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Abstract

In the last decade, the field of Neural Language Modelling has witnessed enormous changes,
with the development of novel models through the use of Transformer architectures. However,
even these models struggle to model long sequences due to memory constraints and increasing
computational complexity. Coreference annotations over the training data can provide context
far beyond the modelling limitations of such language models. In this paper we present an
extension over the Transformer-block architecture used in neural language models, specifically
in GPT2, in order to incorporate entity annotations during training. Our model, GPT2E, extends
the Transformer layers architecture of GPT2 to Entity-Transformers, an architecture designed to
handle coreference information when present. To that end, we achieve richer representations for
entity mentions, with insignificant training cost. We show the comparative model performance
between GPT2 and GPT2E in terms of Perplexity on the CoNLL 2012 and LAMBADA datasets
as well as the key differences in the entity representations and their effects in downstream tasks
such as Named Entity Recognition. Furthermore, our approach can be adopted by the majority
of Transformer-based language models.

1 Introduction

Language modelling is the task of transforming individual words into vector representations based on
the context they appear in. Hence, distant term dependencies are an inherited issue within the task.
Language models always seek for smart approaches towards incorporating context from longer distances
as it allows for better representations compared to their limited context counterparts. Intuitively, imagine
attempting to start reading a novel series from the second book onward, with no information about the
first. The amount of information previously missed is something that cannot be acquired. However,
this is the case with most language models. While an understanding of the words is present due to the
contextual information at each word’s occurrence, entity information that are in distant text are lost or
not transferred.

Until recently, Recurrent Neural Networks (RNNs), and specifically Long Short-Term Memory
(LSTM) networks, have been the core of all the state-of-the-art approaches (McCann et al., 2017; Peters
et al., 2018). Thanks to the Transformers architecture (Vaswani et al., 2017), through the use of attention
mechanisms, models such as XLNet (Yang et al., 2019), GPT (Radford et al., 2019) and BERT (Devlin
etal., 2019) can account for even longer sequences. However, the computational limitations of the multi-
head attention in the architecture make it hard to increase the contextual information in such models (Tay
et al., 2020). As a result, research has been focused on introducing variations to the transformer archi-
tecture, with focus on the multi-head attention mechanism, in order to alleviate part of the computational
cost and increase the contextual information available to models.

In this paper we present a novel approach, that makes use of coreference information during training a
language model via our Entity-Transformer architecture, which extends the original Transformer block
in Transformer-Based language models. To that end, we incorporate the important entity information
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that would otherwise be unreachable for the model. As a result, we effectively boost the representations
of the entity mentions, where entity information is present, without hindering the performance of the
language model where entities are not present.

In our experiments, we extend the GPT2 architecture to formulate our model, named GPT2E and
train it on the CoNLL-2012 dataset (Pradhan et al., 2012) using the annotated coreference information.
We evaluate the model’s performance in terms of Perplexity on the ConLL 2012 and the LAMBADA
(Paperno et al., 2016) datasets and showcase the effects of such training on the word representations as
well as on the downstream task of Named Entity Recognition (NER) using the CoNLL 2012 dataset. To
that end, we compare GPT2E’s performance to a base model (GPT2) when trained on the same data, to
highlight the effects of coreference information when paird with our Entity-Transformer architecture.

2 Related Work

In the last decade, the field of Neural Language Modelling has witnessed enormous changes. With
pretrained neural language models being the current go-to approach in all NLP reserach, a variety of
methods models have been developed. We distinguish two major categories:

General purpose language models. Steady improvements have been achieved to this field with the
use of deep RNNs and pre-training on a large number of training data (McCann et al., 2017; Peters et
al., 2018). With Transformers, language models have been able to capture longer linguistic structures
without the use of RNNs and surpass their RNN counterparts by a big margin (Radford et al., 2018;
Devlin et al., 2019). Recent research has focused on ways of taking advantage of more context (Yang
et al., 2019; Fan et al., 2020) and introducing effective methodologies to scale up the models and train
them (Radford et al., 2019; Shoeybi et al., 2019; Rosset, 2019; Brown et al., 2020).

