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Abstract

Pretrained language models have excelled at
many NLP tasks recently; however, their so-
cial intelligence is still unsatisfactory. To en-
able this, machines need to have a more gen-
eral understanding of our complicated world
and develop the ability to perform common-
sense reasoning besides fitting the specific
downstream tasks. External commonsense
knowledge graphs (KGs), such as ConceptNet,
provide rich information about words and their
relationships. Thus, towards general common-
sense learning, we propose two approaches to
implicitly and explicitly infuse such KGs into
pretrained language models. We demonstrate
our proposed methods perform well on So-
ciallQA, a social commonsense reasoning task,
in both limited and full training data regimes.

1 Introduction

Empowering machines with commonsense has be-
come a hot topic recently. Past research efforts for
this problem include the construction of various
data sets and models. Several commonsense data
sets have been commonly used in past work to de-
velop machines’ commonsense capability (Talmor
etal., 2019; Huang et al., 2019; Zellers et al., 2019;
Sap et al., 2019b; Sakaguchi et al., 2019; Gordon
et al., 2012; Rajani et al., 2019). In particular, So-
ciallQA (Sap et al., 2019b) is a multiple-choice QA
data set for probing machine’s emotional and so-
cial intelligence in a variety of everyday situations,
which is the data set used in this study. To improve
the modeling approaches for the SociallQA and
other commonsense tasks, Shwartz et al. (2020) and
Bosselut and Choi (2019) focused on zero-shot set-
ting using pretrained language models. Khashabi
et al. (2020) reformulated the multi-choice setup
used in most data sets as a generation task and
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achieved impressive performance by fine-tuning
T5 (Raffel et al., 2019). Recently there is an in-
creasing effort to utilize external knowledge bases
to incorporate commonsense information underly-
ing the text (Shwartz et al., 2020; Mitra et al., 2019;
Jietal., 2020a,b).

While most prior work on SociallQA utilized
large pretrained language models (Devlin et al.,
2019; Liu et al., 2019; Radford et al., 2018, 2019;
Raffel et al., 2019), we argue that such a challeng-
ing task requires commonsense reasoning of social
events, and simply fine-tuning the model to fit the
task is insufficient. We believe it would be benefi-
cial if the model can learn from knowledge-rich re-
sources such as ConceptNet (Liu and Singh, 2004),
and thus have a broader and deeper understand-
ing of the information not present in the provided
context and answer candidates.

In this paper, we propose two approaches tai-
lored to large pretrained language models to utilize
existing knowledge graph (KGs) for downstream
commonsense tasks. The first approach leverages
the KGs implicitly by pretraining on the relevant
tuples to the SociallQA task, while the second one
maintains a dynamic knowledge base during fine-
tuning, utilizing KGs explicitly via an attention
mechanism. Our experiments demonstrate the ef-
fectiveness of both approaches on SociallQA under
limited and full training data regimes, and the criti-
cal role of relevant knowledge.

2 Problem Formulation and Baseline

In SociallQA, given a context C' of an event and
a corresponding question (), the goal is to se-
lect the correct choice from the answer set A =
(A1, Az, A3). An example is shown in Figure 1,
with the provided context, question, and three an-
swer candidates.

A typical approach (as used in Sap et al.
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Cameron decided to have a barbecue
and gathered her friends together.

How would Others

feel as a result?

1) like attending v
2) like staying home
3) agood friend to have

(barbecue — mannerof -> grill)
(attend — mannerof -> care)
(result — synonym -> consequence)

Figure 1: An instance in SociallQA and our retrieved
tuples from ConceptNet.

(2019b)) for solving this kind of multiple-choice
problems with a pretrained Transformer-based lan-
guage model is by concatenating C, ), and A;
with a separator token, and then letting the model
output a score via a multi-layer perceptron (MLP)
built on top of the final hidden representation of
the classifier token [C'LS]. Finally, scores for each
data point are normalized across all (C, @, 4;) in-
stances with softmax, and cross-entropy loss is
applied for model training.

Since RoBERTa (Liu et al., 2019) has shown
competitive performance on the SociallQA task,
we use it as a baseline model in this study. Fur-
thermore, in addition to multiple-choice classifi-
cation, we perform masked language modeling
(MLM) (Devlin et al., 2019), masking 15% tokens
in the concatenation of C, (), and the correct an-
swer A+, when fine-tuning on the SociallQA task.

3 Incorporating Commonsense
Knowledge Graph

In this section, we introduce two methods to incor-
porate a given KG into our pretrained model. We
experiment with both ATOMIC (Sap et al., 2019a)
and ConceptNet (Liu and Singh, 2004) as our KGs.

