
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Neural Micro-Planning for Data to Text Generation Produces more
Cohesive Text

Roy Eisentadt, Michael Elhadad
Dept. of Computer Science, Ben-Gurion University of the Negev

Beer Sheva, Israel
royeis@post.bgu.ac.il, elhadad@cs.bgu.ac.il

Abstract

We aim to prove the usefulness of separating
data to text generation into micro-planning and
realization, and focus on micro-planning as a
task that can be learned and evaluated sepa-
rately. We adopt a simple structure for micro-
plans and develop an initial neural model to
learn such a plan from a flat input of triplets.
We define a method to measure planning qual-
ity, and an evaluation method of generated
text by examining syntactic phenomena re-
lated to text cohesion. In experiments on the
WebNLG dataset, we demonstrate the correla-
tion between higher quality planning and more
natural, cohesive text. The quantitative data-
driven methodological approach we illustrate
can help formulate hypotheses that a more so-
phisticated micro-plan formalism and its inter-
face with surface realization decisions could
help explore.

1 Introduction

Traditional NLG pipelines distinguish distinct sub-
tasks addressed by a generation system, including
content determination, text structuring, sentence
aggregation, lexicalization and surface realization
(Gatt and Krahmer, 2018). Recent work on neu-
ral NLG has blurred the distinction among these
sub-tasks and encouraged data-driven end-to-end
approaches, such as transformer-based encoder-
decoder architectures (Lewis et al., 2020). Recent
data to text generation approaches are revisiting
this decision, and show the benefit of dividing
the full task into two steps: planning and real-
ization (Moryossef et al., 2019; Castro Ferreira
et al., 2019). The goal of micro-planning is to
organize the input raw data into an interpretable
and coherent information structure. Realization is
then applied on this structure to generate coherent
text that covers all the expected content without
redundancy and without introducing unintended

content. Planning and realization deal with dis-
tinct but closely related aspects of text structuring:
planning is related to concepts from discourse the-
ory such as rhetorical structure, information flow
and coherence while realization handles the lexical
and syntactic aspects of these concepts including
information packaging, clause structuring and ag-
gregation.

A modular approach brings two benefits: more
control over each component of the generation and
simpler modeling of both sub-problems when com-
pared to end to end models. We hypothesize that
an explicit planning model, including quality evalu-
ation of plans, can lead to better control of the gen-
erated text in data-to-text tasks, and boost perfor-
mance, as was indeed demonstrated in (Moryossef
et al., 2019). We revisit this modularity argument
with three new directions: (1) we study the extent
to which a robust learned planning module can
be derived (as opposed to a rule-based planning
method); (2) we investigate whether an indepen-
dent planning quality metric can be established,
and the extent to which it correlates with end to
end text quality metrics; (3) finally, we investigate
specific aspects in realization that are directly re-
lated to micro-planning and cohesion and the extent
to which good plans control their usage.

Applying learning methods to solve the task of
planning is difficult for two main reasons: (1) avail-
able datasets (Gardent et al., 2017a,b) do not re-
ward variability in plans. They contain a few pairs
(data, text) for a given input (usually 3 to 5 variants
per input), but there is no incentive to demonstrate
a variety of plans to realize the same input; an ideal
dataset to learn planning would instead hold differ-
ent paraphrases for each entry based on changes
in micro-planning; (2) Given a target text to gener-
ate, micro-plannings are not observable. One can
come up with methods to derive a plan from a given
text but the nature of the plan, how it is related to

Christoph Hesse


Christoph Hesse


Christoph Hesse


Christoph Hesse




2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

observable syntactic structure is essentially an in-
ternal decision. Despite these obstacles, we aim to
demonstrate the usefulness of learning an interme-
diate plan representation for data to text generation.
Beyond this quantitative architectural analysis, the
experimental setting we investigate provides a use-
ful platform to explore more sophisticated models
of text planning.

2 Datasets

Our experiments are based on the WebNLG 2020
dataset (Gardent et al., 2017a) which provides
knowledge-graph to text entries. Each knowledge
graph is composed of a set of logical forms that
are encoded as triplets: (sub, rel, obj). For the
purpose of learning and evaluation of the planning
task, we utilize the DeepNLG dataset (Castro Fer-
reira et al., 2019), which is based on WebNLG 2017
and associates, for each (data, text) pair a manually
derived plan, which has the structure of an ordered
sequence of groups of triplets (one per observed
sentence in the text). This data allows us to train in
a supervised manner on the data-to-plan task.

3 Modeling Plans

We hypothesize that the task of generating text from
a set of triplets T = t1, . . . , tn will be improved if
we model it as a pipeline of two stages T → Plan
and Plan→ Text.

Since plans are not observed, we need to de-
cide how to model them. One can distinguish two
strategies for this decision: (1) latent transition-
based model and (2) representation-based. In the
latent approach, we apply a neural encoder-decoder
architecture with a transition-based model for plan-
ning similar to (Nivre et al., 2004). The neural
encoder creates a latent representation of the in-
put T . Conditioned on this representation, the de-
coder works in a gradual manner to perform pre-
defined actions that correspond to micro-planning
decisions. These actions include generating a word,
deciding to aggregate two relations, closing a sen-
tence and starting to generate a new one. In this ap-
proach, there is no explicit representation of plans,
instead, the model maps a latent representation of
the input structure to discrete micro-planning deci-
sions. The exact list of these decisions corresponds
to the claims of a text planning theory.