Language modelling with entity decisions. YangLM (Yang et al., 2017) was the first to incorporate
entity decisions to a language model by introducing learnable entity embeddings. Alternative entity han-
dling mechanisms are introduced in both EntityNLM (Ji et al., 2017) and SetLLM (Kunz and Hardmeier,
2019) in addition to a length variable for EntityNLM. All of the aforementioned approaches are RNN-
based and hence their performance is expected to be sub-par to Transformer based models. Furthermore,
(Kunz and Hardmeier, 2019) concludes that language models handling entity decisions do not improve
in performance with the addition of more hidden units and that the source data is of limited number and
of specific genre which do not highlight the benefits of explicit entity information. Clark et al. (2019),
through attention head probing, experimentally proves that BERT does model anaphoric phenomenon in
the form of antecedent selection, with attention heads directly attending to the respective mention’s an-
tecedent. However, these information are not explicitly used to further enhance the model. Furthermore,
ERNIE (Zhang et al., 2019), which uses knowledge graphs to infuse entity information to the model,
only does so for named entities, completely ignoring pronouns and nominal mentions.

3 Our approach

In order to incorporate coreference information to a language model, we require training and testing data
with entity information present and a mechanism to handle existing and non-existing entities. To that end,
our proposed model, GPT2E, is based on the GPT2 language model, with changes to the Transformer
block and an entity handling mechanism, which are described in the following subsections. As a result,
GPT2E is a combination of multi-layer Entity-Transformer decoder blocks. The model applies multi-
headed self-attention operations over the input tokens, position-wise feed-forward transformations, and
entity-based attention operations. The model architecture can be described as follows:

ho = UW, + W,
h; = entity transformer_block(h;_1, E)Y; € [1,n] (1)
P(u) = softmax(h,W1)
where U = (u_g,...,u_1) is the context vector of tokens, n is the number of layers, W, is the
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token embedding matrix, W), is the position embedding matrix and £ is the context vector of entity
representations.

3.1 Entity-Transformer block

Entity-Transformer (ET) blocks are extensions of the transformer blocks used in GPT2, designed to
handle entities in the form of vectors of shape F; € RI*dembd | where d,,,pg is the embedding dimension
the model outputs. Effectively, the entity representations are used directly inside the ET blocks.

The input representation first goes through a layer normalization (Ba et al., 2016) and a masked multi-
head self attention layer (Vaswani et al., 2017), followed by a residual connection (He et al., 2016). The
output of the residual connection is then used in a layer normalization and position-wise feed foward
layer followed by another residual connection. The final residual output is used in the entity attention
layer before it is forwarded outside of the Entity-Transformer block.

The entity attention layer is an
adaptation of the masked multi-head
self attention layer which considers
Entities (E) as the Key (K) value in i
the Query (Q), Key (K), Value (V) at- Layer Norm
tention mechanism scheme. The ar-
chitecture of the Entity-Transformer
blocks and the entity attention mech-
anism used are shown in Figure 1.

SoftMax

Layer Norm

3.2 Entity handling mechanism

We maintain a persistent set of enti-
ties £, that holds the hidden represen-
tation of the last entity’s mention from
our model. Each entity representation
FE; is initialised as a vector of ones,
which allows for minimal noise in the
first occurrence of the entity. Tokens
that are not part of the entity mention
have a consistent entity representation
Ey, as a vector of ones, similar to unseen entity mentions.

During each training step, E; takes the latest value of the respective entity’s latest hidden represen-
tation from £ and is updated to the new value at the end of each step. These entity representations are
handled with the use of Entity-Transformer blocks. The final hidden representation of the input token,
after it is affected by the previous entity representation F;, is considered to be the new entity representa-
tions and replaces E; in £.

Text Prediction

TR II

Figure 1: (left) Entity-Transformer Block (right) Entity Atten-
tion mechanism

4 Experiments

Our approach is evaluated in two steps. First we evaluate our GPT2E language model, in comparison
with a GPT2 model, trained on CoNLL 2012 and evaluated on both CoNLL 2012 and LAMBADA
datasets. We then use the trained models to extract word representations for entity mentions based on
the coreference annotations in text and measure the differences of such representations. For NER, we
use the language models to extract word representatios and train the same baseline model on the CoNLL
2012 dataset.