* ATOMIC focuses on inferential knowledge
of everyday situations. Each node in ATOMIC
is a social event, containing 9 if-then relation
types. Note that though SociallQA is derived
from ATOMIC, it has been rewritten by crowd
workers (Sap et al., 2019b).

ConceptNet represents general words and
phrases that people use and the commonsense
relationships between them, such as IsA, At-
Location, Desires, Synonym.

3.1 Querying Knowledge Graph

For both methods, we first extract keywords in
the input data to query ConceptNet using only
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the lemmatized noun, verb, adjective words in
(C,Q, A) as queries, with stop words excluded.
First, we find the node corresponding to each
query in the KG, and retrieve all the connected
tuples (query, relation with weight, tail) within one
hop. We then sort all the retrieved tuples by their
relation weight x query’s idf, and keep the top-
k tuples for each data point.! In Figure 1, the
bottom shows examples of retrieved tuples from
ConceptNet for an instance in the SociallQA data.
Note that since ATOMIC highly overlaps with So-
ciallQA, we do not extract keywords to query the
KG but pretrain the model on the entire KG.

3.2 Pretraining Language Models on
Retrieved Concepts

In the first approach, we leverage the KG via infus-
ing it into the pretraining step. Using the SociallQA
data as queries, we first retrieve tuples from the
KGs as described above, and then convert them
to textual forms. To enable this conversion, we
hand-crafted templates for different relations. For
example, a tuple in ConceptNet (barbecue, hascon-
text, cooking) would be converted into “barbecue
is a word used in the context of cooking.” When
using ATOMIC, because there are some blanks and
unknown names such as “PersonX meets _ for
lunch”, we replace PersonX and PersonY with two
different common last names to avoid gender bias,
and following Mitra et al. (2019), we utilize the
pretrained BERT-large’s MLM head to fill in the
blanks. After these steps, we build a corpus derived
from concepts in the KGs relevant to the SocialIQA
task.

We then train our RoBERTa-based models using
such a corpus with the MLM loss (Devlin et al.,
2019), masking either the head or tail entities, e.g.,
barbecue or cooking. Further training the pre-
trained models on such a corpus is expected to
implicitly learn commonsense knowledge in the
KGs that is relevant to SociallQA. Finally, we con-
tinue to fine-tune the model on the SociallQA task,
similar to the baseline described in Section 2.

'Initially, we tried to extract the shortest path between
keywords in the KG similar to Shwartz et al. (2020). How-
ever, as ConceptNet does not disambiguate word senses, we
observed that such paths usually deviate from the original
semantics. For example, consider “C: Cameron decided to
have a barbecue and gathered her friends together. A : like
attending.” The path we found between barbecue and attend
is: barbecue—isa— dish—synonym— serve<—synonym—attend.
Similarly, since we found that some of the retrieved tuples

within one hop are already irrelevant, we did not use more
hops to retrieve relevant tuples.



3.3 Modeling Concepts Via Attention

In the second approach, we treat the retrieved tuples
as items in a cached external knowledge base (KB),
which dynamically changes based on every input
instance. The model can then decide the impor-
tance of each item and leverage them accordingly.

KG Attentive Representations Motivated by
previous work on question answering (Seo et al.,
2017; Zhu et al., 2018; Wang et al., 2018; Huang
et al., 2019), which uses attention among different
segments of the input, here we treat the knowledge
tuples as a new segment. Specifically, we concate-
nate the top-k retrieved tuples and map them into
the space of RoOBERTa’s final hidden representa-
tions as an additional segment, and then attend to
it using RoBERT2’s last hidden representation to
generate a new KG-attentive sentence representa-
tion.

Formally, let d be the hidden dimension, [ be
the sequence length of the input, Hr € R™*? be
RoBERTz2’s final hidden representation for the So-
ciallQA input sequence for a given candidate, and
Hygo € REX4 i the representation of the k en-
coded tuples. We attend to Hx ¢ from Hp:

I{AR:HRW1+1*521F,
Eﬂzg =HggWi+1 *b{,
Vd

where W € RdXd, 1eR (a vector of all-ones),
by € RY, and H{%(G e R s the KG-attentive
sentence representation.

HEC = Softmax( )Hga (1)

Encoding Knowledge Tuples To obtain Hg ¢,
we need to represent the tuples and project them to
the RoBERTa’s hidden representation space. We
first convert the tuples into fixed embeddings with
three different approaches:

* Pretrained KG embeddings based on Concept-
Net via TransE (Bordes et al., 2013; Zhou
et al., 2018).

