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Abstract

This work addresses coreference resolution in Abstract Meaning Representation (AMR) graphs,
a popular formalism for semantic parsing. We evaluate several current coreference resolution
techniques on a recently published AMR coreference corpus, establishing baselines for future
work. We also demonstrate that coreference resolution can improve the accuracy of a state-of-
the-art semantic parser on this corpus.

1 Introduction

Abstract Meaning Representations (AMRs, Banarescu et al. (2013)) are a popular type of symbolic
semantic representation for semantic parsing. AMRs are labeled directed graphs whose nodes represent
entities, events, properties, and states; the edges represent semantic relations between the nodes. For
instance, in the example AMRs of Fig. 2, the predicate node ¢ describes a come-back relation between
the ARG1 “I” and the ARG3 “this”. AMR is designed to abstract over the way in which a certain
piece of meaning was expressed in language; thus “the destruction of the room by the boy” and “the
boy destroyed the room” are represented by the same graph. In the example AMR, the noun phrase
“university offers” is decomposed into two nodes: the predicate node o:offer-01 and the argument node
u:university, describing an event in which the university offers something to “I”.
An AMR graphbank

annotates each sen- —<identchain relationid="rel-3">
tence in the corpus with <mention concept="he" id="DF-200-192400-625 7557.12" variable="h"/>
<mention concept="person" id="DF-200-192400-625_7557.11" variable="p"/>
an AMR graph. Re- <implicitrole argument="ARG0" id="DF-200-192400-625 7557.12"
cently, O’Gorman et al parentconcept="want-01" parentvariable="w2"/>
’ . . </identchain>
(2018) introduced the
Multi-Sentence AMR Figure 1: Coreference chain from MS-AMR.

(MS-AMR) corpus, which
adds a layer of annotation
on top of the AMR-2017 graphbank that represents coreference and implicit arguments beyond the
sentence level. An example is shown in Fig. 1. Each <identchain> element collects mentions of the
same entity; these mentions are not pieces of text as in other coreference annotation schemes, but nodes
in the AMR graphs. The annotation also specifies what implicit roles of predicate nodes the entity fills.
In this paper, we make two contributions. First, we evaluate the performance of different coreference
resolution tools on the MS-AMR annotations. We evaluate these on the token level (by projecting the
coreference annotations from the nodes to the sentences) and on the node level (by projecting the tools’
coreference predictions to the nodes of the graphs) and find that AllenNLP with SpanBERT embeddings
(Joshi et al., 2020) generally performs best.
Second, we show for the first time how the output of a coreference system can be integrated into the
predictions of a state-of-the-art AMR parser. We use the neural semantic parser of Lindemann et al.
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Figure 2: AMRs, (a) before and (b) after merge for “Maybe I can come back from this, who knows. I’ve
got the most amazing university offers, but I can’t even accept them - I'll never make the grades.”

(2019), which compositionally predicts a graph for the input sentence. We exploit this compositional
structure to map coreferent input tokens to nodes in the predicted graph, and obtain an improvement of
three points Smatch f-score over a coreference-unaware baseline.

2 Coreference in MS-AMR

Coreference resolution tools typically predict coreference between fokens in a text, but MS-AMR anno-
tates coreference between nodes in the AMR graphs. To perform coreference resolution on MS-AMR,
we therefore have to map between the token level and the node level. The MS-AMR corpus contains
annotations which map between tokens and nodes, but this mapping is not always one-to-one. In the
example shown in Fig. 2 (a), the two tokens “who knows” are aligned to the single node p. The nodes
a3:amr-unknown and h:have-degree-91 are left unaligned.

Furthermore, AMR graphs sometimes contain nodes that participate in the coreference chains but are
not realized at the token level. For instance, in the sentence “speak to a doctor” the predicate speak-01
has an ARGO you which is a separate node in the graph even though it does not have any token alignment.