4.1 Setup

In our experiments we use the GPT2-small configuration with 117M parameters, 12 heads and 12 layers
for both GPT2 and GPT2E. Both models use a Byte-Pair Encoder to process the input, a learning rate of
2e-5 and train for 10e5 steps, with validation every 10e3 steps. We use a batch size of 1, to highlight the
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effect of entity updates in the system, as the entity representations are only updated at the end of each
training step.

After training, we compute the differences between the representations of all entity mentions in the
coreference clusters as derived from GPT2 and GPT2E. Consequently, we conduct experiments with no
contextual information for each word and we also distinguish the results between using and not using
entity information. We perform these experiments separately for all entities in the dataset and present the
average score for different type of words based on their part-of-speech tags.

The NER models are based on the Lample et al. (2016) architecture. However, our models use only
word embeddings from the pre-trained GPT2 and GPT2E models respectively, removing the character
embeddings to eliminate any information input apart from the coreference-trained representations. We
use a hidden size of 512 for the Bidirectional LSTMs, 0.5 dropout (Srivastava et al., 2014) between layers
and a learning rate of 0.0001 with 0.9 decay per epoch with Adam (Kingma and Ba, 2014). We trained
our models for 20 epoches, with early stopping and a batch size of 32.

All the experiments were run on a computer with a single Titan V 12GB graphics card, 32GB of
memory and an Intel i7-8700 processor.

4.2 Datasets and Preprocessing

We chose the English CoNLL-2012 dataset for training, which is based on the OntoNotes 5.0 corpus
(Weischedel et al., 2011) and contains over 1.3 million words with 35,143 entity mentions in the training
set and 170 thousand words with 4,532 entity mentions in the test set making it the most suitable dataset
for training a language model with coreference annotations. In the dataset common nouns, pronouns and
proper nouns contribute 90% of the words in both train and test English sets. For our out of domain
evaluation we chose the LAMBADA dataset. This choice was based on the premise that the dataset
is primarly used for word predictions requiring broad discourse context and that the target words are
mostly proper nouns and common nouns (85% fo the total target words). As a result, we expect that the
importance of an entity-centric language model would be better displayed in such a scenario.

As we utilize the CoNLL-2012 dataset for both the Language Modelling task and the NER task, we
formulate the data in two different ways.

Table 1: Data example from the CoNLL 2012 dataset, as formated for the task.

X111 | “ The U.S. underestimated Noriega all along ~ says Ambler Moss

Ey11 |0 73 73 0 82 0 0 /I 50 50
X003 | a former Ambassador to Panama . “ He has mastered the art
FEi9.03 | 50 50 50 50 50 0 0 8 0 0 0 0

For Language Modelling, we formulate our data in a similar manner with Ji et al. (2017), as seen
in Table 1. Specifically, for each token we also introduce a second variable “E” which indicates the
entity in which the token is part of, using the gold coreference annotations, with a special “()” for tokens
that are not part of an entity. For the CoNLL dataset, we populate F with the golden entities from the
coreference resolution shared task. For the LAMBADA dataset we use the () for all tokens. In comparison
to the original data formulation described in Ji et al. (2017), we opted to not use the L variable to denote
the entity length (i.e. the number of remaining tokens in the entity mention) as it’s main use is enable
entity mention prediction, which we do not attempt at this stage. We use Byte Pair Encoding (BPE)
(Sennrich et al., 2016) for the final input representation of the word instances, similar to GPT2.

For NER, we formulate the data in a IOB format to facilitate a similar model architecture as described
in Lample et al. (2016), using the gold named entities of the dataset, including nested entities.

5 Results

To evaluate the results of our Entity-Transformers architecture and the effects of corereference anno-
tations to language modelling, we measure the change in performance of the language model using
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Perplexity (PPL). Furthermore, we compute the average difference of the representations between men-
tions of the same entity of the GPT2E model, between each entity mention between GPT2 and GPT2E
and between non-entity mentions of the same words using cosine similarity. Furthermore, we use micro-
average Precision, Recall and F1 scores for the evaluation of our NER models.

