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Abstract

We present PERIN, a novel permutation-
invariant approach to sentence-to-graph se-
mantic parsing. PERIN is a versatile, cross-
framework and language independent architec-
ture for universal modeling of semantic struc-
tures. Our system participated in the CoNLL
2020 shared task, Cross-Framework Meaning
Representation Parsing (MRP 2020), where
it was evaluated on five different frameworks
(AMR, DRG, EDS, PTG and UCCA) across
four languages. PERIN was one of the winners
of the shared task. The source code and pre-
trained models are available at http://www.
github.com/ufal/perin.

1 Introduction

The aim of the CoNLL 2020 shared task, Cross-
Framework Meaning Representation Parsing (MRP
2020; Oepen et al., 2020), is to translate plain text
sentences into their corresponding graph-structured
meaning representation.1 MRP 2020 features five
formally and linguistically different frameworks
with varying degrees of linguistic and structural
complexity:

• AMR: Abstract Meaning Representation (Ba-
narescu et al., 2013);
• DRG: Discourse Representation Graphs

(Abzianidze et al., 2017) provide a graph en-
coding of Discourse Representation Structure
(Van der Sandt, 1992);
• EDS: Elementary Dependency Structures

(Oepen and Lønning, 2006);
• PTG: Prague Tectogrammatical Graphs (Ha-

jic et al., 2012);
• UCCA: Universal Conceptual Cognitive An-

notation (Abend and Rappoport, 2013).

1See http://mrp.nlpl.eu/2020/ for more details.

These frameworks constitute the cross-framework
track of MRP 2020, while the separate cross-
lingual track introduces one additional language
for four out of the five frameworks: Chinese AMR
(Li et al., 2016), German DRG, Czech PTG and
German UCCA (Hershcovich et al., 2019).

In agreement with the shared task objective to
advance uniform meaning representation parsing
across diverse semantic graph frameworks and lan-
guages, we propose a language and structure agnos-
tic sentence-to-graph neural network architecture
modeling semantic representations from input se-
quences.

The main characteristics of our approach are:

• Permutation-invariant model: PERIN is, to
our best knowledge, the first graph-based se-
mantic parser that predicts all nodes at once
in parallel and trains them with a permutation-
invariant loss function. Semantic graphs are
naturally orderless, so constraining them to an
artificial node ordering creates an unfounded
restriction; furthermore, our approach is more
expressive and more efficient than order-
based auto-regressive models.
• Relative encoding: We present a substantial

improvement of relative encodings of node
labels, which map anchored tokens onto la-
bel strings (Straka and Straková, 2019). Our
novel formulation allows using a richer set of
encoding rules.
• Universal architecture: Our work presents a

general sentence-to-graph pipeline adaptable
for specific frameworks only by adjusting pre-
processing and post-processing steps.

Our model was ranked among the two winning
systems in both the cross-framework and the cross-
lingual tracks of MRP 2020 and significantly ad-
vanced the accuracy of semantic parsing from the
last year’s MRP 2019.

http://www.github.com/ufal/perin
http://www.github.com/ufal/perin
http://mrp.nlpl.eu/2020/
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2 Related Work

Examples of general, formalism-independent se-
mantic parsers are scarce in the literature. Hersh-
covich et al. (2018) propose a universal transition-
based parser for directed, acyclic graphs, capable
of parsing multiple conceptually and formally dif-
ferent schemes. Furthermore, several participants
of MRP 2019 presented universal parsers. Che
et al. (2019) improved uniform transition-based
parsing and used a different set of actions for each
framework. Lai et al. (2019) submitted a transition-
based parser with shared actions across treebanks,
but failed to match the performance of the other
parsers. Straka and Straková (2019) presented a
general graph-based parser, where the meaning rep-
resentation graphs are created by repeatedly adding
nodes and edges.

Graph-based parsers (McDonald and Pereira,
2006; Peng et al., 2017; Dozat and Manning, 2018;
Cai and Lam, 2020) usually predict nodes in a se-
quential, auto-regressive manner and then connect
them with a biaffine classifier. Unlike these ap-
proaches, our model infers all nodes in parallel
while allowing the creation of rich intermediate
representations by node-to-node self-attention.

