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Abstract

This paper presents a case study of apply-
ing machine translation quality estimation
(QE) for the purpose of machine transla-
tion (MT) engine selection. The goal is
to understand how well the QE predictions
correlate with several MT evaluation met-
rics (automatic and human). Our findings
show that our industry-level QE system is
not reliable enough for MT selection when
the MT systems have similar performance.
We suggest that QE can be used with more
success for other tasks relevant for transla-
tion industry such as risk prevention.

1 Introduction

Machine translation quality estimation (QE) is a
technique for predicting machine translation (MT)
quality (Specia et al., 2009). As MT becomes the
dominant tool in the translation industry, accurate
estimation of the quality of MT output would be
of great benefit to many business concerns such
as budget allocation for human post-editing, esti-
mating the usefulness of the MT output for gisting
purposes, and selecting the best MT system out of
a selection of systems. In addition to that, a re-
liable QE model would also help linguists make
more efficient use of their time.

As opposed to MT evaluation, where MT out-
put is compared to one or several human reference
translations, QE attempts to perform the much
more challenging task of predicting MT quality in
the absence of a reference translation. QE can be
performed on a word, sentence or document level,
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and the output of a QE system is typically a score
that is intended to correlate with a certain auto-
matic or human MT evaluation metric.

In this paper we present a case study where
QE models were applied for the purpose of rank-
ing different MT engines for a given document
or text corpus. Our approach is based on obtain-
ing segment-level QE scores for all segments in
the document/corpus and using the average to se-
lect the best MT system. We use two QE sys-
tems to score the output of different MT engines
and compare the results of the QE model with
several automatic MT evaluation metrics, which
include the post-editing distance (PED), HTER,
BLEU score (Papineni et al., 2002), and weighted
and unweighted sentence embedding similarity, as
well as with human MT evaluation scores. We
conclude the paper by reflecting on the usefulness
of QE for MT engine selection, possible improve-
ments to QE, and the limitations of our model and
method.

2 Background and Motivation

The main motivation of exploring the QE method
for MT model selection is the fact that we are of-
ten faced with a scenario where we need to choose
the best MT system without a reference transla-
tion. The only existing method for this is involving
human evaluators, which is, however, quite costly
and requires more time. We are looking for a more
cost-efficient and fast (almost immediate) way of
deciding which MT system to use.

QE is a very well explored topic in Natural Lan-
guage Processing given that predicting MT quality
has clear practical benefits (Specia et al., 2018).
Multiple QE frameworks have been developed,
some of which are open-source: QuEst++ (Spe-
cia et al., 2015), POSTECH (Kim et al., 2017),



QEBrain (Wang et al., 2018), OpenKiwi (Kepler
et al., 2019), YiSi (Lo, 2019) and others. Details
about state-of-the-art QE tools are presented in de-
tail in the corresponding WMT2019 shared task
(Fonseca et al., 2019).

Despite the extensive research interest in QE,
there is less information on how useful it actually
is in specific commercial workflows. For example,
Shterionov et al. (2019) compare the performance
of various QE models using specific user business
metrics, as well as implementation and computa-
tion cost. They demonstrate that the system with
the highest performance can be also the most com-
putationally expensive and simpler, faster systems
can provide satisfactory results. More aspects of
applying QE in commercial settings are discussed
in (de Souza et al., 2015) and (Astudillo et al.,
2018).

We believe that evaluation of the performance of
any NLP system must firstly take into account the
end use of the system. In our case, the goal is to
be able to automatically select the best MT engine
out of two or more engines on a segment level in
scenarios where a reference translation is not avail-
able. It is relevant to mention that our goal is not
to fully replace automatic MT evaluation metrics;
the findings from Task 3 of the shared task on QE
(Fonseca et al., 2019) confirm that this is still a
challenge. Rather, the objective of this study is
to investigate whether our QE systems are reliable
enough to be used to select the best among multi-
ple MT engines.