* Pretrained word embeddings retrofitted by
ConceptNet (Speer et al., 2017), where its
training adjusts a word’s embeddings to be
close to those of its neighbors in the graph.

* Encoded tuple-converted text with templates
and pretrained universal sentence encoder
(USE) (Cer et al., 2018), a Transformer-based
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sentence encoder that transforms text into vec-
tors that can be used for text classification and
semantic similarity.

Then we transform these embeddings of the top-
k tuples using a linear transformation that is learned
during training, and then concatenate all of them to
form the knowledge representation Hx ¢ € RF*,

Fusion Layer We then combine Hp and H5¢
with a fusion layer. Formally,

ffR: [HR@H{%'G} W2+1*bg,
hr = max{Hg},

S = MLP(hg), )

where we first transform the concatenation (de-
noted by @) of Hg and H}I{G to Hp € R4 and
then perform max-pooling along the sequence di-
mension to obtain the condensed representation
hy € d for classification. Finally, we get the score
S e R! for each answer via a multilayer percep-
tron (MLP). The model architecture is illustrated

in Figure 2.
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C: Cameron decided to have a and her friends together

Figure 2: Illustration of the proposed model incorporat-
ing external KGs for SociallQA.

4 Experiments and Results

4.1 Experimental Setup

We use Hugging Face’s t ransformers toolkit?
and train our models on the 33k SociallQA training

https://huggingface.co/transformers/
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instances, running hyper-parameters search over
the learning rate in {5e — 6, le—5, 2.5¢ —5}, and
the effective batch size (number of GPUs x batch
size per GPU x gradient accumulation steps) in
{8, 16, 32} for the proposed models and baselines
respectively, and report their best performance on
the dev set. We set the maximum returned tuples
of each instance to k = 30.

4.2 Results

Table 1 shows the results on the dev set using dif-
ferent methods. We can see the first pretraining
method using ATOMIC performs well, which is
not surprising since it is the partial source of So-
ciallQA, and it is likely that the model may have
seen related information about dev/test set during
pretraining. On the other hand, the performance of
ConceptNet-pretrain suggests that without a sophis-
ticated design, exposing too many irrelevant tuples
from ConceptNet in pretraining may compromise
the model’s performance on the downstream task.
This finding is consistent with Gururangan et al.
(2020). In our analysis, we did find that some of
the extracted tuples are noisy, mainly because Con-
ceptNet is comprehensive, but it does not contain
annotations for different word senses.

4.3 Few-Shot Learning

To demonstrate the effective utilization of external
KGs, we now investigate performance in the lim-
ited training data regime. We fine-tuned our model
on 5%, 10%, and 20% of SociallQA’s training in-
stances, respectively. We compare both the explicit
method, ConceptNet-attention-USE, and the im-
plicit method, ATOMIC-pretrain, with the typical
implementation of ROBERTa as the baseline. We
apply MLM on SociallQA fine-tuning (Section 2)
in all the three models, since we have found it helps
stabilize the training.

The results in Table 2 show that ATOMIC-
pretrain performs especially well, even though it
only relies on the pretraining phase to infuse the
ATOMIC graph, reaching 72.9% when only 5% of
training instances are used. ConceptNet-attention-
USE performs the worst on the 5% setting, but
better than the baseline on the other two settings.
Note that a BERT-base model trained on the full
training set only achieves 63.3% (Sap et al., 2019b),
showing that ROBERTa model may already learn
some commonsense in its pretraining phase. Fur-
thermore, our proposed methods demonstrate that
with the external knowledge graphs on relevant do-
mains, we can obtain even better results when only
a small number of annotated training instances for

Model \ Accuracy (%) ‘ i
- the downstream task are available.

Baseline Sap et al. (2019b) 78.0

ConceptNet-pretrain 76.8 5% | 10% | 20%
ATOMIC-pretrain 79.1 RoBERTa+ MLM | 70.3 | 72.3 | 73.0
ConceptNet-attention-TransE 78.5 ATOMIC-pretrain 729 | 73.3 | 76.0
ConceptNet-attention-Retrofit 78.7 ConceptNet-attn-USE | 69.7 | 73.3 | 74.6
ConceptNet-attention-USE 79.2

Table 1: Comparison of different models on the So-
ciallQA dev set.

The second method, however, seems promising.
Among its three variants (see Section 3.3), the one
using TransE as knowledge embeddings performed
the worst, possibly because of its much smaller
dimension of the pretrained TransE embeddings
(€ R'%%) we adopted?, compared to the other two
variants (300 and 512) and RoBERTa-large’s hid-
den dimension d = 1024. These results indicate
that the second method of using ConceptNet is less
sensitive to the noisy tuples because of the explicit
attention mechanism, which allows the model to
utilize the items in the KG selectively.