Machine learning tools able to efficiently process
unordered sets are gaining more attention in recent
years. Qi et al. (2017) and particularly Zhang et al.
(2019b) proposed permutation-invariant neural net-
works for point clouds, which are of great relevance
to our system. Our work was further inspired by
Carion et al. (2020), who utilize permutation invari-
ance for object detection in a similar fashion to our
sentence-to-graph generation.

3 Methods

3.1 Graph Representation

All five semantic formalisms share the same rep-
resentation via directed labeled multigraphs in the
graph interchange format proposed by Kuhlmann
and Oepen (2016). Universally, the semantic units
are represented by nodes and the semantic relation-
ships by labeled edges. Each node can be anchored
to a (possibly empty) set of input characters, and
can contain a (possibly empty) list of properties,
each being an attribute-value pair.

We simplify this graph structure by turning
the properties into graph nodes: every property
{attribute : value} of node n is removed
and a new node with label value is connected
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Figure 1: Data flow through PERIN during inference.
Every input token is processed by an encoder and trans-
formed into multiple queries, which are further refined
by a decoder. Each query is either denied or accepted,
and the accepted ones are then gradually processed into
the final semantic graph.

to the parent node n by an edge labeled with
attribute; the anchors of the new node are the
same as of its parent.2 Figure 4 illustrates this trans-
formation together with other pre-processing steps
(specific for each framework) explained in detail in
Section 3.7.

Another change to the internal graph representa-
tion is the use of relative label encoding (discussed
in Section 3.4), which substitutes the original node
labels by lists of relative encoding rules.

3.2 Overall Architecture
A simplified illustration of the whole model can
be seen in Figure 1. The input is tokenized, an
encoder (Section 3.5) computes contextual embed-
dings of the tokens, and each embedded token ei is
then mapped onto Q queries by nonlinear transfor-
mations qi,t = tanh (Wtei + bt) , t ∈ {1, . . . Q},
where Wt is a trainable weight matrix and bt

2“Nodeification” of properties was motivated by the nature
of AMR graphs, where the properties are equivalent to in-
stanced concepts/nodes (Banarescu et al., 2013). From a more
practical viewpoint, it allows us to utilize a single classifier
for both the node labels and the less-frequent properties, and
to simplify the whole architecture.
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is a trainable bias vector. After that, a decoder
(Transformer with pre-norm residual connections
(Nguyen and Salazar, 2019) and cross-attention
into the contextual embeddings ei) processes the
queries, obtaining their final feature vectors hi,t.
These feature vectors are shared across all classifi-
cation heads, each inferring specific aspects of the
final meaning representation graph from them:
• Relative encoding classifier decides what

node label should serve as the “answer” to
each query; a query can also be denied (no
node is created) when classified as “null”. Rel-
ative label prediction is described in detail in
Section 3.4.3.
• Anchor biaffine classifier uses deep biaffine

attention (Dozat and Manning, 2017) to create
anchors between nodes and surface tokens –
to be more precise, the biaffine attention pro-
cesses the latent vectors of queries hi,t and
tokens ej , and predicts the presence of an an-
chor between every pair of them as a binary
classification task.
• Edge biaffine classifier uses three biaffine at-

tention modules to predict whether an edge
should exist between a pair of nodes (presence
binary classification), what label(s) should it
have (label multi-class or multi-label classifi-
cation, depending on the framework) and what
attribute should it have (attribute multi-class
classification) – in essence, this module is a
simple extension of the standard edge classi-
fier by Dozat and Manning (2018).
• Property classifier uses a linear layer fol-

lowed by a sigmoid nonlinearity to identify
nodes that should be converted to properties.
• Top classifier uses a linear layer followed by

a softmax nonlinearity (where the probabili-
ties are normalized across nodes) to detect the
top node.

This section described all modules capable of han-
dling different characteristics of meaning represen-
tation graphs. Not all of them appear in each frame-
work – for example, AMR graphs do not need edge
attributes, while UCCA graphs do not contain any
properties. More details about specific framework
configurations are given in Section 3.7.

