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Abstract

This paper studies the practicality of the
current state-of-the-art unsupervised meth-
ods in neural machine translation (NMT).
In ten translation tasks with various data
settings, we analyze the conditions un-
der which the unsupervised methods fail
to produce reasonable translations. We
show that their performance is severely af-
fected by linguistic dissimilarity and do-
main mismatch between source and tar-
get monolingual data. Such conditions
are common for low-resource language
pairs, where unsupervised learning works
poorly. In all of our experiments, super-
vised and semi-supervised baselines with
50k-sentence bilingual data outperform the
best unsupervised results. Our analyses
pinpoint the limits of the current unsuper-
vised NMT and also suggest immediate re-
search directions.

1 Introduction

Statistical methods for machine translation (MT)
require a large set of sentence pairs in two lan-
guages to build a decent translation system (Resnik
and Smith, 2003; Koehn, 2005). Such bilingual
data is scarce for most language pairs and its
quality varies largely over different domains (Al-
Onaizan et al., 2002; Chu and Wang, 2018). Neu-
ral machine translation (NMT) (Bahdanau et al.,
2015; Vaswani et al., 2017), the standard paradigm
of MT these days, has been claimed to suffer from
the data scarcity more severely than phrase-based
MT (Koehn and Knowles, 2017).

Unsupervised NMT, which trains a neural trans-
lation model only with monolingual corpora, was
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proposed for those scenarios which lack bilingual
data (Artetxe et al., 2018b; Lample et al., 2018a).
Despite its progress in research, the performance
of the unsupervised methods has been evalu-
ated mostly on high-resource language pairs, e.g.
German<>English or French<»English (Artetxe et
al., 2018b; Lample et al., 2018a; Yang et al., 2018;
Artetxe et al., 2018a; Lample et al., 2018b; Ren et
al., 2019b; Artetxe et al., 2019; Sun et al., 2019;
Sen et al., 2019). For these language pairs, huge
bilingual corpora are already available, so there
is no need for unsupervised learning in practice.
Empirical results in these tasks do not carry over
to low-resource language pairs; they simply fail to
produce any meaningful translations (Neubig and
Hu, 2018; Guzman et al., 2019).

This paper aims for a more comprehensive and
pragmatic study on the performance of unsuper-
vised NMT. Our experiments span ten translation
tasks in the following five language pairs:

e German<+English: similar languages, abun-
dant bilingual/monolingual data

e Russian<>English: distant languages, abun-
dant bilingual/monolingual data, similar sizes
of the alphabet

o Chinese<+>English: distant languages, abun-
dant bilingual/monolingual data, very differ-
ent sizes of the alphabet

o Kazakh«+English: distant languages, scarce
bilingual data, abundant monolingual data

e Gujarati<»English: distant languages, scarce
bilingual/monolingual data

For each task, we compare the unsupervised per-
formance with its supervised and semi-supervised
counterparts. In addition, we make the monolin-
gual training data vary in size and domain to cover
many more scenarios, showing under which con-
ditions unsupervised NMT works poorly.

Here is a summary of our contributions:



e We thoroughly evaluate the performance of
state-of-the-art unsupervised NMT in numer-
ous real and artificial translation tasks.

e We provide guidelines on whether to employ
unsupervised NMT in practice, by showing
how much bilingual data is sufficient to out-
perform the unsupervised results.

e We clarify which factors make unsupervised
NMT weak and which points must be im-
proved, by analyzing the results both quan-
titatively and qualitatively.

2 Related Work

The idea of unsupervised MT dates back to word-
based decipherment methods (Knight et al., 2006;
Ravi and Knight, 2011). They learn only lexicon
models at first, but add alignment models (Dou et
al., 2014; Nuhn, 2019) or heuristic features (Naim
et al., 2018) later. Finally, Artetxe et al. (2018a)
and Lample et al. (2018b) train a fully-fledged
phrase-based MT system in an unsupervised way.