For Language modelling, Table 2, shows the training and validation losses of GPT2 and GPT2E, as
well as the Perplexity of the models after 10e5 training steps. The gradual changes in training and
validation losses, measured every 10e3 steps, are illustrated in Figures 2 & 3 with GPT2 model in orange
and GPT2E model in blue colours respectively. Similarly, Table 3 highlights the performance difference
between the two trained models on the LAMBADA dataset. As both models are trained on a very limited
dataset compared to other language models, we are not comparing performance in terms of accuracy.
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Figure 2: Training loss per step on the CoNLL 2012 dataset.
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Figure 3: Validation loss per step on the CoNLL 2012 dataset.

Table 2: Perplexity and Validation loss

on the CoNLL 2012 dataset Table 3: Perplexity performance
on the LAMBADA dataset
Process GPT2E GPT2
Time Time Model | Perplexity
PPL | L PPL | L
088 per step 088 per step GPT2E 196.81
Training | 552 | 1.71 | 0.290s | 4.80 | 1.57 | 0.298s GPT2 219.97

Validation | 1.20 | 0.187 | 0.290s | 1.19 | 0.184 | 0.298s

In terms of Perplexity, the models show similar performances on the CoNLL 2012 dataset, while hav-
ing a slight advantage at the LAMBADA dataset. The slight improvement in Perplexity of the GPT2E
model over the GPT2 on the LAMBADA dataset is attributed to the target words’ part-of-speech type.
As described in Section 4.2, the target words of the LAMBADA dataset are mostly proper nouns and
common nouns and the majority of the training mentions in the CoNLL-2012 dataset are of the same
type. This behaviour is consistent with the expectations of the performance of an entity-centric language
model. Both GPT2 and GPT2E models show a remarkably low Perplexity compared to EntityNLM,
YanglLM and SetL.M of reported Perplexity 161.64, 114 and 107 respectively. However, these language
models are RNN based, and gap between them is attributed to the Transformers architecture and the
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relatively small size of the CoNLL-2012 dataset. The added complexity of calculating the entity rep-
resentations and using the Entity-Transformer blocks is contributing to 0.008 seconds per step in both
training and evaluation, adding up to an additional 12 min and 6 seconds, a 2% increase in time for the
complete training process.

To compare the changes in the entity mention representations when using coreference information
during training we conducted a series of experiments, taking into account the existence or absence of
coreference annotation. Specifically, for both models, for each entity we calculate the average similarity
of its mentions with the other entity mentions, with and without the use of entity representations for
GPT?2E, and the average similarity between the entity representation and the entity mentions. We have
limited the scope of the comparisons, using part-of-speech tags, to only nouns and proper nouns, as these
will be the words that will be affected the most by our changes, given the dataset statistics presented in
Section 4.2. Similarly, we calculated the average cosine similarity between the pronoun’s representations
of the two models as well as the differences between the two when entity representations are present.

Table 4: Cosine similarity of mention representations and their entities in different scenarios

. GPT2E GPT2E
Experiments without Entities | with Entities GPT2
Average mention similarity
NN.NNS.NNP.NNPS 0.7117 0.7117 0.6971
Average entity similarity
NN.NNS.NNPNNPS 0.0489 0.0513 -0.0164
Average mention similarity
PRP.PRPS 0.8250 0.8250 0.7928
Average entity similarity 0.0619 0.0566 0.0173
PRP,PRP$ ' ' '

Based on the results displayed in Table 4, we can infer that the mentions maintain their similarity
when the coreference information are used during inference, while also have a higher average similarity
than the respective mentions of the model trained without coreference annotations. However, taking into
account the changing similarity scores between the entity representations and the entity mentions when
we use coreference information during inference, we can conclude that there is a constant change to the
representations. In the case of nouns and pronouns, that change brings the representations closer while
in pronouns it has the opposite effect. Individual visual representations of the embeddings for GPT2E
and GPT2 and a comparative visual representation between the two are included in the appendix section.

Table 5: NER performance using GPT2 and GPT2E representations as input.