We evaluate coreference tools on MS-AMR in two different modes: token-level, where we project MS-
AMR coreference annotations from nodes to tokens and compare them against the predicted token-level
coreference annotations; and node-level, where we project token-level coreference predictions to MS-
AMR nodes and compare them against the MS-AMR annotations. Because of the node—token mismatch
explained above, we can project to the token level only coreference annotations between nodes that are
aligned to tokens. We retained only coreference chains with at least two members. This reduces the
87 coreference chains between 425 mentions in the original MS-AMR test set to 69 coreference chains
between 385 mentions. 35% of these chains consist only of two mentions although there are also some
very long chains with more than 30 elements, mostly pronouns.

For the node-level evaluation and the Smatch-based evaluation (see below), we used the unmodified
coreference annotations on the nodes.

3 Comparative Evaluation of Coreference Resolution Tools

We compared the output of the deterministic CoreNLP (Lee et al., 2013) and neural CoreNLP (Clark and
Manning, 2016) coreference resolvers and tested two versions of the AllenNLP (Lee et al., 2017) coref-
erence tool based on the GloVe (Pennington et al., 2014) and SpanBERT (Joshi et al., 2020) embeddings
respectively. These tools were chosen due to their availability and their strong accuracy on English.
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MUC B3 CEAF ¢ CEAF ¢,

P R F P R F P R F P R F
AllenNLP (GloVe) 0.61 0.51 0.55 042 040 039 046 044 045 020 026 0.22
AllenNLP (SpanBERT) | 0.60 0.56 0.58 044 044 043 050 049 049 024 028 0.25
CoreNLP (determin.) | 0.45 0.50 0.47 035 035 0.32 035 039 037 | 0.14 027 0.18
CoreNLP (neural) 0.63 0.56 0.59 040 038 037 048 042 045 022 023 0.22

Table 1: Coreference evaluation at the token level for AllenNLP and CoreNLP.

MUC B3 CEAF ¢ CEAF ¢,

P R F P R F P R F P R F
AllenNLP (GloVe) 0.62 037 045 031 029 028 051 034 039 032 023 026
AllenNLP (SpanBERT) | 0.69 0.42 0.50 032 030 0.30  0.58 035 043  0.42 024 0.30
CoreNLP (determin.) | 0.51 0.33 039 | 026 0.22 0.22 046 029 034 | 026 021 0.22
CoreNLP (neural) 0.64 037 046 031 028 027 051 033 039 030 022 0.24

Table 2: Coreference evaluation at the node level for AllenNLP and CoreNLP.

To evaluate the performance at the token level, the gold alignments were extracted and each corefer-
ence chain from the MS-AMR dataset was mapped to the corresponding span in the text. These anno-
tations represent the gold standard to which we compared the system annotations. In order to annotate
coreference chains, a separate text file was created for each document with the sentences representing the
document AMRs. Then each document text was processed with different coreference resolution systems
to generate the predictions. For the token-level evaluation we compared the system output directly to
the coreferent tokens in the MS-AMR test set and for the node-level evaluation we first projected token
annotations to the graph nodes using the gold alignments and then compared the node coreference chains.

Table 1 reports the token-level results on the MS-AMR test data using several metrics: MUC, B3,
mention-based CEAF ¢3 and entity-based CEAF ¢4. The evaluation shows that the neural version
of CoreNLP achieves the best MUC f-score (0.59), followed by the SpanBERT version of AllenNLP
(0.58). Neural CoreNLP and AllenNLP with GloVe show similar results in terms of B3, CEAF ¢3 and
CEAF ¢4. Overall, SpanBERT AllenNLP achieves the best performance and deterministic CoreNLP
performs the worst in all metrics. The difference in scores is due to the way how metrics define the
coreference: in terms of links (for M UC)) or in terms of clusters (B> and CEAF).

Neural CoreNLP and AllenNLP are reasonable baselines for AMR coreference resolution, although
the results seem to be worse than state-of-the-art performance reported on news and narrative texts. One
problem might be that the MS-AMR corpus contains text snippets from blog data, including misspellings,
jargon and incorrect grammar. Also the conversational style used in blogs poses challenges for the
coreference tools since they do not distinguish between posts made by different authors.