3.3 Permutation-invariant Graph Generation
Semantic graphs are orderless, so it is unnatural to
constrain their generation by some artificial node
ordering. Traditionally, graph nodes have been

predicted by a sequence-to-sequence model (Peng
et al., 2017), with the nodes being generated in
some hardwired order (Zhang et al., 2019a). De-
manding a fixed node ordering causes the disconti-
nuity issue (Zhang et al., 2019b): even when correct
items are predicted, they are viewed as completely
wrong if not in the expected order. We avoid this is-
sue by using such a loss function and such a model
that produce the same outcome independently on
the node ordering (Zaheer et al., 2017).

3.3.1 Permutation-equivariant Model
We transform the queries q = {qi}Ni=1 into hidden
features h = {hi}Ni=1 in such manner that any per-
mutation π ∈ GN of the input π(q) = {qπ(i)}Ni=1

produces the same – but permuted – output π(h) =
{hπ(i)}Ni=1. The Transformer architecture (Vaswani
et al., 2017) conveniently fulfills this requirement
(assuming positional embeddings are not used).
Furthermore, it can combine any pair of input items
independently of their distance and in an efficient
non-autoregressive way.

3.3.2 Permutation-invariant Loss
The hidden features h are further refined into pre-
dictions ŷ = fθ(h) by the classification heads. In
order to create a permutation-invariant loss func-
tion, i.e., a function L(π(ŷ), y) giving the same
result for every π ∈ GN , we find a permutation
π∗ ∈ GN assigning each query to its most similar
node. After permuting the targets according to π∗,
the standard losses can be computed, because they
are no longer dependent on the original ordering of
ŷ and y.3

To find the minimizing permutation π∗, we start
by extending the (multi)set of target nodes y by
“null” nodes (denoted as ∅) in order to fulfill
|ŷ| = |y|. When classified as “null” during infer-
ence, the query is denied and omitted from further
processing. The permutation π∗ is then defined as

π∗ = arg max
π∈GN

N∑
i=1

pmatch(ŷi,yπ(i)), (1)

where the matching score pmatch is composed of
a label score and the geometric mean (GM) of

3Unfortunately, the uniqueness of π∗ is not always guar-
anteed: given that the proposed matching depends only on
labels and anchors, there might be multiple equivalent nodes
(considering only labels and anchors). We break ties between
such nodes by also minimizing the likelihood of their edges
across all their permutations.
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Figure 2: Example of a matching between queries and target nodes during training. Every input token is mapped
onto Q (2 in this case) queries qi,j , which are decoded into node predictions ŷi,j . These predictions are paired
with the ground truth nodes y, as in Equation 1. Then, the loss functions are computed with respect to the paired
target nodes. Queries without any match should be classified as “null” nodes. When classified as “null” during
inference, the query is not turned into any node (the query is denied).

anchor scores of all input tokens T . The label
score of the ith query and the jth node is defined as
the predicted probability of the target jth label; the
anchor score of the ith query, jth node and a token
t ∈ T is defined as the predicted probability of the
actual (non)existence of an anchor between t and
the jth node:

pmatch = plabel · p̄anchor

plabel(ŷi,yj) = 1ylabel
j 6=∅P

(
ylabel
j |hi;θ

)
p̄anchor(ŷi,yj) = GM

t∈tokens
P
(
1t∈yanchors

j
|t,hi;θ

)
.

We use the geometric mean to keep the anchor
score p̄anchor magnitude independent of the number
of tokens, and therefore have a similar weight as
the label score plabel.

The optimal matching π∗ can be efficiently com-
puted by the Hungarian algorithm (Kuhn, 1955) in
O(n3). As a result, every query is assigned either
to a regular node or to a “null” node ∅. An illus-
tration of a matching between queries and target
nodes is presented in Figure 2.

The loss functions for the queries are computed
with respect to the matched nodes. After finding
π∗, we permute all target nodes and compute the
classification losses in the standard “order-based”
way (i.e., by minimizing the cross-entropy between
the predictions and the corresponding targets). The
losses of queries matched to the “null” nodes are
ignored, except for their relative label loss `label,
which pushes these queries to predict ∅ as their
label. The label loss is further altered by the focal
loss factor (Lin et al., 2017) to mitigate the imbal-
ance of labels introduced by extending the targets
with the “null” nodes.