With neural networks, unsupervised learning of
a sequence-to-sequence NMT model has been pro-
posed by Lample et al. (2018a) and Artetxe et al.
(2018b). Though having slight variations (Yang et
al., 2018; Sun et al., 2019; Sen et al., 2019), un-
supervised NMT approaches commonly 1) learn
a shared model for both source—target and
target—source 2) using iterative back-translation,
along with 3) a denoising autoencoder objective.
They are initialized with either cross-lingual word
embeddings or a cross-lingual language model
(LM). To further improve the performance at the
cost of efficiency, Lample et al. (2018b), Ren et
al. (2019b) and Artetxe et al. (2019) combine un-
supervised NMT with unsupervised phrase-based
MT. On the other hand, one can also avoid the
long iterative training by applying a separate de-
noiser directly to the word-by-word translations
from cross-lingual word embeddings (Kim et al.,
2018; Pourdamghani et al., 2019).

Unsupervised NMT approaches have been so
far evaluated mostly on high-resource language
pairs, e.g. French—English, for academic pur-
poses. In terms of practicality, they tend to un-
derperform in low-resource language pairs, e.g.
Azerbaijani—English (Neubig and Hu, 2018) or
Nepali—English (Guzmén et al., 2019). To the
best of our knowledge, this work is the first to
systematically evaluate and analyze unsupervised
learning for NMT in various data settings.

3 Unsupervised NMT

This section reviews the core concepts of the re-
cent unsupervised NMT framework and describes
to which points they are potentially vulnerable.

3.1 Bidirectional Modeling

Most of the unsupervised NMT methods share
the model parameters between source—target and
target—source directions. They also often share a
joint subword vocabulary across the two languages
(Sennrich et al., 2016b).

Sharing a model among different translation
tasks has been shown to be effective in multilin-
gual NMT (Firat et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019), especially in improving per-
formance on low-resource language pairs. This
is due to the commonality of natural languages;
learning to represent a language is helpful to rep-
resent other languages, e.g. by transferring knowl-
edge of general sentence structures. It also pro-
vides good regularization for the model.

Unsupervised learning is an extreme scenario
of MT, where bilingual information is very weak.
To supplement the weak and noisy training signal,
knowledge transfer and regularization are crucial,
which can be achieved by the bidirectional sharing.
It is based on the fact that a translation problem is
dual in nature; source—target and target— source
tasks are conceptually related to each other.

Previous works on unsupervised NMT vary in
the degree of sharing: the whole encoder (Artetxe
et al., 2018b; Sen et al., 2019), the middle layers
(Yang et al., 2018; Sun et al., 2019), or the whole
model (Lample et al., 2018a; Lample et al., 2018b;
Ren et al., 2019a; Conneau and Lample, 2019).

Note that the network sharing is less effective
among linguistically distinct languages in NMT
(Kocmi and Bojar, 2018; Kim et al., 2019a). It still
works as a regularizer, but transferring knowledge
is harder if the morphology or word order is quite
different. We show how well unsupervised NMT
performs on such language pairs in Section 4.1.

3.2 Iterative Back-Translation

Unsupervised learning for MT assumes no bilin-
gual data for training. A traditional remedy for the
data scarcity is generating synthetic bilingual data
from monolingual text (Koehn, 2005; Schwenk,
2008; Sennrich et al., 2016a). To train a bidirec-
tional model of Section 3.1, we need bilingual data
of both translation directions. Therefore, most un-



supervised NMT methods back-translate in both
directions, i.e. source and target monolingual data
to target and source language, respectively.

In unsupervised learning, the synthetic data
should be created not only once at the beginning
but also repeatedly throughout the training. At the
early stages of training, the model might be too
weak to generate good translations. Hence, most
methods update the training data as the model gets
improved during training. The improved model
for source—target direction back-translates source
monolingual data, which improves the model for
target—source direction, and vice versa. This cy-
cle is called dual learning (He et al., 2016) or itera-
tive back-translation (Hoang et al., 2018). Figure 1
shows the case when it is applied to a fully shared
bidirectional model.
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Figure 1: Iterative back-translation for training a bidirec-
tional sequence-to-sequence model. The model first translates
monolingual sentences (solid arrows), and then gets trained
with the translation as the input and the original as the out-
put (dashed arrows). This procedure alternates between (a)
source—rtarget and (b) target—source translations.