Labels GPT2 GPT2E

F1 Prec Recall F1 Precision | Recall
PERSON 48% | 95.5% | 32.5% | 51.5% 94% 35.5%
PRODUCT 8% 33% 45% | 23.5% 90% 13.5%

EVENT 23% [ 835% | 135% | 15% | 75% | 8.5%
CARDINAL | 28% |81.5% | 175% | 34% | 75% | 23%

NORP 445% [ 725% | 36% | 48% | 9% | 39.5%
Overall | 54% | 87% | 39% | 57% | 88% | 42% |

The NER model, trained using word representations from GPT2E, achieved a mean average 3% F1
increase than the one trained with GPT2 word representations. We highlight four named entities in Ta-
ble 5, which showed the biggest differences between the two trained models. Specifically, we observe
that the named entities of PERSON and PRODUCT, which would be directly affected by the anaphoric
information in the training process, showed the greatest increase and contributed the most to the per-
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formance boost. Subsequently, EVENT entities were more commonly mislabelled while using GPT2E
representations. This behaviour is credited to the use of LOCATION terms to describe events (e.g. “the
Guangzhou Fair”) and to generic event terms that refer to different entities based on their context (e.g.
“new year” can refer to a different year) which the baseline model was unable to handle correctly when
the word representations were affected by entity information.

6 Discussion and Conclusions

In this paper we demonstrated a novel architecture to use coreference information in transformer-based
neural language models in order to create richer representations and its effects on downstream tasks.
We introduced an extension over the Transformer blocks of GPT2, labeled Entity-Transformer, that in-
tegrates coreference information to each entity mention. To that end, we also created an entity handling
mechanism to create and update entity representations. Furthermore, as our proposed architecture ex-
tends over the basic Transformer block, it can be easily adapted to other Transformer-based language
models, such as BERT, and also enables further research for Transformer-based language models with
explicit entity decisions which have far outperformed their RNN counterparts.

In our experiments we showcased that in terms of Language modelling, both GPT2E and GPT2, when
trained on the same data, have indistinguishable performance in terms of Perplexity and GPT2E has a
small computational cost that translates into a slightly longer training time. However, the difference
in the similarity between entity mention representations suggests that fewer iterations and mentions of
each word are required to achieve the results, assuming a large enough number of mentions. This is
due to the extended contextual information present at each mention occurrence, in the form of entity
representations, used when training the model. What is more, the differences in these representations
directly translates to an increase in tasks such as Named Entity Recognition. As coreference is ever-
present in natural language, with a better ability for a language model to understand and utilize the
anaphoric phenomenon in text, we expect an increased performance in other tasks such as summarization
and natural language inference.

In order for language models to use coreference information, there are two requirements that need to
be met. First, the models need to replace the Transformer blocks with the Entity-Transformer blocks
introduced and also adopt the entity handling mechanism to make use of entity information. Second,
annotated coreference information are required throughout the training corpus. While the changes de-
scribed for the language models are trivial, language models require an enormous amount of training
data, making it impossible to manually annotate coreference information. However, the entity handling
mechanism we introduced is not affected by the lack of entity information in the training and is only
boosted by the existence of them. As a result, even sparse annotations of high confidence will allow for
improvements in the representations.

In the future, we plan to extend our work, using noisy annotation provided by pretrained coreference
resolvers so that we can train GPT2E to the WikiText dataset (Merity et al., 2018), creating a comparable
model with the original GPT2 and other state-of-the-art language models in a wider range of tasks.
Furthermore, we aim to expand the abilities of our current approach to be able to make explicit entity
decisions, similar to the previously cited work. For that purpose, attention head probing techniques,
which have been found to model some anaphoric phenomena (Clark et al., 2019), and transfer learning
through weight initialization from a pre-trained GPT2 model will be investigated as they can contribute
to significant improvements while needing less annotated training data.
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Appendix A. Embeddings visualizations
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(a) GPT2E embeddings. (b) GPT2 embeddings.
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(c) Embeddings comparison between GPT2E and GPT2.

Figure 4: Visualization of the word representations of (a) GPT2E and (b) GPT2E and (c) comparison
between the two, trained on the CoNLL2012 dataset, using t-SNE.
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