Segment-level QE is typically evaluated by cal-
culating the correlation of the QE predictions with
human judgement or one or several MT evalua-
tion metrics, most commonly with HTER (Snover
et al., 2006a), using the Root Mean Square Error
(RMSE) and/or Mean Absolute Error (MAE) (Spe-
cia et al., 2018). Apart from that, Avramidis et al.
(2018) describe a more fine-grained, linguistically-
informed evaluation method which enables greater
understanding of the behaviour of the QE system.

For this study, in addition to the standard met-
rics, we utilize the metrics that correspond to our
business goals. One of the most important metrics
for us is the post-editing distance (PED), a stan-
dard MT quality metric used at the company and is
the current industry standard. Similarly to HTER,
PED represents post-editing effort in terms of the
number of editing operations, but it is character-
based (while HTER is word-based) and therefore

more accurately reflects the effort expended in
editing. Another important metric for us is the
BLEU score (Papineni et al., 2002), which is used
mostly for MT development in order to measure
improvement over a baseline.

There are many valid criticisms of automatic
MT evaluation metrics such as BLEU (Callison-
Burch et al., 2006), one of the most salient of
which is the fact that they require one or more
reference translations against which MT output
is compared. However, a given sentence can
have multiple correct translations depending on
a certain context and end use, and for this rea-
son reference-based metrics cannot always cover
the entire space of valid translations for the sen-
tence. For this reason, we also include human
MT evaluation - direct assessment of the MT out-
put by linguists, which is not reference-dependant.
In addition, we experiment with text similarity
metrics (Chan and Ng, 2008). In particular, we
use word embedding similarity in order to reflect
how semantically close the MT translation is to
the reference translation. We produced sentence
embeddings for the MT output and the reference
translation, and calculated the cosine distances be-
tween these embeddings. Cosine distances be-
tween sentence embeddings capture how closely
the meanings of two sentences correspond in high-
dimensional vector space, and as such are less sen-
sitive to the substitution of similar words in al-
ternative translations. While this latter metric is
insufficient on its own as a measure of transla-
tion quality (due to its insensitivity to word-order,
among other reasons), we hypothesize that it may
be a useful auxiliary metric.

3 Methodology

Our primary research goal was to investigate how
well the scores from QE systems correlate with
commonly-used metrics for evaluating translation
quality, and based on these results understand how
useful QE is for MT model selection in cases when
a reference translation is not available. As a sec-
ondary goal, we also studied the impact of content
domain on these correlations. Domain is known to
be a highly significant factor in the performance of
MT engines, and we hypothesized that this would
also be true of QE systems. Therefore, for this
study we used two QE models: one in a general
domain (QE-gen) and the other in the domain of
life sciences (QE-domain). Below we present im-



plementation details about these models.

3.1 QE Systems

The QE models used to perform these experiments
were implemented using the OpenKiwi framework
(Kepler et al., 2019). The framework was chosen
as it was the foundation of the winning systems
of the word-, sentence-, and document-level tasks
of the WMT 2019 shared task on QE, and further-
more because of its adoption as the baseline system
for this task (Fonseca et al., 2019).

When it comes to the architecture, we chose
to use the Predictor-Estimator (Kim et al., 2017),
a two-phase, end-to-end neural QE model which
had the most noteworthy benchmarks of all
OpenKiwi’s available architectures (excluding en-
sembles and stacks). The Predictor-Estimator ar-
chitecture attempts to overcome challenges faced
by previous architectures, such as a shortage of QE
data and dependence on hand-engineered features
to capture the complex relationships between fea-
ture sets and QE annotations.

This architecture uses word prediction as a pre-
task to boost performance and reduce the amount
of QE data needed to achieve state-of-the-art re-
sults. This task takes in source and target sen-
tences, masks a target word at random, and then
attempts to predict the masked word. Word predic-
tion uses a bidirectional long short-term memory
(LSTM) to encode the source and two unidirec-
tional LSTMs to process the target: LSTM-L2R
(left to right) and LSTM-R2L (right to left) (Ke-
pler et al., 2019). These LSTMs are trained using
a large parallel corpus. This structure allows the
use of both left and right target context to generate
predictions of the masked word.