The results of the node-level evaluation can be found in Table 2. They are based on mapping the
predicted annotations to the nodes defined in the gold AMR graphs. The reason to perform both token
and node-level evaluation is that coreference chains differ depending on whether their members are
tokens or nodes. For example, there are four instances of token “I” in the text corresponding to the AMR
in Fig. 2 (a) but the graph contains only three i nodes (i, i2 and i3) because the predicates a2:accept-01
and o:offer-01 share the argument node i2:i. So, the number of mentions in each chain varies depending
on whether the evaluation is done at the token or node level. Moreover, the node-level evaluation includes
the full set of annotated nodes in the gold standard, not only those that can be aligned to tokens. At the
node level, the SpanBERT version of AllenNLP achieves the best results in all metrics.

4 AMR parsing with coreference

Coreference is not an isolated task in MS-AMR parsing; in order to predict the gold annotations, coref-
erence information needs to be incorporated into AMR graphs predicted by a semantic parser. We thus
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‘ AMR parser ‘ AMR parser + AllenNLP ‘ AMR parser + oracle

P R F P R F P R F
macro-average: = 0.57 0.52 0.54  0.61 0.54 0.57 | 063 056 0.59
micro-average: ‘ 57 050 0.53 ‘ .60 0.53 0.56 ‘ 63 055 058

Table 3: Smatch evaluation of document-level coreference annotations.

extended the AMR parser of Lindemann et al. (2019) with coreference information.

First, we prepared gold annotations at the document level. For this, we combined the individual AMRs
from each document into a single graph to represent document-level annotations. The coreference chains
were extracted from the gold annotations of the MS-AMR corpus, and coreferent nodes in the document
graph were merged following the procedure described in (O’Gorman et al., 2018).

Second, we ran Lindemann’s parser on each sentence separately and combined the predicted AMR
graphs into a document-level graph. Then we ran SpanBERT AllenNLP (henceforth just AllenNLP) on
each document text, and mapped each token-level prediction to the nodes the Lindemann parser predicted
for those tokens. We collapsed the coreferent nodes by replacing all edges into a node for a coreferent
token by edges into the first node of the coreference chain; see O’Gorman et al. (2018) for details. For
example, in Fig. 2 (a) there are three coreferent nodes i:i, i2:i and i3:i. Since all three nodes represent the
same entity the corresponding edges can be rearranged to point to the same node i:i as shown in Fig. 2
(b).

We evaluated the performance of Lindemann’s parser, with and without the added coreference infor-
mation, on the complete MS-AMR test data. To this end, we computed the Smatch score (Cai and Knight,
2013) for the predicted vs. gold document-level graphs. Table 3 shows the micro- and macro-average
Smatch precision, recall and f-score for the documents from the test set. The left column indicates the
scores obtained by comparing the gold AMRs with coreference to the ones generated by the parser with-
out coreference. The middle column shows the scores for the gold MS-AMR graphs versus the parser
output augmented with coreference predictions. The overall improvement in f-score is around three
points Smatch f-score. The right column shows the scores obtained by augmenting Lindemann’s parser
output with the gold coreference chains extracted from the MS-AMR corpus (i.e. oracle predictions).

It is worth noting that the overall Smatch score is much lower than on other AMR graphbanks; for
instance, Lindemann et al. (2019) report a Smatch f-score of 0.75 for their parser on the AMR-2017 test
set. Even on the MS-AMR test corpus without coreference links (i.e. pure sentence-by-sentence parsing),
the parser only gets a score of 0.61, indicating that this is a harder corpus than AMR-17. This then drops
to 0.53 once nodes in the gold graphs are merged based on the coreference annotations.