3.3.3 Anchor Masking
During the early experiments with this architecture,
we noticed that nodes tend to be generated from
their anchored tokens (or more precisely from the
queries of their anchored tokens), after the outputs
stabilize during first epochs. We employ this ob-
servation to create an inductive bias by limiting
the possible pairings to occur only between target
nodes and predictions from their anchored tokens.
Formally, this is achieved by setting

p̄anchor
(
fθ(hi),yj

)
= ε,

if the jth node is not anchored to the ith token, with
ε being a small positive constant close to 0.

3.4 Relative Label Encoding

Similarly to Straka et al. (2019); Straka and
Straková (2019), we use relative encodings for the
prediction of node labels: instead of direct classifi-
cation of label strings, we utilize rules specifying
how to transform anchored surface tokens into the
semantic labels. For example, in Figure 1, the an-
chored token “diving” is transformed into “dive”
by using a relative encoding rule deleting its last
three characters and appending a character “e”.
Such a rule could be also employed for predicting
a node anchored to “taking” or “giving”. Relative
encoding of labels is thus able to reduce the num-
ber of classification targets and generalize outside
of the set of “absolute” label strings seen during
training. Alternatively, the relative encoding can
be seen as an extension of the pointer networks
(Gu et al., 2016), which also decides how to post-
process the copied tokens. Table 1 demonstrates
how the relative encoding rules reduce the number
of targets that need to be classified.
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framework language # labels strings # encoding rules

AMR English 27,049 4,385
Chinese 30,949 2,560

DRG English 5,715 684
German 1,905 918

EDS English 31,933 1,322

PTG English 39,336 529
Czech 38,448 1,321

Table 1: The numbers of absolutely and relatively en-
coded node labels. Relative encodings lead to a signif-
icant reduction of classification targets in an order of
magnitude across all frameworks. Note that node la-
bels are the union of labels and property values (except
for PTG), as described in Section 3.1.

3.4.1 Minimal Encoding Rule Set

Naturally, a label can be generated from anchored
tokens in multiple ways. Unlike previous works
that needed some heuristic to select a single rule
from all suitable ones (Straka and Straková, 2019),
we do not constraint the space of the possible rules
much. Instead, we construct the final set of encod-
ing rules to be the smallest possible one capable of
encoding all labels.

Formally, let S be an arbitrary class of functions
transforming a list of text strings (anchored tokens)
into another string (node label), and let N be the
set of all nodes from the training set. For n ∈ N,
denote nt the anchored surface tokens and n` the
target label string. Then the set of applicable rules
for the node n is Sn = {r ∈ S |r(nt) = n`}. Our
goal is to find the smallest subclass S∗ ⊆ S capa-
ble of encoding all node labels, in other words a
subclass S∗ satisfying

∀n ∈ N : S∗ ∩ Sn 6= ∅.

This formulation is equivalent to the minimal hit-
ting set problem. Therefore, we can find the
optimal solution of our problem by reducing it
to a weighted MaxSAT formula in CNF: every
Sn = {r1, r2, . . . , rk} becomes a hard clause
(r1 ∨ r2 ∨ . . . ∨ rk) and every r ∈ S becomes
a soft clause (¬r). We then submit this formula to
the RC2 solver (Ignatiev et al., 2019) to obtain the
minimal set of rules. Note that although solving
this problem can take up to several hours, it needs
to be done only once and then cached for all the
training runs.

3.4.2 Space of Relative Rules
Our space of relative rules S consists of four dis-
joint subclasses:

1. token rules are represented by seven-tuples
(dl, dr, s, rl, rr, al, ar) and process a list of an-
chored tokens nt by first deleting the first dl
and the last dr tokens, then by concatenat-
ing the remaining ones into one text string
with the separator s inserted between them,
followed by removing the first rl and last rr
characters and finally by adding the prefix al
and suffix ar;4

2. lemma rules are created similarly to the token
rules, but use the provided lemmas instead of
tokens;

3. number rules transform word numerals into
digits – for example, tokens [ “forty”, “two” ]
become “42”;

4. absolute rules use the original label string n`,
without taking into account any anchored to-
kens nt; they serve as the fallback rules when
no relative encodings are applicable.