Before diving into detailed descriptions of the
models, it is worth noting that the systems used
in scientific research are normally ensembles or
stacks of different architectures, which typically
outperform individual stand-alone systems. How-
ever, at this stage we think the difference is not
substantial enough to justify the increased costs
of training several models for each language pair
instead of one, which can skyrocket when taking
into consideration the number of language pairs
that our company handles. Both QE models (the
domain and the generic one) used the same word
predictor model, built from a large generic parallel
corpus. The primary difference is due to the differ-
ent text types from which the data were sampled:

QE-domain model was trained exclusively on texts
from the Life Sciences domain and QE-gen was
trained on a mixed corpus. In both cases, the train-
ing data was compiled from previously post-edited
projects. Table 1 shoes the training corpora size
used for each of the models.

The first step in the pre-processing pipeline was
to query our SQLite database, specifying our lan-
guage and other settings such as the maximum
number of tokens per sentence. We then refined
the data using the langdetect python package to
filter out any rows that weren’t flagged with the
language pair we had specified. To generate the
OK/BAD tags (the tags marking whether a spe-
cific word is correct or wrong in the translation),
we relied on the industry standard TERCOM tool
(Snover et al., 2006b). For each token in each
sentence, if the token is present in the target sen-
tence, the token is labeled OK; if it was deleted
or modified during PE, the token is labeled BAD.
Insertions are ignored. At the end, sentences are
updated such that only the ones without any er-
ror in identifying the tags are kept. Both mod-
els achieved industry-standard F1-mult scores. F1-
mult is a word-level prediction score that evaluates
the performance of identifying correct and incor-
rect words in the translation (Table 1).

QE-gen QE-domain
F1-mult 55.73 57.85
Test corpus 2893 1998
Training corpus 134438 92341

Table 1: Training and testing corpus size in number of sen-
tence pairs and the F1-mult score of the two QE models.

3.2 Experiments

Equipped with these two models, we conducted
two separate experiments, one in the general do-
main and one in the life sciences domain. In the
first, we obtained translations for the generic data
set from two freely available MT engines, Google
and Bing. The QE-gen model was used to predict
the quality of these translations, then these scores
were compared with several metrics for evaluating
translation quality. The data obtained from these
comparisons were considered a baseline by which
to judge the performance of the two QE models on
domain-specific content in the second experiment.

In the second experiment, we used a dataset of
life sciences content to compare the performance



of the QE-gen and QE-domain models. In the first
experiment we found that the Bing and Google
MT engines performed quite similarly in terms of
the quality of their output. Thus, for this exper-
iment we also used a specialized proprietary life
sciences MT engine, which we expected to per-
form significantly better than the two more general
engines. Translations were obtained from all three
engines, and these translations were scored by the
QE-domain and QE-gen models. The resulting QE
scores were then compared to the same MT evalu-
ation metrics.

In addition to measuring how well our QE mod-
els correlate with MT quality metrics, we also cal-
culated the probabilities of the QE models to cor-
rectly identify the best MT engine out of several.

3.3 Test Data

We used two sets of data for the evaluation. The
first set contained 1756 sentences translated from
English into Spanish by professional translators
from the corporate communication domain. We se-
lected these texts because they have a general style
and do not have any specific or technical terminol-
ogy. The average source sentence length was 17.91
words.

The second data set contained 2048 sentences
from the Life Sciences domain and contained texts
with highly specialized terminology and style. The
average sentence length in this data set was 14.29
words. Both data sets were cleaned to remove sen-
tences with less than four and more than 200 to-
kens as well as any sentences where the MT out-
puts of the engines were identical.

3.4 Evaluation

Each QE system (QE-gen and QE-domain) was
evaluated based on

• the correlation of the QE scores and PED
(Pearson’s r);

• the correlation of the QE scores and BLEU
(Pearson’s r);

• the correlation of the QE scores and the two
sentence similarity metrics (Pearson’s r);

• the RMSE (root mean square error) for
HTER;

• the MAE (mean absolute error) for HTER;

• the percentage of sentences where the QE
model correctly selected the best MT engine
based on each of the quality metrics;

• correlation with human assessment of the MT
quality.