In contrast, a representation-based approach sep-
arates this procedure into two well defined sub-
steps. In a first step, the input data is mapped to a

plan. This plan describes the order between atomic
units into sentences, and packaging of the data into
a sentence-level micro-plan. In a second step, given
this plan natural text is generated. We refer to these
two models as planner and realizer.

In the second approach, we must select a for-
malism to represent plans, which depends both on
the input data and on the nature of the desired gen-
erated text. Furthermore, this approach requires
data that explicitly represents such plans or from
which plans can be derived to allow learning in a
supervised manner. An obvious advantage of this
approach is that both tasks are of lower complexity
than end to end data to text which should make
them easier to learn. Another advantage is better
interpretability. One can measure the efficiency
of plans generation and measure the correlation
between quality of plans and the success of the
overall task.

In this work, we explore the planner-realizer ap-
proach with a definition of plans as derived from
the DeepNLG dataset. We formalize the task of
WebNLG planning as follows: Given a set of
triplets T = {t1, ..., tm} output an ordered list of

ordered lists p = (s1, ..., sn) such that
n⋃
i=1

si = T

and for each i, j ∈ {1, ..., n}, such that i 6= j,
si ∩ sj = φ.
The task consists of: (1) grouping triplets into sen-
tences; (2) determining the order of sentences; (3)
determining the order of triplets within each sen-
tence. This definition does not provide an explicit
measure of plan quality, we start by investigating
what would be a good metric to assess plan qual-
ity. The choice of this simple plan formalism is
an initial operational step, which has the benefit of
relying on existing data. In the future, we will ex-
plore different representation formalisms for plans,
and their connection to the decisions made by the
realizer. We expect that document plan theories
explaining information flow and packaging will
provide fertile ground for this work (Kuppevelt,
1996; Roberts, 2012).

4 Plan Quality Measure

In order to maximize the benefit from the sepa-
ration of planning from realization, we need to
measure the intermediate success in the generation
of plans. Given a tool to measure the quality of
constructed plans that is known to be correlated
with the quality of the output text, one can com-

Christoph Hesse


Christoph Hesse


Christoph Hesse




3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

pare different approaches to planning, and enhance
results of a complete data-to-text pipeline.

We propose such a metric that evaluates a can-
didate plan against a set of reference plans as
observed in the data (such as DeepNLG). Our
metric combines two aspects: ordering consis-
tency and grouping consistency. Given a plan
p = (s1, ..., sn) constructed from m triplets, de-
note pflat := s1 ◦ s2, ..., ◦sn = (ti1 , ...tim), the
ordered concatenation of all items in p. pflat corre-
sponds to the ordered list of triplets as would appear
in the generated text according to plan p without
considering grouping them into sentences. Given a
candidate and a reference plan p̂ = (s′1, ..., s

′
n) and

p = (s1, ..., sn) involving m triplets, we denote xi
and yi as the positions or indices of ti within the
ordered lists p̂flat and pflat respectively for any
1 ≤ i ≤ m (both plans are of the same length – the
shorter plan padded with empty lists when needed).
We use Kendall’s ranking correlation coefficient to
define:

τ(p̂, p) =

∑
i<j

sign(xi−xj)sign(yi−yj)

(m2 )
.

Next we define grouping accuracy:

α(p̂, p) =

n∑
i=1

s′i∩si

m
A higher value of τ(p̂, p) indicates similarity in the
triplets’ order of appearance between the candidate
and reference plan. A higher value of α(p̂, p) in-
dicates similar grouping of triplets into sentences
and similar ordering of sentences.

We combine these two aspects in a convex com-
bination to define the plan quality metric PQM :
PQM(p̂, p) = λ · τ(p̂,p)+1

2 + (1− λ) · α(p̂, p)
When a candidate plan p̂ is measured against a
set of reference plans P = {p1, .., pk}, we define
PQM(p̂,P) = max

1≤i≤k
PQM(p̂, pi).

The value of the parameter λ is empirically cho-
sen to be 0.7. In order to determine this value, we
select the value which provides the highest correla-
tion with the end-to-end text quality as measured by
the BLEU metric for a realizer that takes a plan as
input. To perform these steps, we train two distinct
models: (1) a planner trained on the DeepNLG
development set entries; (2) a realizer which gen-
erates the observed text given a DeepNLG plan
as input. We train both models with a T5 text-
to-text transformer model similar to (Kale, 2020).
Given this pipeline, we computed PQMλ for λ in
(0.1 . . . 0.9) and the BLEU score per entry. This
procedure provides PQMλ estimations and a sin-

model BLEU PQM
T5 44.44 –

T5 teacher exposure 47.50 –
T5 planner-realizer 55.01 0.838

Table 1: Model evaluation

E2E P+R refs
#words 38.77 21.67 22.60
#sentences 3.42 1.34 1.45
#coordinated NPs 0.15 0.33 0.28
#coordinated VPs 0.12 0.32 0.21
#relative clauses 0.11 0.29 0.24
#subordinate clauses 0.06 0.16 0.19
#coordinate clauses 0.05 0.12 0.11

Table 2: Syntactic Phenomena Frequencies: E2E - T5
end-to-end, P+R - T5 planner + realizer

gle BLEU score per entry in the development set.
Pearson’s correlation measure for each value of λ
between PQMλ and BLEU scores lets us pick the
optimal λ.