3.4.3 Prediction of Relative Rules
Even with the minimal set of rules S∗, multiple
rules may be applicable to a single node. There-
fore, the prediction of relative rules is a multi-label
classification problem. The target distribution for a
node n over all r ∈ S∗ is defined as follows:5

P (r|n) =


1

|S∗ ∩ Sn|
, if r ∈ Sn;

0, otherwise.

The label loss `label is then calculated as the cross-
entropy between the target and the predicted distri-
butions.

We use mixture of softmaxes (MoS) to mitigate
the softmax bottleneck (Yang et al., 2018) that
arises when multiple hypotheses can be correctly
applied to a single input. MoS allows the model to
consider K different hypotheses at the same time
and weight them relatively to their plausibility.

Formally, let hq be the final latent vector for
query q and let Wk, bk, wk, bk, wr, br be the train-
able weights. Then, the estimated MoS distribution

4To show a real example of a token rule from
EDS, the rule (0, 1, +, 0, 0, _, _a_1) maps tokens
(“at”, “the”, “very”, “least”, “,”) into the label
“_at+the+very+least_a_1”.

5The target distribution is further modified by label smooth-
ing (Szegedy et al., 2016) for better regularization.



58

"down" "the" "landscape"

down the land## ##scape

layer 
norm

layer
norm

add & 
norm

weighted
sum

weighted
sum

weighted
sum

weighted
sum

input	tokens

XLM-R	layers

subword	tokenization

encoded	tokens

layer-wise	attention

subtoken	pooling

Figure 3: Architecture of the encoder with finetuned
XLM-R. The input tokens are first tokenized into sub-
words, which are then processed into contextual embed-
dings by layer-wise attention on the XLM-R intermedi-
ate layers. Finally, the subword embeddings are pooled
to obtain the encoded tokens.

of relative rules Pθ(r|n) is defined as follows:

xk = tanh(Wkhq + bk)

πk =
sigmoid(h>q wk + bk)∑
k′ sigmoid(h>q wk′ + bk′)

Pθ(r|n) =
K∑
k=1

πk softmax(x>k wr + br).

3.5 Finetuning XLM-R
To obtain rich contextual embeddings for each in-
put token, we finetune the pretrained multilingual
model XLM-R (Conneau et al., 2020). The archi-
tecture of the encoder is presented in Figure 3.

3.5.1 Contextual Embedding Extraction
Different layers in BERT-like models represent
varying levels of syntactic and semantic knowledge
(van Aken et al., 2019), raising a question of which
layer (or layers) should be used to extract the em-
beddings from. Following Kondratyuk and Straka
(2019), we solve this problem by a purely data-
driven approach and compute the weighted sum
of all layers. Formally, let el be the intermediate
output from the lth layer and let wl be a trainable
scalar weight. The final contextual embedding is
then calculated as

e =
L∑
l=1

softmax(wl)el.

Note that each input token can be divided into mul-
tiple subwords by the XLM-R tokenizer. To obtain

a single embedding for every token, we sum the em-
beddings of all its subwords. Finally, the contextual
embeddings are normalized with layer normaliza-
tion (Ba et al., 2016) to stabilize the training.6

3.5.2 Finetuning Stabilization
Given the large number of parameters in the pre-
trained XLM-R model, we employ several stabi-
lization and regularization techniques in attempt to
avoid overfitting.

We start by dividing the model parameters into
two groups: the finetuned XLM-R and the rest of
the network. Both groups are updated with AdamW
optimizer (Loshchilov and Hutter, 2019) , and their
learning rate follows the inverse square root sched-
ule with warmup (Vaswani et al., 2017). The learn-
ing rate of the finetuned encoder is frozen for the
first 2000 steps before the warmup phase starts
(Howard and Ruder, 2018). The warmup is set to
6000 steps for both groups, while the learning rate
peak is 6 ·10−5 for the XLM-R and 6 ·10−4 for the
rest of the network. The weight decay for XLM-R,
10−2, is considerably higher compared to 1.2·10−6

used in the rest of the network (Devlin et al., 2019).
Dropout of entire intermediate XLM-R layers

results in additional regularization – we drop each
layer with 10% probability by replacing wl with
−∞ during the final contextual embedding com-
putation (Section 3.5.1). Inter-layer and attention
dropout rates are the same as during the XLM-R
pretraining.7