One can tune the amount of back-translations
per iteration: a mini-batch (Artetxe et al., 2018b;
Yang et al., 2018; Conneau and Lample, 2019; Ren
et al., 2019a), the whole monolingual data (Lam-
ple et al., 2018a; Lample et al., 2018b; Sun et
al., 2019), or some size in between (Artetxe et al.,
2019; Ren et al., 2019Db).

However, even if carefully scheduled, the itera-
tive training cannot recover from a bad optimum if
the initial model is too poor. Experiments in Sec-
tion 4.5 highlight such cases.

3.3 Initialization

To kickstart the iterative training, the model should
be able to generate meaningful translations already
in the first iteration. We cannot expect the training
to progress from a randomly initialized network
and the synthetic data generated by it.

Cross-lingual embeddings give a good starting
point for the model by defining a joint continu-
ous space shared by multiple languages. Ideally, in
such a space, close embedding vectors are seman-
tically related to each other regardless of their lan-
guages; they can be possible candidates for transla-
tion pairs (Mikolov et al., 2013). It can be learned
either in word level (Artetxe et al., 2017; Conneau
et al., 2018) or in sentence level (Conneau and
Lample, 2019) using only monolingual corpora.

In the word level, we can initialize the em-
bedding layers with cross-lingual word embed-
ding vectors (Artetxe et al., 2018b; Lample et al.,
2018a; Yang et al., 2018; Lample et al., 2018b;
Artetxe et al., 2019; Sun et al., 2019). On the other
hand, the whole encoder/decoder parameters can
be initialized with cross-lingual sequence training
(Conneau and Lample, 2019; Ren et al., 2019a;
Song et al., 2019).

Cross-lingual word embedding has limited per-
formance among distant languages (Sggaard et al.,
2018; Nakashole and Flauger, 2018) and so does
cross-lingual LM (Pires et al., 2019). Section 4.5
shows the impact of a poor initialization.

3.4 Denoising Autoencoder

Initializing the word embedding layers furnishes
the model with cross-lingual matching in the lex-
ical embedding space, but does not provide any
information on word orders or generation of text.
Cross-lingual LMs encode word sequences in dif-
ferent languages, but they are not explicitly trained
to reorder source words to the target language syn-
tax. Both ways do not initialize the crucial param-
eters for reordering: the encoder-decoder attention
and the recurrence on decoder states.

As a result, an initial model for unsupervised
NMT tends to generate word-by-word translations
with little reordering, which are very non-fluent
when source and target languages have distinct
word orders. Training on such data discourages the
model from reordering words, which might cause
a vicious cycle by generating even less-reordered
synthetic sentence pairs in the next iterations.

Accordingly, unsupervised NMT employs an



de-en ru-en zh-en kk-en gu-en
German English  Russian  English  Chinese  English  Kazakh  English  Gujarati  English
Language family Germanic Germanic  Slavic  Germanic  Sinitic  Germanic Turkic Germanic  Indic =~ Germanic
Alphabet Size 60 52 66 52 8,105 52 42 52 91 52
Monolineual Sentences 100M 71.6M 30.8M 18.5M 4.1M
& Words 1.8B 2.3B 1.1B 2.0B 1.4B 699M  2785M  421.5M  121.5M 93.8M
Bili | Sentences 5.9M 25.4M 18.9M 222k 156k
PMEEL Words  1374M 1449M  6186M  790M  4403M  4829M  1.6M  19M  23M  15M

Table 1: Training data statistics.

additional training objective of denoising autoen-
coding (Hill et al., 2016). Given a clean sentence,
artificial noises are injected, e.g. deletion or per-
mutation of words, to make a corrupted input. The
denoising objective trains the model to reorder the
noisy input to the correct syntax, which is essen-
tial for generating fluent outputs. This is done for
each language individually with monolingual data,
as shown in Figure 2.
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Figure 2: Denoising autoencoder training for source or target
language.

Once the model is sufficiently trained for de-
noising, it is helpful to remove the objective or re-
duce its weight (Graca et al., 2018). At the later
stages of training, the model gets improved in re-
ordering and translates better; learning to denoise
might hurt the performance in clean test sets.

