example 

Siamese Network with Bidirectional LSTM 

 

 

 

 

 

 
 

Fig. 1 Siamese Network with Bidirectional LSTM 
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We build a Siamese Network (Bromley et al. 
1994) with Bidirectional LSTM (Graves and 
Schmidhuber 2005) components to learn and 
generate embeddings for all products. The 
product embedding space better captures the 
semantic meaning of the product textural 
information and customer preferences. Textual 
data are in a sequential format and the order of the 
texts matters for the network. We choose 
Bidirectional LSTM to learn representation in 
both directions from the input sequences. We use 
Keras with TensorFlow to build and train the 
network. We choose RMSprop (Hinton et al. 
2012) as the optimizer. The loss function is the 
binary cross entropy. The network architecture is 
shown in Figure 1. 

Creating Training Data by Sampling 
 

 
Fig. 2 Connected Graphs 

Positive and negative sampling: we filter out the 
products without titles and/or descriptions from 
the co-compared data. We form a connected graph 
from the co-compared product pairs. For example, 
if product A and B are co-compared and product 
B and C are co-compared, then (A, B, C) forms a 
connected graph. If products D and E are co-
compared and E and F are co-compared, then (D, 
E, F) forms a connection graph. We create positive 
samples for each product by randomly sampling 
another product within the same set, e.g. [A, C, 1]. 
We also create negative samples for each product 
in a connected graph by randomly sampling a 
different connected graph first, then randomly 
sampling a product in that graph, e.g. [A, D, -1], 
as shown in Figure 2.  
 

How many data 
points 

How many 
products 

What’s the time 
period (year) 

331900 65684 1 

Table 3. Training Data Statistics 
 

 The negative sampling space is much larger 
than the positive sampling space because only a 
small number of products are frequently co-
compared together by our customers. Thus, for 
each anchor product, we sample more negative 
samples than positive samples. Based on our 
experiments and empirically analysis, for each 

positive sample, three negative samples are 
created which gives the best performance on the 
validation loss when training the model. The 
statistics of the training data is shown in Table 3. 

Training the Model and Generating 
Embeddings 
The Siamese Network training process takes about 
10 hours to converge. The next step is to load the 
best model weights to generate product 
embeddings. Specifically, from the Siamese 
Network, we remove the last cosine similarity 
layer and the second input branch which processes 
the second product of the product pairs. We only 
use the Embedding layer and the Bidirectional 
LSTM layer. The final result is the concatenation 
of the hidden state of the product title and the 
hidden state of the product description. 

Scalable Recommendation Generation 
We generate millions of embeddings based on 
product titles and descriptions. For each product, 
the task is to compute distances with the rest of 
millions of product embeddings using a similarity 
metric, e.g. cosine similarity, and rank the 
similarity scores from higher to lower to get the 
Top-N recommended products. According to the 
detailed analysis from (Aumüller et al. 2019), we 
choose NMSLIB (Boytsov et al. 2016) library to 
conduct heavy kNN computations because it has 
high performance in both recall and queries per 
second.  

4 Performance Evaluation  

In this section, we describe how we evaluate the 
effectiveness and efficiency of our deep learning 
model with offline evaluation and online A/B test. 
We use our production data to validate the results 
since this is a unique case for us. We did not find 
exact similar open data set with similar customer 
behaviors that can be used for our evaluation.  

Algorithms: 
1) Baseline 1: Attributed Based 
This baseline algorithm uses product attributes to 
generate recommendations. The attributes contain 
numerical and categorical data. The categorical 
features are converted into numerical format using 
one-hot encoding. The distance between two 
products is computed using cosine similarity. This 
is the content-based method we compare with.  
2) Baseline 2: Frequently Compared 
This baseline algorithm uses the actual customer 
co-compared data. The recommendations are 
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ranked by the co-comparison counts. Due to the 
cold-start problem, many products in the catalog 
do not have such recommendations even we create 
labels from the co-compared data. This is the 
collaborative filtering method we compare with 
since it’s based on item-to-item relationships built 
by customer browsing behaviors.  
3) Proposed: Deep Learning Based 
For Deep Learning Based, we choose 0.8 as the 
cutting threshold for the cosine similarity score. 
This threshold is selected and validated based on 
the judgement from our human expert validators 
after they examine thousands of random sampled 
anchors from the catalog data and the 
recommendations generated from our model. We 
only keep the recommendations that have at least 
0.8 similarity with each anchor product. 