3.6 Balanced Loss Weights
Semantic parsing is an instance of multi-task learn-
ing, where each task t ∈ T can have conflicting
needs and where the task losses `t can have differ-
ent magnitudes. The overall loss function L to be
optimized therefore consists of the weighted sum
of partial losses `t:

L(fθ(x), y) =
∑
t∈T

wt`t(fθ(x), y).

Finding optimal values for the loss weightswt is ex-
tremely complicated. This issue is usually resolved
either by (suboptimally) setting all weights equally
to 1 or by a thorough grid search. However, the

6A side effect of the normalization step is that the subword
summation is equal to the more common subword average
(Zhang et al., 2019a).

7Due to the space constrains, all hyperparameters for each
training configuration (together with the source code and pre-
trained models) are published at https://github.com/
ufal/perin.

https://github.com/ufal/perin
https://github.com/ufal/perin


59

mod

duo

crazy-03 comedy

mod

person

that

ARG01-of domain

quant: 2

duocrazy-03 comedy

person that

ARG01

domain

domain

domain

2

quant

"crazy" "comedy""duo"

"two"

"a	crazy	comedy	duo,	those	two"

Figure 4: Visualization of AMR pre-processing (Section 3.7.1) for the sentence “a crazy comedy duo, those two”.
The original graph is on the left and the transformed graph is shown on the right. Notice that the property quant:2
of person is converted into a standalone node. The graph is normalized by reversing three inverted edges (note
that mod is in fact domain-of) and some nodes get artificial anchors. Relative encoding rules are not included
in this illustration for the sake of clarity, but it is worthwhile noting that nodes person and that contain only
absolute label rules and are therefore not anchored.
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Figure 5: Change of the loss weights throughout the
training of an EDS parser. The relative difficulty of
edge and anchor predictions seems to be higher at the
beginning of the training, but then gradually decreases,
allowing the model to concentrate primarily on label
prediction.

complexity of the grid search grows exponentially
with |T| and would need to be performed indepen-
dently for all nine combinations of frameworks and
languages.

A more feasible solution is to set the weights
adaptively according to a data-driven metric as
in Kendall et al. (2018). We follow Chen et al.
(2018), who balance the magnitudes of gradients
‖∇θswi`i‖2, where θs are the weights of the
shared part of the network. That magnitude is made
proportional to the ratio of the current loss and its
initial value: when `i decreases relatively quickly,
its strength gets reduced to leave more space for
the other tasks. Consequently, the loss weights wt
are not static, but change throughout the training
to balance the individual gradient norms. Figure 5
shows an example of the balancing dynamics.

3.7 Framework Specifics

3.7.1 AMR

AMR is a Flavor 2 framework, which means its
nodes are not anchored to the surface forms. We
instead exploit the general algorithm for the min-
imal encoding rule set (Section 3.4.1) to create
artificial anchors: considering all possible one-to-
one anchors a ∈ An for each node n, we infer all
compatible rules Sn =

⋃
a∈An

San, and find the
minimal set of rules S∗. The artificial anchors of a
node n are then defined as {a ∈ An|San ∩S∗ 6= ∅}.
Consequently, our parser does not need any ap-
proximate anchoring (because we instead compute
an anchoring minimizing the number of relative
rules).

On the other hand, Chinese AMR graphs contain
anchors (they are actually of Flavor 1), therefore,
the described procedure is applied only on English
AMR.

AMR graphs also contains inverted edges that
transform them into tree-like structures. The in-
verted edges are marked by modified edge labels
(for example, ARG0 becomes ARG0-of). We nor-
malize the graphs back into their original non-
inverted form, making them more uniform, sim-
plifying edge prediction to become more local and
independent of the global graph structure. An ex-
ample of AMR pre-processing is shown in Figure 4.