4 Experiments and Analysis

Data Our experiments were conducted on
WMT 2018 German<English and Russian<+ En-
glish, WMT 2019 Chinese<+English, Kazakh«>
English, and Gujarati<>English (Table 1). We pre-

processed the data using the MOSES! tokenizer
and a frequent caser. For Chinese, we used the
JIEBA segmenter’. Lastly, byte pair encoding
(BPE) (Sennrich et al., 2016b) was learned jointly
over source and target languages with 32k merges
and applied without vocabulary threshold.

Model  We used 6-layer Transformer base ar-
chitecture (Vaswani et al., 2017) by default:
512-dimension embedding/hidden layers, 2048-
dimension feedforward sublayers, and 8 heads.

Decoding and Evaluation = Decoding was done
with beam size 5. We evaluated the test perfor-
mance with SACREBLEU (Post, 2018).

Unsupervised Learning We ran XLM® by
Conneau and Lample (2019) for the unsupervised
experiments. The back-translations were done
with beam search for each mini-batch of 16k to-
kens. The weight of the denoising objective started
with 1 and linearly decreased to 0.1 until 100k up-
dates, and then decreased to 0 until 300k updates.
The model’s encoder and decoder were both
initialized with the same pre-trained cross-lingual
LM. We removed the language embeddings from
the encoder for better cross-linguality (see Section
4.6). Unless otherwise specified, we used the same
monolingual training data for both pre-training and
translation training. For the pre-training, we set the
batch size to 256 sentences (around 66k tokens).
Training was done with Adam (Kingma and Ba,
2014) with an initial learning rate of 0.0001, where
dropout (Srivastava et al., 2014) of probability 0.1
was applied to each layer output and attention
components. With a checkpoint frequency of 200k
sentences, we stopped the training when the val-
idation perplexity (pre-training) or BLEU (trans-
lation training) was not improved for ten check-

"http://www.statmt.org/moses
Zhttps://github.com/fxsjy/jieba
3https://github.com/facebookresearch/XLM



BLEU [%]

Approach de-en en-de ru-en en-ru zh-en en-zh kk-en en-kk gu-en en-gu
Supervised 395 39.1 29.1 247 262 39.6 103 24 9.9 3.5
Semi-supervised 43.6 41.0 30.8 288 259 427 125 3.1 142 40
Unsupervised 238 202 120 94 1.5 2.5 2.0 0.8 0.6 0.6

Table 2: Comparison among supervised, semi-supervised, and unsupervised learning. All bilingual data was used for the
(semi-)supervised results and all monolingual data was used for the unsupervised results (see Table 1). All results are computed
on newstest2019 of each task, except for de-en/en-de and ru-en/en-ru on newstest2018.

points. We extensively tuned the hyperparameters
for a single GPU with 12GB memory, which is
widely applicable to moderate industrial/academic
environments. All other hyperparameter values
follow the recommended settings of XLM.

Supervised Learning  Supervised experiments
used the same hyperparameters as the unsuper-
vised learning, except 12k tokens for the batch
size, 0.0002 for the initial learning rate, and 10k
batches for each checkpoint.

If the bilingual training data contains less than
500k sentence pairs, we reduced the BPE merges
to 8k, the batch size to 2k, and the checkpoint
frequency to 4k batches; we also increased the
dropout rate to 0.3 (Sennrich and Zhang, 2019).

Semi-supervised Learning Semi-supervised
experiments continued the training from the super-
vised baseline with back-translations added to the
training data. We used 4M back-translated sen-
tences for the low-resource cases, i.e. if the orig-
inal bilingual data has less than 500k lines, and
10M back-translated sentences otherwise.

4.1 Unsupervised vs. (Semi-)Supervised

We first address the most general question of this
paper: For NMT, can unsupervised learning re-
place semi-supervised or supervised learning? Ta-
ble 2 compares the unsupervised performance to
simple supervised and semi-supervised baselines.

In all tasks, unsupervised learning shows much
worse performance than (semi-)supervised learn-
ing. It produces readable translations in two
high-resource language pairs (German<>English
and Russian<>English), but their scores are only
around half of the semi-supervised systems. In
other three language pairs, unsupervised NMT
fails to converge at any meaningful optimum,
reaching less than 3% BLEU scores. Note that,
in these three tasks, source and target languages
are very different in the alphabet, morphology, and
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Figure 3: Supervised and semi-supervised learning over
bilingual training data size. Unsupervised learning (horizon-
tal line) uses all monolingual data of Table 1.

word order, etc. The results in Kazakh<+English
and Gujarati<+English show that the current unsu-
pervised NMT cannot be an alternative to (semi-
)supervised NMT in low-resource conditions.