PED was calculated using the Levenshtein dis-
tance algorithm at the character level and normal-
ized based on the length of the strings. HTER
scores were calculated as explained in (Snover et
al., 2006a). BLEU scores were assigned using
NLTK’s built-in BLEU score function. The text
similarity metrics were calculated as the cosine
distances between the weighted and unweighted
sentence embeddings of the MT output and the
human translation. As such, lower values indi-
cate more similar sentences. Unweighted sentence
embeddings were calculated as a simple mean
of Word2Vec word embeddings for each word in
the sentence, while weighted sentence embeddings
were calculated by averaging the word embed-
dings after weighting them based on the inverse
frequency of the word in the Word2Vec1 training
corpus. The Scipy and Numpy python libraries
were used to perform data analysis, and the Pear-
son’s correlation coefficient (PCC) was used to as-
sess correlation between the QE scores and our
other translation quality metrics.

For the human evaluation we have used 200 sen-
tences from each dataset, which were evaluated
by two different annotators on a 1 to 100 scale.
During the evaluation, the reference translations
of the segments were not provided. The Human
judgement scores were then averaged between the
two annotators. Then, we followed the proce-
dure described in (Ma et al., 2019) to calculate
the Kendall’s τ scores that show the correlation be-
tween the QE scores and the human judgment. It
has to be noted that we removed all the instances
of ties in human judgment, i.e. all the segments
where the MT engines were assigned the same av-
erage human score. After removing all the human
judgment ties, we ended up with 134 segments in
each of the datasets. As to the ties in the QE scores,
these were penalized, meaning that we counted as
Discordant the segments where the predicted QE
scores for different MT systems were equal (and
the human scores were not).

1https://arxiv.org/pdf/1310.4546.pdf



4 Results

We evaluated the two QE models on the corre-
sponding data sets in terms of the model perfor-
mance. Table 2 shows the Pearson’s correlation
results with the automatic MT evaluation metrics.
In the Generic Use Case, we used QE-gen and the
generic data set. Here, we compare the results only
for the two generic (not customized) MT systems.
In the Domain use case, we used QE-domain and
the Life Sciences data set. In the Mixed Use Case,
we used QE-gen and the Life Sciences data set. In
the latter two cases we also consider the results of
the domain specific MT system trained for life sci-
ences content. The Mixed case allows us to com-
pare the performance of a domain-specific QE sys-
tem with that of a generic QE system. Similar re-
sults would suggest no clear benefit from training
different systems for each genre of content.

Google Bing LifeSci

Generic
Case

PED 0.301 0.278
HTER 0.148 0.089
BLEU -0.308 -0.271
Sim1 0.296 0.203
Sim2 0.198 0.141

Domain
Case

PED 0.284 0.199 0.127
HTER 0.308 0.273 0.135
BLEU -0.324 -0.302 -0.195
Sim1 0.315 0.308 0.184
Sim2 0.180 0.166 0.118

Mixed
Case

PED 0.261 0.182 0.125
HTER 0.280 0.276 0.138
BLEU -0.269 -0.290 -0.188
Sim1 0.245 0.269 0.175
Sim2 0.159 0.172 0.090

Table 2: Pearson’s correlation results between the predicted
sentence-level QE score and the particular MT metrics. Sim1
refers to unweighted sentence similarity, while Sim2 refers to
weighted sentence similarity.

In general, we found only weak correlation with
most of the metrics and in some cases almost no
correlation at all. While the F1-mult scores indi-
cated that our QE models achieved industry-level
performance, the poor correlations with the evalu-
ation metrics were unexpected. Out of all the met-
rics considered, the highest correlation observed
was for the BLEU score. Interestingly, the correla-
tion with HTER was particularly weak (practically
no correlation) in the generic case, but stronger for
life sciences domain content. When it comes to

the word embedding similarity, using unweighted
embeddings proved to yield a stronger correlation
with QE than weighted embeddings. This may be
partially explained by the fact that our weighted
embeddings distinguish words in terms of their fre-
quency, while QE systems and unweighted word
embeddings treat all words equally.

Table 3 shows the RMSE and the MAE scores
for the predicted HTER. Based on RMSE, the pre-
dicted HTER scores differ from the actual HTER
scores by about 5 percentage points, while based
on MAE calculation the difference is about 3 per-
centage points.

