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Abstract

The AMR (Abstract Meaning Representation) formalism for representing meaning of natural
language sentences puts emphasis on predicate-argument structure and was not designed to deal
with scope and quantifiers. By extending AMR with indices for contexts and formulating con-
straints on these contexts, a formalism is derived that makes correct predictions for inferences in-
volving negation and bound variables. The attractive core predicate-argument structure of AMR
is preserved. The resulting framework is similar to the meaning representations of Discourse
Representation Theory employed in the Parallel Meaning Bank.

1 Introduction

Abstract Meaning Representation, AMR (Langkilde and Knight, 1998), or the PENMAN notation it is
based on (Kasper, 1989), puts emphasis on argument structure. In this paper I put forward a proposal to
extend AMRs with a logical dimension, in order to—from a formal semantics point of view—correctly
capture negation, quantification, and presuppositional phenomena. It is desirable to investigate such an
extension, because (i) it would make a comparison of AMR with other semantics formalisms possible
(in particular Discourse Representation Theory); (ii) it would make AMR suitable for performing logical
inferences; and (iii) it would be an important step in sharing resources for semantic parsing. The aim is
to do this in such a way that existing AMR-annotated corpora (Banarescu et al., 2013) can be relatively
easily extended with the desired extensions.

This is not the first proposal of extending the PENMAN notation to handle scope phenomena. The
need to do so was recognized by other researchers (Bos, 2016; Stabler, 2017; Lai et al., 2020). Puste-
jovsky et al. (2019) extend AMR with a possibility of adding explicit scope relations. This extension,
however, doesn’t solve a fundamental problem that AMR faces, namely viewing AMRs as directed
acyclic graphs and basing their interpretation on this. Consider examples such as “every snake bit itself”
or “all dogs want to swim”. In the original AMR graph notation, where quantifiers are expressed as a
predicate rather than taking scope, the resulting diagrams are:

ARGI

mod
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The corresponding interpretations for these sentences could be paraphrased as “every snake bit every
snake” and “all dogs want all dogs to swim”, which are not the meanings that the sentences express.
Let’s refer to this issue as the bound variable problem.

But there is a second, perhaps an even more pressing issue, which could be dubbed the scope repre-
sentation problem. AMRs, in their original PENMAN format (Kasper, 1989), cannot be used directly for
drawing valid inferences. Let me demonstrate why this is so. Using the simple conjunction elimination
rule (if the conjunction ”A and B” is true, then ”A” is true, and ”B” is true), and assuming that an AMR
is interpreted as a conjunction of clauses, AMR will make the right predictions as long as no negation
is involved (e.g., it will yield the correct inference “Mary left” from “Mary left yesterday”). But since,
in AMR, negation is represented as a predicate rather than an operator that takes scope, it will make
wrong predications for negated sentences (e.g., it will allow the inference “Mary left” from “Mary did
not leave”. This is why AMRs need some kind of reformulation before interpretation, and that is exactly
what has been proposed in earlier work (Artzi et al., 2015; Bos, 2016; Stabler, 2017; Lai et al., 2020).

In this paper I seek the solution at the representational level. I think the contribution of this paper is
that this extension is simpler of nature than those proposed earlier (Bos, 2016; Stabler, 2017). It bears
similarities with named graphs for semantic representations (Crouch and Kalouli, 2018). I argue that, if
we want to fix the bound variable problem and the scope representation problem, AMR requires explicit
scope in their representations (Bos and Abzianidze, 2019). I propose a method to do this by keeping the
underlying predicate-argument structure, and adding a second, logical layer (Section 2). In Section 3,
a list of examples of extended AMRs demonstrate the approach. Some loose ends are discussed in
Section 4.

2 Method

The idea is to extend the AMR with logical structure, obtaining a scoped representation AMR™ with
two dimensions: one level comprising predicate-argument structure (the original AMR, minus polarity
attributes), and one level consisting of the logical structure (information about logical operators such as
negation and the scope they take). This is achieved by viewing an AMR as a recursive structure, rather
than interpreting it as a graph, and performing two operations on them:

1. assign an index to each (sub-)AMR;

2. add structural constraints to the AMR via the indices.

AMRs can be seen as a recursive structure by viewing every slash within an AMR as a sub-AMR (Bos,
2016). If a (sub-)AMR contains relations, those relations will introduce nested AMRs. (A constant is
also an AMR, following this view.) An AMR (and all its sub-AMRs) will be labeled by decorating the
slashes with indices (indices will be indicated by numbers enclosed in square brackets).

Every AMR is augmented by a set of scoping constraints on the labels. This way, a sub-AMR can be
viewed as describing a “context”. The constraints state how the contexts relate to each other. They can be
declared as the same contexts (=), a negated context (—), a conditional context (=), or a presuppositional
context (<). Colons are used to denote inclusion, i.e., [ : C states that context [ contains condition C'.