To discover the precise condition where the
unsupervised learning is useful in practice, we
vary the size of the given bilingual training data
for (semi-)supervised learning and plot the re-
sults in Figure 3. Once we have 50k bilingual
sentence pairs in German<>English, simple semi-
supervised learning already outperforms unsuper-
vised learning with 100M monolingual sentences



in each language. Even without back-translations
(supervised), 100k-sentence bilingual data is suffi-
cient to surpass unsupervised NMT.

In the Russian«+English task, the unsupervised
learning performance can be more easily achieved
with only 20k bilingual sentence pairs using semi-
supervised learning. This might be due to that Rus-
sian and English are more distant to each other
than German and English, thus bilingual training
signal is more crucial for Russian<+>English.

Note that for these two language pairs, the bilin-
gual data for supervised learning are from many
different text domains, whereas the monolingual
data are from exactly the same domain of the test
sets. Even with such an advantage, the large-scale
unsupervised NMT cannot compete with super-
vised NMT with tiny out-of-domain bilingual data.

4.2 Monolingual Data Size

In this section, we analyze how much monolin-
gual data is necessary to make unsupervised NMT
produce reasonable performance. Figure 4 shows
the unsupervised results with different amounts of
monolingual training data. We keep the equal size
for source and target data, and the domain is also
the same for both (web-crawled news).
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Figure 4: Unsupervised NMT performance over the size of
monolingual training data, where source and target sides have
the same size.

For German—English, training with only 1M
sentences already gives a reasonable performance,
which is only around 2% BLEU behind the 100M-
sentence case. The performance starts to saturate
already after SM sentences, with only marginal im-
provements by using more than 20M sentences.
We observe a similar trend in Russian—English.

This shows that, for the performance of unsu-
pervised NMT, using a massive amount of mono-
lingual data is not as important as the similarity

of source and target languages. Comparing to su-
pervised learning (see Figure 3), the performance
saturates faster when increasing the training data,
given the same model size.

4.3 Unbalanced Data Size

What if the size of available monolingual data is
largely different for source and target languages?
This is often the case for low-resource language
pairs involving English, where there is plenty of
data for English but not for the other side.

Our experiments so far intentionally use the
same number of sentences for both sides. In Fig-
ure 5, we reduced the source data gradually while
keeping the large target data fixed. To counteract
the data imbalance, we oversampled the smaller
side to make the ratio of source-target 1:1 for
BPE learning and mini-batch construction (Con-
neau and Lample, 2019). We compare such un-
balanced data settings to the previous equal-sized
source/target settings.
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Figure 5: Unsupervised NMT performance over source train-
ing data size, where the target training data is fixed to 20M
sentences (dashed line). Solid line is the case where the target
data has the same number of sentences as the source side.

Interestingly, when we decrease the target data
accordingly (balanced, solid line), the performance
is similar or sometimes better than using the full
target data (unbalanced, dashed line). This means
that it is not beneficial to use oversized data on one
side in unsupervised NMT training.

If the data is severely unbalanced, the distribu-
tion of the smaller side should be much sparser
than that of the larger side. The network tries to
generalize more on the smaller data, reserving the
model capacity for smoothing (Olson et al., 2018).
Thus it learns to represent a very different distribu-
tion of each side, which is challenging in a shared
model (Section 3.1). This could be the reason for



no merit in using larger data on one side.

4.4 Domain Similarity

In high-resource language pairs, it is feasible to
collect monolingual data of the same domain on
both source and target languages. However, for
low-resource language pairs, it is difficult to match
the data domain of both sides on a large scale.
For example, our monolingual data for Kazakh is
mostly from Wikipedia and Common Crawl, while
the English data is solely from News Crawl. In
this section, we study how the domain similarity
of monolingual data on the two sides affects the
performance of unsupervised NMT.

In Table 3, we artificially change the domain of
the source side to politics (UN Corpus*) or random
(Common Crawl), while keeping the target domain
fixed to newswire (News Crawl). The results show
that the domain matching is critical for unsuper-
vised NMT. For instance, although German and
English are very similar languages, we see the per-
formance of German<>English deteriorate down to
-11.8% BLEU by the domain mismatch.

