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Abstract

We present SOCKEYE 2, a modernized
and streamlined version of the SOCKEYE

neural machine translation (NMT) toolkit.
New features include a simplified code
base through the use of MXNet’s Gluon
API, a focus on state-of-the-art model ar-
chitectures, and distributed mixed preci-
sion training. These improvements result
in faster training and inference, higher au-
tomatic metric scores, and a shorter path
from research to production.

1 Introduction

SOCKEYE (Hieber et al., 2017) is a versatile
toolkit for research in the fast-moving field of
NMT. Since the initial release, it has been used in
at least 25 scientific publications, including win-
ning submissions to WMT evaluations (Scham-
per et al., 2018). Based on the deep learning li-
brary MXNet (Chen et al., 2015), SOCKEYE also
powers Amazon Translate, showing industrial-
strength performance in addition to the flexibil-
ity needed in academic environments. Moreover,
we are excited to see hardware manufacturers con-
tributing optimizations to MXNet and SOCKEYE.
Intel has demonstrated large performance gains
for SOCKEYE inference on Intel Skylake proces-
sors.1 NVIDIA is working on significant perfor-
mance improvements for SOCKEYE’s transformer
(Vaswani et al., 2017) implementation through
fused operators and optimized beam search. This
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paper discusses SOCKEYE 2’s streamlined Gluon
implementation (§2), support for state of the art ar-
chitectures (§3), and improved model training (§4).

2 Gluon Implementation

SOCKEYE 2 adopts Gluon, the latest and preferred
application programming interface (API) of the
MXNet deep learning library. Gluon simplifies the
code while improving overall performance. De-
velopers can define building blocks of neural net-
work architectures as Python classes and seam-
lessly switch between eager execution for step-by-
step debugging and cached computation graphs for
maximum performance. Migration to Gluon sim-
plifies training and inference code in SOCKEYE 2,
reducing the overall number of lines of Python
code by 25%. The hybridized Gluon transformer
implementation in SOCKEYE 2 improves training
speed by 14%, compared to SOCKEYE.

3 Focus on State-of-the-Art Models

Due to the success of self-attentional models we
concentrated development of SOCKEYE 2 on the
transformer (Vaswani et al., 2017), removing sup-
port for recurrent and convolutional models. Us-
ing the pre-norm configuration by default allows
for learning rate warm-up-free training.

We found deep encoders and shallow decoders
for transformers to be competitive in BLEU while
significantly increasing decoding speed due to
computational workload being shifted to the en-
coder side. On WMT19 (EN–FI, FI–EN, EN–DE,
DE–EN), a 20-encoder and 2-decoder layer config-
uration improves on average by 0.2 BLEU over the
baseline, while reducing decoding time by 50%.

We also improved support for source factors by
allowing to tie source factor and word embeddings,



DE–EN EN–FI
BLEU Time BLEU Time

Ott et al. (2018) 34.7 30h 20.1 14h
Plateau Reduce 34.9 28h 20.7 12h

Table 1: SacreBLEU (Post, 2018) scores (newstest2019) and
training times (8 NVIDIA V100 GPUs) for a 20-encoder 2-
decoder layer transformer using the training setup described
by Ott et al. (2018) and Plateau Reduce, both implemented in
SOCKEYE 2.

as well as specifying different types of embedding
combinations (concatenation or summation).

4 Training Improvements

SOCKEYE 2 significantly accelerates training with
Horovod2 integration (Sergeev and Balso, 2018)
and MXNet’s automatic mixed precision (AMP).
Horovod extends synchronous training to any
number of GPUs (including across nodes) while
AMP automatically detects and converts parts of
the model that can run in reduced-precision mode
(FP16) without loss of quality.

SOCKEYE also provides a data-driven alterna-
tive to the popular “inverse square root” learning
schedule used by Vaswani et al. (2017) and Ott
et al. (2018): “Plateau Reduce” keeps the same
learning rate until validation perplexity does not
increase for several checkpoints, at which time it
reduces the learning rate and rewinds all model
and optimizer parameters to the best previous
point. Training concludes when validation per-
plexity reaches an extended plateau. In a WMT19
benchmark (Barrault et al., 2019), Plateau Reduce
training produces stronger models in slightly less
time than the setup described by Ott et al. (2018).
Results are presented in Table 1 where all values
are averages over 3 independent training runs with
different random initializations. Full hyperparam-
eters for SOCKEYE 2’s large batch training can be
found in the toolkit’s documentation.

5 Licensing and availability

SOCKEYE 2 is available3 under the Apache 2.0
license. It includes a Docker build to easily run
training or inference on any supported platform.

6 Conclusion

SOCKEYE 2 provides out-of-the-box support for
quickly training strong transformer models for re-
2https://github.com/horovod/horovod
3https://github.com/awslabs/sockeye

search or production. Extensive configuration op-
tions and the simplified code base enable rapid
development and experimentation. We invite the
community to contribute their ideas to SOCKEYE 2
and hope that the new programming model and
performance improvements enable others to con-
duct effective and successful research.
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