Offline Evaluation: 
1) Precision and Recall:  

 Precision Recall 

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 

Attribute Based 0.23% 0.13% 0.10% 0.15% 0.34% 0.33% 

Frequently Compared 0.75% 0.51% 0.47% 0.51% 0.93% 1.02% 

Deep Learning Based 1.47% 0.81% 0.61% 0.91% 2.08% 2.59% 

Table 4. Precision and Recall 

Comparison 1:  

Two weeks of actual customer purchase data from 
clickstream data is used to evaluate the 
performance of all 3 algorithms based on precision 
and recall. There are total 1.1 million purchase 
sessions. In this comparison, we use the raw data 
regardless if each session has all two baselines. 
This is a fair comparison since not all anchors can 
be covered by both algorithms. For example, a 
product may not have the same set of attributes as 
other products so this product cannot be covered 
by Attributed Based algorithm. This is because 
there are vast variants of similar products without 
same set of attributes. Another scenario is that this 
product has never been compared with other 
products by our customers so this product cannot 
be covered by Frequently Compared algorithm. 
For the Deep Learning Based, we compare its 
recommendations with the purchased items. Table 
4 shows our algorithm performs much better than 
the baseline algorithms for all top 1, 5, and 10 
items precision and recall scores, especially for 

precision top 1, recall top 5 and top 10. The main 
reasons are: i) Frequently Compared recommends 
co-compared products by customers and only 
covers small sets of products; ii) Attributed Based 
approach has a higher coverage but a lower 
relevancy. 

Comparison 2:  

In this comparison, we select sessions that have 
both Attributed Based and Frequently Compared. 
Table 5 shows our Deep Learning Based still 
performs much better than Attributed Based but 
not Frequently Compared. The reason is that the 
label we used to train our model is from co-
compared data, so our model has the upbound 
from Frequently Compared’s performance. This 
experiment validated our hypothesis.  

 Precision Recall 

 Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 

Attribute Based 0.21% 0.13% 0.12% 0.16% 0.31% 0.34% 

Frequently Compared 2.48% 1.81% 1.75% 1.65% 2.65% 2.76% 

Deep Learning Based 1.72% 0.90% 0.67% 1.09% 2.33% 2.85% 

Table 5. Precision and Recall 

2) Coverage: The anchor coverages of all the 
algorithms are also computed. The Attributes 
Based and Frequently Compared approaches 
cover 31.5% and 47.1% of anchors, respectively, 
and those two numbers are increased to 81.2% 
and 83.4% with the incremental increase from our 
Deep Learning Based approach. Since most of our 
products have titles and descriptions, so our Deep 
Learning Based significantly boosts the coverage 
of anchor products from our catalog to have good 
recommendations. 

Online A/B Testing: 

Conversion Rate: The A/B test was run for three 
weeks and success was measured using 
conversion rate. Conversion rate is the number of 
purchases divided by number of visits which 
captures the similarity between anchor and 
recommendations. Our deep learning model 
outperforms the existing hybrid algorithm which 
combined Attribute Based and Frequently 
Compared with a 12% higher conversion rate. 
This is a very successful test for our business. 
We’re implementing the deep learning algorithm 
on our production site.  
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5 Related Work 

The traditional method for recommender systems 
is content-based recommendations (Lops et al. 
2011). This method can handle the cold start 
problem well. Collaborative Filtering is another 
method based on user behaviors. For example, 
Matrix Factorization (Koren et al. 2009) is a 
widely used method for collaborative filtering. 
Our two baseline algorithms, one is considered as 
content-based and the other is considered as 
collaborative filtering using user behavior data 
with the co-compared format.  Deep learning now 
has been widely used not only in the academic 
community, but also in industrial recommender 
system settings, such as Airbnb’s listing 
recommendations (Grbovic and Cheng 2018) and 
Pinterest’s recommendation engine (Ying et al. 
2018). Most of recent deep learning papers (e.g., 
Wang et al. 2019; Ebesu, Shen, and Fang 2018) 
have been focused on sequential 
recommendations. (Neculoiu et al. 2016) presents 
a deep network using Siamese architecture with 
character-level Bidirectional LSTM for job title 
normalization. (Mueller and Thyagarajan 2016) 
also presents a Siamese adaptation of the LSTM to 
learn sentence embedding. However, this work 
needs human annotated labels while our labels are 
extracted from clickstream data.  Our work more 
focuses on providing alternative recommendations 
by learning product embedding from product 
textual data and customer signals.  

6 Conclusion 

Recommender Systems are core functions for 
online retailers to increase their revenue. To help 
customers easily find alternative products in an 
automated way, we develop a deep learning 
approach to generate product embeddings based 
on a Siamese Network with Bidirectional LSTM. 
We extract co-compared data from customer 
clickstream and product textual data to train the 
network and generate the embedding space. Our 
approach significantly improves the coverage of 
similar products as well as improving recall and 
precision. Our algorithm also shows promising 
results on conversion rate in an online A/B test.  
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