Domain Domain BLEU [%]
(en) (de/ru) de-en en-de ru-en en-ru
Newswire 233 199 119 93
Newswire  Politics 115 122 23 2.5
Random 184 164 6.9 6.1

Table 3: Unsupervised NMT performance where source and
target training data are from different domains. The data size
on both sides is the same (20M sentences).

Table 4 shows a more delicate case where we
keep the same domain for both sides (newswire)
but change the providers and years of the news
articles. Our monolingual data for Chinese (Ta-
ble 1) consist mainly of News Crawl (from years
2008-2018) and Gigaword 4th edition (from years
1995-2008). We split out the News Crawl part
(1.7M sentences) and trained an unsupervised
NMT model with the same amount of English
monolingual data (from News Crawl 2014-2017).
Surprisingly, this experiment yields much better
results than using all available data. Even if the
size is small, the source and target data are col-
lected in the same way (web-crawling) from sim-
ilar years (2010s), which seems to be crucial for
unsupervised NMT to work.

On the other hand, when using the Gigaword
part (28.6M sentences) on Chinese, unsupervised

*https://conferences.unite.un.org/uncorpus

Years Years #sents BLEU [%]
(en) (zh) (en/zh) zh-en en-zh
2014-2017 2008-2018 1.7M 54 15.1

1995-2008 28.6M 1.5 1.9

Table 4: Unsupervised NMT performance where source and
target training data are from the same domain (newswire) but
different years.

learning again does not function properly. Now the
source and target text are from different decades;
the distribution of topics might be different. Also,
the Gigaword corpus is from traditional newspaper
agencies which can have a different tone from the
online text of News Crawl. Despite the large scale,
unsupervised NMT proves to be sensitive to a sub-
tle discrepancy of topic, style, period, etc. between
source and target data.

These results agree with Sggaard et al. (2018)
who show that modern cross-lingual word embed-
ding methods fail in domain mismatch scenarios.

4.5 Initialization vs. Translation Training

Thus far, we have seen a number of cases where
unsupervised NMT breaks down. But which part
of the learning algorithm is more responsible for
the performance: initialization (Section 3.3) or
translation training (Section 3.2 and 3.4)?

In Figure 6, we control the level of each of
the two training stages and analyze its impact on
the final performance. We pre-trained two cross-
lingual LMs as initializations of different quality:
bad (using 10k sentences) and good (using 20M
sentences). For each initial point, we continued the
translation training with different amounts of data
from 10k to 20M sentences.
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Figure 6: Unsupervised NMT performance over the training
data size for translation training, where the pre-training data
for initialization is fixed (10k or 20M sentences).

From the bad initialization, unsupervised learn-
ing cannot build a reasonable NMT model, no mat-



Task

BLEU [%]

Source input

System output

Reference output

Seit der ersten Besichtigung wurde die

Since the first Besichtigung, the 3,000

Since the first viewing, the 1,000sq

23.8
de-en 1.000 Quadratfufs groBe ... square fueled ... ft flat has ...
10.4 Miinchen 1856: Vier Karten, die Thren Austrailia 1856: Eight things that can Munich 1856: Four maps that will
' Blick auf die Stadt verindern keep your way to the UK change your view of the city
B xone nepBoodepennbix oneparus- The nepBoodepesnbix onepatus- The identity of the mother was de-
ru-en 12.0 HO-CJIEICTBEHHBIX MEPOIPUATHII yC- HO-CIeJICTBEHHBbIX MepoupudaTuii termined during preliminary inves-
TAaHOBJIEHA JINYHOCTH POYKEHUIIBI have been established by the dolphin  tigative and operational measures
sh-en 15 < AR BRI A P R AT TR .. PBEER A F 2 and JHBRFE ... adjustment must balance produc-

tion needs with consumer demands.

Table 5: Problematic translation outputs from unsupervised NMT systems (input copying, ambiguity in the same context).

ter how much data is used in translation training.
When the initial model is strong, it is possible to
reach 20% BLEU by translation training with only
100k sentences. Using 1M sentences in transla-
tion training, the performance is already compa-
rable to its best. Once the model is pre-trained
well for cross-lingual representations, fine-tuning
the translation-specific components seems man-
ageable with relatively small data.