*http://coai.cs.tsinghua.edu.cn/hml/
dataset/#commonsense
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Table 2: Results (accuracy %) when using few training
instances for model fine-tuning.

5 Conclusion

In this paper, we propose two methods to introduce
KGs into pretrained language models for common-
sense tasks. The first one implicitly infuses relevant
knowledge into MLM pretraining, while the sec-
ond method uses the attention mechanism to allow
pretrained language models to explicitly utilize the
dynamic query tuples. Our experiments on the So-
ciallQA task show that leveraging external KGs
via attention outperforms the baseline pretrained
language models, and the quality of the relevant
graphs matters for downstream task performance.
Our work can be further improved by designing
better algorithms for KG retrieval in the future. Al-


http://coai.cs.tsinghua.edu.cn/hml/dataset/#commonsense
http://coai.cs.tsinghua.edu.cn/hml/dataset/#commonsense

though our experiments have focused on SociallQA
with ConceptNet and ATOMIC, our method can
be generalized to other similar tasks to leverage
knowledge graphs.

References

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems, pages 2787-2795.

Antoine Bosselut and Yejin Choi. 2019. Dynamic
knowledge graph construction for zero-shot com-
monsense question answering.  arXiv preprint
arXiv:1911.03876.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169-174.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (NAACL), pages 4171-
4186.

Andrew Gordon, Zornitsa Kozareva, and Melissa
Roemmele. 2012. Semeval-2012 task 7: Choice
of plausible alternatives: An evaluation of common-
sense causal reasoning. In * SEM 2012: The First
Joint Conference on Lexical and Computational
Semantics—Volume 1: Proceedings of the main con-
ference and the shared task, and Volume 2: Proceed-
ings of the Sixth International Workshop on Seman-
tic Evaluation (SemEval 2012), pages 394-398.

Suchin Gururangan, Ana Marasovié, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. arXiv
preprint arXiv:2004.10964.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos ga: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391-2401.

Haozhe Ji, Pei Ke, Shaohan Huang, Furu Wei, and Min-
lie Huang. 2020a. Generating commonsense expla-
nation by extracting bridge concepts from reasoning
paths. AACL-1JCNLP.

78

Haozhe Ji, Pei Ke, Shaohan Huang, Furu Wei, Xiaoyan
Zhu, and Minlie Huang. 2020b. Language gen-
eration with multi-hop reasoning on commonsense
knowledge graph. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Daniel Khashabi, Tushar Khot, Ashish Sabharwal,
Oyvind Tafjord, Peter Clark, and Hannaneh Ha-
jishirzi. 2020. Unifiedga: Crossing format bound-
aries with a single qa system. arXiv preprint
arXiv:2005.00700.

Hugo Liu and Push Singh. 2004. Conceptnet—a practi-
cal commonsense reasoning tool-kit. BT technology
Jjournal, 22(4):211-226.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Arindam Mitra, Pratyay Banerjee, Kuntal Pal, Swa-
roop Mishra, and Chitta Baral. 2019. How ad-
ditional knowledge can improve natural language
commonsense question answering? arXiv preprint
arXiv:1909.08855.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain your-
self! leveraging language models for commonsense
reasoning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4932-4942.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, pages 8732-8740.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi.
2019a. Atomic: An atlas of machine commonsense
for if-then reasoning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 3027-3035.



Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019b. Social iga: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4453—
4463.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations.

Vered Shwartz, Peter West, Ronan Le Bras, Chan-
dra Bhagavatula, and Yejin Choi. 2020. Unsuper-
vised commonsense question answering with self-
talk. arXiv preprint arXiv:2004.05483.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL), pages
4149-4158.

Liang Wang, Meng Sun, Wei Zhao, Kewei Shen, and
Jingming Liu. 2018. Yuanfudao at semeval-2018
task 11: Three-way attention and relational knowl-
edge for commonsense machine comprehension. In
Proceedings of The 12th International Workshop on
Semantic Evaluation, pages 758-762.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a
machine really finish your sentence? In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4791-4800.

Hao Zhou, Tom Young, Minlie Huang, Haizhou Zhao,
Jingfang Xu, and Xiaoyan Zhu. 2018. Com-
monsense knowledge aware conversation generation
with graph attention. In IJCAI.

Haichao Zhu, Furu Wei, Bing Qin, and Ting Liu. 2018.
Hierarchical attention flow for multiple-choice read-
ing comprehension. In Proceedings of the AAAI
Conference on Artificial Intelligence.

79