5 Experiments

We compare baseline data-to-text models which
are trained to map end-to-end WebNLG 2020 data
to text using the same T5 transformer-based ar-
chitecture with the modular architecture (Planner,
Realizer) where each of the modules is trained sepa-
rately. We compare two end-to-end baselines: The
first is a pre-trained T5 model which has shown
promising results on data-to-text (Kale, 2020). It
is fine-tuned to generate text given input triplets.
In the second baseline, we use the same T5 back-
bone with a teacher exposure strategy during fine-
tuning: each entry is composed of the input triplets
as before concatenated with an incomplete prefix
of the desired reference text that contains complete
sentences. In this approach, the model learns to
complete text given all triplets and a text prefix.
The third model is the modular (Planner, Realizer)
pipeline described above. Results (Table 1) indi-
cate overall improvement in BLEU scores when
using the modular approach.

To assess the impact of better controlling plan-
ning, we specifically investigate syntactic aspects
of the generated text related to text cohesion (Hal-
liday and Hasan, 1976). Indeed, planning does
not determine all aspects of realization - for exam-
ple, it does not impact the lexicalization of entities
encoded in triplets, but it does impact directly sen-

Christoph Hesse


Christoph Hesse


Christoph Hesse


Christoph Hesse


Christoph Hesse




4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

tence packaging, aggregation, coordination, clause
structure, relative clauses. Table 2 compares text
generated by the baseline end-to-end model, the
modular model (Planner, Realizer) and the refer-
ence texts of WebNLG 2020. It shows the fre-
quency of different syntactic phenomena per sen-
tence in the text as well as number of words and
sentences in each text. To identify occurrences
of these phenomena, we used spaCy’s (Honnibal
and Montani, 2017) dependency parser along with
rule-based methods to identify each configuration.

We observe that the end-to-end baseline model
generates much longer text (both number of words
and sentences). Manual inspection shows that it in-
troduces repetitions that are avoided in the planner-
realizer approach. Another notable finding is that
the frequencies of cohesive devices in texts gener-
ated by the planner-realizer model are much more
similar to those in the reference texts than the end-
to-end approach.

In this study, we illustrated a computational ap-
proach to justifying a modular approach for data
to text generation. Starting with a very simple
representation model of plans (as a sequence of
groups of triplets), we specified a learnable text
plan module and an evaluation metrics for the gen-
erated plans. We demonstrated empirically that a
modular model separating planning and realization
generates more cohesive text with less repetitions.
We believe this empirical platform opens routes for
fruitful exchange with more sophisticated text plan-
ning models and their interaction with realization.

References
Thiago Castro Ferreira, Chris van der Lee, Emiel

van Miltenburg, and Emiel Krahmer. 2019. Neu-
ral data-to-text generation: A comparison between
pipeline and end-to-end architectures. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 552–562, Hong
Kong, China. Association for Computational Lin-
guistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179–188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG

challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Albert Gatt and E. Krahmer. 2018. Survey of the state
of the art in natural language generation: Core tasks,
applications and evaluation. JAIR, 61.

M. A. K. Halliday and R. Hasan. 1976. Cohesion in
English. Longman.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks.

Jan Van Kuppevelt. 1996. Directionality in Discourse:
Prominence Differences in Subordination Relations.
Journal of Semantics, 13(4):363–395.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings
of the Eighth Conference on Computational Natural
Language Learning (CoNLL-2004) at HLT-NAACL
2004, pages 49–56, Boston, Massachusetts, USA.
Association for Computational Linguistics.

Craige Roberts. 2012. Information structure in dis-
course: Towards an integrated formal theory of prag-
matics. Semantics and Pragmatics, 5(6):1–69.

https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/D19-1052
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/W17-3518
https://doi.org/10.18653/v1/W17-3518
https://www.jair.org/index.php/jair/article/view/11173
https://www.jair.org/index.php/jair/article/view/11173
https://www.jair.org/index.php/jair/article/view/11173
http://arxiv.org/abs/2005.10433
http://arxiv.org/abs/2005.10433
https://doi.org/10.1093/jos/13.4.363
https://doi.org/10.1093/jos/13.4.363
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N19-1236
https://doi.org/10.18653/v1/N19-1236
https://www.aclweb.org/anthology/W04-2407
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
https://doi.org/10.3765/sp.5.6
Christoph Hesse


Christoph Hesse


Christoph Hesse


Christoph Hesse