QE-domain QE-gen

RMSE↓ Google 5.186 4.949
Bing 5.190 5.156

LifeSci 5.450 5.373

MAE↓ Google 3.574 3.437
Bing 3.606 3.541

LifeSci 3.656 3.732

Table 3: RMSE and MAE of each of the QE models applied
to the output of the three MT engines.

Finally, the correlation with human judgment in
terms of Kendall’s τ is also weak or non-existing.
For the generic dataset, the τ score was equal to
0.119 (slightly better than random) while for the
in-domain dataset the τ score was equal to –0.059
(practically random). Note that the τ score can
take value from –1 to 1.

The observations indicate how well our QE sys-
tems perform and how similar their behavior is to
the various metrics. However, we want to under-
stand whether their performance level is sufficient
to be able to replace MT evaluation metrics for the
purpose of engine selection. Therefore, we also
provide a comparison of the average metrics scores
for the different MT engines with the average QE
scores (Tables 4 and 5).

As can be seen from these results, the perfor-
mance of the two generic MT systems (Bing and
Google) was very similar according to all the met-
rics and also the average QE scores. While Google
and Bing score better according to the automatic
metrics, human evaluation ranked Google first, and
the QE system is in line with the human score. In
general, though, the differences between the two
were negligible.

On the other hand, the tendency changes when
the Life Sciences MT engine comes into the pic-



Google Bing
PED ↓ 0.321 0.311
HTER ↓ 0.468 0.459
BLEU ↑ 0.682 0.699
Sim1 ↓ 0.081 0.079
Sim2 ↓ 0.010 0.010
Human ↑ 83.5 82.6
QE-gen ↓ 0.312 0.325

Table 4: Average values for the automatic and human MT
evaluation metrics compared to average QE score QE-gen on
the Generic data set.

Google Bing LifeSci
PED ↓ 0.296 0.282 0.183
HTER ↓ 0.413 0.397 0.253
BLEU ↑ 0.328 0.350 0.561
Sim1 ↓ 0.055 0.052 0.027
Sim2 ↓ 0.006 0.005 0.003
Human ↑ 83.6 85.3 88.5
QE ↓ 0.396 0.392 0.372

Table 5: Average values for the automatic and human MT
evaluation metrics compared to average QE score of QE-
gen (for Google and Bing MT systems) and QE-domain (for
LifeSci MT system) on the Life Sciences data set.

ture (Table 5); its performance is significantly
higher according to all the metrics, and therefore
the QE system also correctly identifies it as the
best engine out of three (although the difference
is rather small). This is also illustrated in Figure
1, which shows the distribution of PED scores and
QE scores for the three engines on the Life Sci-
ences data set. These results suggest that QE sys-
tems are more likely to choose the best model in
cases where one MT engine clearly outperforms

Figure 1: Distributions of QE scores and PED for the three
engines on life sciences data. Note the “squashing” of the
distribution for the LifeSci engine

the others. This conclusion is also in line with the
findings of the WMT19 Metrics Shared Task (Ma
et al., 2019), which conclude that the metrics and
QE tasks become more challenging when compar-
ing multiple strong systems with similar perfor-
mance as opposed to scenarios where the perfor-
mance level of the systems is more varied.

Generic Domain Mixed
PED 53.4% 44.8% 47.8%
HTER 41.0% 44.5% 49.0%
BLEU 51.6% 39.5% 45.1%
Sim1 51.0% 43.5% 46.6%
Sim2 47.7% 43.0% 46.2%

Table 6: Percentage of cases where QE correctly selected the
best MT engine based on each of the automatic MT evaluation
metrics. Note that for the generic case only 2 MT engines
were used, so the results are essentially random.

Finally, we consider the percentage of cases
(segments) where the QE systems correctly iden-
tified the best engine based on each of the metrics
(Table 6). In the Generic case (two generic MT
engines used on generic data), the results are prac-
tically random. In the Domain and Mixed scenar-
ios, where three MT engines were used, the best
engine is correctly identified in about 50% of the
cases. These results are noticeably better than a
random guess (which would be correct 33% of the
time), but are not sufficient to meet the standard of
usability in our workflow.