This demonstrates the importance of initializa-
tion over translation training in the current unsu-
pervised NMT. Translation training relies solely
on model-generated inputs, i.e. back-translations,
which do not reflect the true distribution of the in-
put language when generated with a poor initial
model. On Figure 7, we plot all German—English
unsupervised results we conducted up to the pre-
vious section. It shows that the final performance
generally correlates with the initialization quality.
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Figure 7: Unsupervised NMT performance over the valida-
tion perplexity of the initial cross-lingual LM (de-en).

4.6 Qualitative Examples

In this section, we analyze translation outputs of
unsupervised systems to find out why they record
such low BLEU scores. Do unsupervised systems
have particular problems in the outputs other than
limited adequacy/fluency?

Table 5 shows translation examples from the un-
supervised systems. The first notable problem is
copying input words to the output. This happens
when the encoder has poor cross-linguality, i.e.
does not concurrently model two languages well
in a shared space. The decoder then can easily de-
tect the input language by reading the encoder and
may emit output words in the same language.

A good cross-lingual encoder should not give
away information on the input language to the de-
coder. The decoder must instead rely on the ouptut
language embeddings or an indicator token (e.g.
<2en>) to determine the language of output to-
kens. As a simple remedy, we removed the lan-
guage embeddings from the encoder and obtained
consistent improvements, e.g. from 4.3% to 11.9%
BLEU in Russian—English. However, the problem
still remains partly even in our best-performing un-
supervised system (the first example).

The copying occurs more often in inferior sys-
tems (the last example), where the poor initial
cross-lingual LM is the main reason for the worse
performance (Section 4.5). Note that the auto-
encoding (Section 3.4) also encourages the model
to generate outputs in the input language.

Another problem is that the model cannot distin-
guish words that appear in the same context. In the
second example, the model knows that Vier in Ger-
man (Four in English) is a number, but it generates
a wrong number in English (Eight). The initial LM
is trained to predict either Four or Eight given the
same surrounding words (e.g. 1856, things) and
has no clue to map Four to Vier.

The model cannot learn these mappings by itself
with back-translations. This problem can be partly
solved by subword modeling (Bojanowski et al.,
2017) or orthographic features (Riley and Gildea,
2018; Artetxe et al., 2019), which are however not
effective for language pairs with disjoint alphabets.



5 Conclusion and Outlook

In this paper, we examine the state-of-the-art un-
supervised NMT in a wide range of tasks and data
settings. We find that the performance of unsuper-
vised NMT is seriously affected by these factors:

e Linguistic similarity of source and target lan-
guages

e Domain similarity of training data between
source and target languages

It is very hard to fulfill these in low-/zero-resource
language pairs, which makes the current unsuper-
vised NMT useless in practice. We also find that
the performance is not improved by using massive
monolingual data on one or both sides.

In practice, a simple, non-tuned semi-supervised
baseline with only less than 50k bilingual sen-
tence pairs is sufficient to outperform our best
large-scale unsupervised system. At this moment,
we cannot recommend unsupervised learning for
building MT products if there are at least small
bilingual data.

For the cases where there is no bilingual data
available at all, we plan to systematically com-
pare the unsupervised NMT to pivot-based meth-
ods (Kim et al., 2019b; Currey and Heafield, 2019)
or multilingual zero-shot translation (Johnson et
al., 2017; Aharoni et al., 2019).

To make unsupervised NMT useful in the future,
we suggest the following research directions:

Language-/Domain-agnostic LM We show in
Section 4.5 that the initial cross-lingual LM actu-
ally determines the performance of unsupervised
NMT. In Section 4.6, we argue that the poor perfor-
mance is due to input copying, for which we blame
a poor cross-lingual LM. The LM pre-training
must therefore handle dissimilar languages and do-
mains equally well. This might be done by careful
data selection or better regularization methods.

Robust Translation Training On the other
hand, the current unsupervised NMT lacks a mech-
anism to bootstrap out of a poor initialization. In-
spired by classical decipherment methods (Section
2), we might devalue noisy training examples or
artificially simplify the problem first.
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