Note that these labels are similar in spirit to those used in underspecification formalisms as proposed
in the early 1990s (Reyle, 1993; Copestake et al., 1995; Bos, 1996). The treatment of presuppositions
is inspired by semantic formalism extending Discourse Representation Theory (Van der Sandt, 1992;
Geurts, 1999; Venhuizen et al., 2013; Venhuizen et al., 2018).

3 Results

Below I illustrate the idea with several canonical examples involving existential and universal quantifi-
cation, definite descriptions, proper names, and, of course, negation.
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3.1 Existential Quantification

Consider the AMR for “a dog scared a cat” with a transitive verb and two indefinite noun phrases in
PENMAN notation:

(e / scare-01
:ARGO (x / dog)
:ARG1 (y / cat))

Within this AMR we can identify three sub-AMRs. We index and constrain them and arrive at the
following AMR™:

(e /1/ scare-01
:ARGO (x /2/ dog)
:ARGl (y /3/ cat)) {1=2,1=3}

Here, there is just one context shared by all three sub-AMRSs, as one would expect with existential
quantification: scope does not play a pivotal role here. As equivalent alternative, the following simplified,
constraint-free AMR™ can be obtained after eliminating the identity constraints:

(e /1/ scare-01
:ARGO (x /1/ dog)
:ARGLl (y /1/ cat)) {}

3.2 Definite Descriptions and Proper Names

A sentence like “the bear growled” contains a definite description triggering an existential presupposition.
Presuppositions yield new contexts:

(e /1/ growl-01
:ARGO (x /2/ bear)) {2<1}

In other words, the definite article triggers a presupposition that there is a bear (the AMR with index 2)
with respect to context provided by the AMR indexed as 1. Proper names can be handled similarly, as the
AMR™ for the sentence “Fido barked” shows (the existence of a dog named “Fido” is a presupposition
for the barking event):

(e /1/ bark-01
:ARGO (x /2/ dog
:Name "Fido")) {2<1}

3.3 Negation

Negation introduces a new (negated) context in AMR ™. This makes the : polarity- relationin AMR
obsolete. As negation is always part of another context in some cases a context needs to be coerced
(second and third example below, see also Section 4.1). Consider the representations for ”a woman

99 99

didn’t smile”, ’the woman didn’t smile”’, and ’no woman smiled”:

(e /1/ smile-01
:ARGO (x /2/ woman)) {2:-1}

(e /1/ smile-01
:ARGO (x /3/ woman)) {3<1,2:-1}

(e /1/ smile.v.01
:Agent (x /1/ woman)) {2:-1}
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3.4 Universal Quantification

Universal quantification introduces a conditional context in AMR™. Below are examples for quanti-
fiers in subject position, object position, subject and object position, and a quantification with a bound
variable. Note that the mod-relation used in AMR becomes obsolete.

“Everyone smiled.”
(e /1/ smile-01
:ARGO (x /2/ person.n.0l)) {3:2=>1}

“A dog scared every cat.”
(e /1/ scare-01
:ARGO (x /3/ dog)
:ARGLl (y /2/ cat)) {3:2=>1}

“Every dog scared every cat.”
(e /1/ scare-01
:ARGO (x /2/ dog.n.01)
:ARGLl (y /3/ cat)) {5:3=>4,4:2=>1}

“Every student revised their paper.”
(e /1/ revise-01
:ARGO (x /2/ student)
:ARG1l (y /3/ paper
:poss x)) {2=3,3<1,4:2=>1}

3.5 From AMR to DRS

The AMR™ representations share characteristics with the Discourse Representation Structure (DRS)
introduced in Discourse Representation Theory, DRT for short (Kamp and Reyle, 1993). It is important
to compare AMR™ with DRS for various reasons. DRT is a well-studied formalism with a model-
theoretic component. If we are able to show that the representations are equivalent then this has positive
consequences for AMR, as all inferential properties supplied by DRT could be transferred to AMR.

As a matter of fact, there is a rather straightforward way of converting labelled AMRs to DRS in the
style of the Parallel Meaning Bank (Abzianidze et al., 2017). This conversion comprises three main steps
(7 is the translation function, @ is a DRS-merge operation, and v is a function mapping an AMR to its
main variable):

1. Replace each sub-AMR by a DRS. This DRS contains exactly one discourse referent, a one-place
predicate, and zero or more two-place relations. The first argument of the two-place relation is the
main variable of the sub-AMR; the second argument of the two-place relation is the main variable
of the sub-AMR. So given an AMR™ (x/i/C :Ry A ... R, A},), the corresponding DRS is 7(i) =
| x [ CROR I VAY) .. R(x,v(A)) |

2. Merge all DRSs that are indexed with the same index. A merge of two DRSs (®) consists of taking
the unions of their respective domains and conditions. Assign an empty DRS D] to inferred
contexts.

3. Construct the final DRS by following the structure expressed by the constraints. For instance,

3:2=>1 is translated as 7(3) @ ] \ 7(2) = 7(1) |, and 1:—2 is translated as 7(1) & . .