5 Discussion

The coreference chains annotated in

—<identchain relationid="rel-1">

the MS-AMR corpus are quite hetero-
geneous. At the token level, mentions
of the same chain can be expressed
as verbs, nouns or pronouns and
Fig. 3 illustrates one example where
the chain includes different concepts
at the node level: it, thing, harm-
01, cut-01. Such chains are hard to
predict for the AllenNLP coreference
model because they are realized as

<mention concept="it" id="DF-200-192400-625_7557.9" variable="i2"/>
<mention concept="thing" id="DF-200-192400-625_7557.24" variable="t3"/>
<mention concept="it" id="DF-200-192400-625_7557.27" variable="i2"/>
<mention concept="harm-01" id="DF-200-192400-625_7557.35" variable="h"/>
<mention concept="cut-01" id="DF-200-192400-625_7557.3" variable="c4"/>
<mention concept="do-02" id="DF-200-192400-625_7557.17" variable="d2"/>
<mention concept="cut-01" id="DF-200-192400-625 7557.8" variable="c"/>
<mention concept="this" id="DF-200-192400-625 7557.29" variable="t"/>
<mention concept="harm-01" id="DF-200- 192400-625 7557.1" variable="h"/>
<mention concept="cut-01" id="DF-200-192400-625 7557.6" variable="c"/>
<mention concept="it" id="DF-200-192400-625 7557.36" variable="i"/>
<mention concept="thing" id="DF-200-192400-625 7557.28" variable="t2"/>

</identchain>

Figure 3: Heterogeneous coreference chain from MS-AMR.

different parts of speech and are semantically nontrivial (harm/cut). 35% of all coreference chains in
the test set are heterogeneous, i.e. they include entities that are expressed with multiple different parts of

speech.

On the one hand, AMR parsing already resolves some cases of coreference within the AMR graphs.

36



For instance, in Fig. 2 (a) a single node o:offer-01 aligns to coreferent tokens “offers” and “them”. On
the other hand, some AMR nodes can build coreference chains but do not have any token alignments.
For example, a sentence like “speak to a doctor” has a separate node “you” as ARGO of “speak-01" in
the AMR graph. However, this node does not correspond to any token in the text. 9% of all coreferent
mentions in the MS-AMR test set do not have any alignments and the token-based coreference resolvers
are not able to handle them.

Incorrect (or incomplete) node-token alignments can hurt the performance.
10% of all coreferent nodes in the test set refer to generic concepts like #:thing
or p:person. This becomes a problem when AllenNLP finds the coreference
with more specific nodes such as d:dad in Fig. 4. Token “dad” is aligned to the
node d:dad in the AMR graph whereas the more generic node p:person does not
have an alignment. However, the gold coreference chain includes only p:person
as a member which results in the wrong classification of d:dad as false positive  Figure 4: AMR for
although both nodes actually correspond to the same entity. This example illus-  “my dad”.
trates the problem when the gold annotation includes generic concepts that are
represented in the AMR graphs but not realized at the token level.

We also found cases of incorrectly resolved personal pronouns because some texts were extracted
from forums and the speaker could switch in the middle of the conversation, so that / and you would
get a different meaning. For example, one document in the MS-AMR test set contains the following
text: “Or should [I]; ... just keep an eye on the anxiety until it becomes a problem? Well [I]o woudn’t
try to keep an eye on anxiety for a start because that will make [u]; tense.” The first sentence has the
pronoun [I]; that refers to the same entity as [u]; in the second sentence and the [I]o pronoun in the
second sentence corresponds to a different speaker. Since the input text for the coreference tool does not
include any meta information about the speakers the tool resolves both occurrences of “I”” as referring to
the same entity. This issue affects 9% of the coreference chains from the MS-AMR test set.

h: have-rel-role-91

6 Conclusion

In this paper, we evaluated two popular coreference resolution tools on the MS-AMR dataset, and found
that the SpanBERT version of AllenNLP performs best in both a token-level and a node-level evaluation.
We further extended a state-of-the-art AMR parser with predicted coreference information, and obtained
a three-point improvement in Smatch score.

The coreference models we have used here were quite conservative, in that they relied only on textual
information. In the future, it would be interesting to extend them with features based on the AMR graphs,
which abstract over some surface details. It would also be interesting to predict bridging coreference
relations and include those in the parser output too.
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