In summary, we observe mediocre results.
Based on the weak correlation with the MT eval-
uation metrics and the human judgment we can
conclude that our QE systems do not perform well
enough in order to be used on a sentence level. On
the other hand, when considering the average QE
scores across the entire test set, we do see that a
superior MT engine does tend to have lower aver-
age QE scores. This suggests that, at the document
level, our QE models might do better at identifying
the best MT engine in scenarios where the perfor-
mance of the MT engines is significantly different
- this is still to be confirmed by further studies.

We did not observe a significant gap in perfor-
mance between the QE model trained entirely on
life sciences data and the generic model when ap-
plied to life sciences content. Indeed, despite the
fact that the QE-domain achieved superior a F1-
mult score, this model performed worse than the
QE-gen model at predicting the best sentence on
every metric.



5 Discussion and Future Work

In this paper we explored how well industry-
standard QE models correlate with traditional mea-
sures of MT quality, both in a specific domain
and in a general domain scenario. Our goal was
to establish if these models can be used for au-
tomatic MT engine ranking. Our models used
the OpenKiwi framework and achieved F1-mult
scores similar to currently reported scores for sim-
ilar single models. However, we failed to find
strong evidence that these scores translate reliably
into predictions of which MT engine’s translation
has better quality.

While the results we obtained are better than
random guessing, we can conclude that QE in
its current state can be fruitfully applied for MT
model selection only in very specific scenarios,
namely when the given MT models are known
or expected to differ significantly in performance.
Nevertheless, it is encouraging that there is some
observable correlation between QE and our var-
ious metrics, and that our QE systems did show
a tendency to choose the best model when there
was a clearly superior choice. Indeed, in real pro-
duction scenarios, there is no risk of choosing a
slightly worse MT system when its performance
is comparable to the other candidates, while it is
more important to filter out the systems with sig-
nificantly lower performance. In addition, we sug-
gest that a very useful application of QE to explore
is risk prevention: instead of selecting the best MT
system out of several, we would be able to predict
with a high degree of confidence that the perfor-
mance of an MT system is significantly lower than
average. This is one of the directions we are plan-
ning to explore in future studies.

One of the immediate steps in our research will
be qualitative analysis of the data, especially the of
the segments where a significant discrepancy was
observed between the human evaluation scores and
the QE scores. We hope to obtain an more pro-
found understanding of the data and the reasons
for the weak correlation.

When it comes to the actual performance of our
QE system, the question becomes, how can we im-
prove ours so that it may be more useful in the
future? The first idea that presents itself is to re-
duce the class imbalance during the training stage.
In the dataset on which we trained our QE mod-
els, OK tags outnumbered BAD tags by a factor of
nearly 10:1. We hypothesize that the performance

of the classifier may improve if we better balance
the examples of the OK and BAD classes. One
way to accomplish this goal is through the use of
synthetic training data. In addition to real exam-
ples, we could create additional examples by re-
placing words randomly with other words from the
vocabulary (either sampled uniformly or weighted
based on the frequency that the word is associated
with a BAD tag), thereby increasing the number of
BAD tags the system sees during training.

Another possible way to improve the perfor-
mance of QE models is through adversarial train-
ing. Using an architecture similar to a GAN,
we could train a generator to create predictions
for each word in a sentence, and simultane-
ously use the output of this system and human-
annotated sentences to train a discriminator to
distinguish model-generated output from human-
annotated sentences. At this time we are not aware
of any study which attempts to implement these
methods for QE.

One important observation about the QE sys-
tem’s performance that we can draw from this
study is that contrary to our expectations, there
was no boost in performance compared with the
generic model when an in-domain QE model was
used on in-domain content. One reason for this
might be that the QE-gen model was exposed to
more data (including all the data used to train the
QE-domain model), and so it may have developed
a more sophisticated and robust language model
than its counterpart trained on only a subset of
those data. Another possibility is that domain sim-
ply does not play as significant a role in QE mod-
eling as it does in more complex generative tasks
like translation. In any case, it is a rather posi-
tive finding, as it proves that there is no need to
train a QE model for each domain and training one
generic model on a corpus that contains data from
different domains is sufficient.
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