Here are two examples that illustrate this translation, converting AMR predicates to PMB WordNet
synsets, and AMR PropBank relations to PMB VerbNet roles:

”A dog scared every cat.”
(e /1/ scare-01
:ARGO (x /1/ dog)
:ARGL (y /2/ cat)) {3:2=>1}
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€X

e
X scare.v.01(e)
(1) = sc.are.v.Ol(e) D = | Stimulus(e,x)
Stimulus(e,x) dog.n.01(x) Experiencer(e.y)
Experiencer(e,y) dog.n.01(x)
Q=
cat.n.01(y)
ex
scare.v.01(e)
3)= = y
= =) catn0ly) || Stimuluse)
— Experiencer(e,y)
dog.n.01(x)

”Mary didn’t smile.”
(e /1/ smile-01
:ARGO (x /2/ person.n.0l
:Name "Mary")) {2<3,3:-1}

€

7(1) = | smile.v.01(e)
Agent(e,Xx)

X

7(2)=| person.n.01(x)
Name(x,’Mary”)

€

7(3) = (1) - smile.v.01(e)

Agent(e,x)

In terms of expressive power, AMR™ is equivalent with the dialect of DRS employed in the Parallel
Meaning Bank (Abzianidze et al., 2017), where relations cannot have arity larger than two. In general,
DRS is a more expressive meaning representation language.

4 Discussion

In this section I discuss some loose ends that emerged when designing AMR™: the issue of inferred
labels, annotation work required to implement the approach, and the conversion to triples.

4.1 Inferred Labels

In the current proposal, negation and conditionals introduce new indices, that do not appear in the
predicate-argument level of the AMR. These are necessary to ensure a well-formed logical structure.
But they are (perhaps) not intuitive, and therefore harder to annotate by coders. It would be useful to
investigate whether these labels can be inferred, in such a way that constraints with colons (for negation
and conditionals) could be simplified. In what direction could this go? First note that inferred contexts
are needed in cases of negation (and conditionals). In DRT, a negation is formed recursively, where the
negation material (represented as a DRS) is embedded into the wider context (again, represented as a
DRS). But when there is nothing available in the wider context, the corresponding DRS will be empty
(and as a result, there won’t be a corresponding labelled AMR). As we proposed in Section 3.3, we infer
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an index to meet the requirements of a well-formed logical structure. Instead, we can adopt a short-hand
notation for such cases, i.e., {—j} meaning {i : —j}, and {j = k} meaning {7 : j = k}. Butin gen-
eral, conditionals would require an equivalent notation in terms of negation, so {—j, j : -k} as short for
{i: —j,7 : =k}, which is logically equivalent to {7 : j = k}. This would cover all cases in Section 3.4.

4.2 Annotation Work

Existing AMR annotations can be monotonically extended: all “slashes” that occur in AMRs need to be
indexed, and constraints need to be added. Given an annotated AMR corpus (Banarescu et al., 2013), this
can be done semi-automatically: first add indices automatically (by replacing ”/” by ”/1/”’). Then manu-
ally correct cases of negation (search for ”:polarity -”’), universal quantification, and definite descriptions,
for a sample of the corpus. Finally, use machine learning to annotate the rest (or hire or persuade human
annotators to do the job). The polarity and mod relations can be optionally removed from the AMRs. An
interesting question concerns the use of existing parsing models developed for AMR (Artzi et al., 2015;
Van Noord and Bos, 2017; Damonte et al., 2017). How can these be extended to deal with the extended
AMRs as proposed in this paper? As the original AMR is not affected, a sensible approach would be one
in a modular fashion, where datasets consisting of AMRs paired with AMR™s could be used as training
material.

4.3 Triple Format of Logical Structure

AMRs are converted to sets of triples for evaluation purposes. Therefore, a sensible question to ask is
how the logical constraints in this proposal are converted to triples. There are two new types of triple
instances. The indexed sub-AMRs all introduce a membership triple (with the edge named IN) linking
an instance with a scope index. Secondly, each scoping constraint introduces one or more “structural”
triples. Constraints that involve two indices introduce a single triple. Constraints that involve three
indices introduce two triples. Here is an example:

”Nobody smiled.”
(e /1/ smile-01
:ARGO (x /2/ person)) {4:2=>3,3:-1}

This will introduce the membership triples < e, IN, 1 > and < x,IN, 2 >, the triple for negation < 3
,NOT, 1 >, and the triples for the implication < 4 ,IF,2 >, and < 2, THEN, 3 >. As a consequence,
standard tools for AMR evaluation (Cai and Knight, 2013) can be used, or extended to more fine-grained
scores (Damonte et al., 2017).

5 Conclusion and Future Work

The original AMR notation can be extended by a layer of logical structure that gives correct interpreta-
tion of linguistic phenomena that require scope or quantification. The resulting framework bears strong
similarities with Discourse Representation Theory as implemented in the Parallel Meaning Bank, and it
deals with the bound variable problem and the scope representation problem. So what’s next? Let’s get
an AMR corpus annotated with logical structure!
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