Considering the fact that every node is artificially
anchored to at most a single token, the anchor clas-
sifier is not needed, if anchor masking is used (Sec-
tion 3.3.3). Finally, AMR parsing does not employ
the edge attribute classifier.
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System AMReng DRGeng EDSeng PTGeng UCCAeng Average

HUJI-KU (Arviv et al., 2020) 52.36% 62.75% 79.68% 53.76% 72.91% 64.29%
Hitachi (Ozaki et al., 2020) 81.54% 93.19% 93.56% 88.73% 75.07% 86.42%
HIT-SCIR (Dou et al., 2020) 69.80% 89.07% 87.40% 84.26% 74.76% 81.06%
ÚFAL PERIN 80.23% 94.16% 92.73% 88.44% 76.40% 86.39%
ÚFAL PERIN* 80.23% 94.16% 92.73% 89.19% 76.40% 86.54%

System AMRzho DRGdeu PTGces UCCAdeu Average

HUJI-KU (Arviv et al., 2020) 44.92% 62.33% 58.49% 74.72% 60.11%
Hitachi (Ozaki et al., 2020) 80.44% 93.36% 87.35% 79.04% 85.05%
HIT-SCIR (Dou et al., 2020) 49.39% 68.31% 77.93% 80.02% 68.91%
ÚFAL PERIN 78.17% 89.83% 91.27% 81.01% 85.07%
ÚFAL PERIN* 80.52% 89.83% 92.24% 81.01% 85.90%

Table 2: The all F1 scores and a macro-average total score of the shared task systems. PERIN is our official shared
task submission and PERIN* is a post-competition submission with a fixed bug. The best results are typeset in
bold. The top table contains the cross-framework scores on English treebanks, while the bottom table presents the
cross-lingual ones.

3.7.2 DRG
Since the DRG graphs are also of Flavor 2, they are
pre-processed similarly to English AMR. Addition-
ally, we reduce all nodes representing binary rela-
tions into labeled edges between the corresponding
discourse elements.

Nodes in German DRG graphs are labeled
in English, which decreases the applicability of
relative encoding. Therefore, we employ the
opus-mt-de-en (Tiedemann and Thottingal,
2020) machine translation model from Hugging-
face’s transformers package (Wolf et al., 2019) to
translate the provided lemmas from German to En-
glish, before computing the relative encoding rules.

DRG parsing does not make use of anchor and
edge attribute classifiers, just like AMR parsing.

3.7.3 EDS
EDS graphs are post-processed to contain a single
continuous anchor for every node. The EDS parser
contains all the classification modules described in
Section 3.2, except for the edge attribute classifier.

3.7.4 PTG
Properties in PTG graphs are not converted into
nodes as in other frameworks, but are directly pre-
dicted from latent vectors hq by multi-class classi-
fiers (one for each property type). Additionally, the
frame properties are selected only from frames
listed in CzEngVallex (Urešová et al., 2015).

We utilize all classification heads except for the
top node classification, because PTG graphs con-
tain special <TOP> nodes, which make the separate
top prediction redundant.

3.7.5 UCCA
We augment the UCCA nodes by assigning them
leaf and inner labels. Additionally, the inner
nodes are anchored to the union of anchors of their
children. Therefore, the nodes can be differentiated
by the permutation-invariant loss (Section 3.3.2).

The UCCA parser does not have the property
classifier and the top classifier, where the latter is
not needed, because the top node can be inferred
from the structure of the rooted UCCA graphs.

4 Results

We present the overall results of our system in Ta-
ble 2 and Table 3. Both tables contain F1 scores
obtained using the official MRP metric.8 Table 2
shows the all F1 scores for the individual frame-
works together with the overall averages for the
cross-framework and cross-lingual tracks. Macro-
averaged results (across all nine frameworks) for
the different MRP metrics are displayed in Table 3.

Note that our original submission (denoted as
PERIN) contained a bug in anchor prediction for
Chinese AMR and both PTG frameworks. The bug
caused the nodes to get anchored to at least one
token. We submitted a fixed version called PERIN*
in the post-competition evaluation and compare it
with the original one in Table 2.

According to the official whole-percent-only all
F1 score, our competition submission reached tied
first place in both the cross-lingual and the cross-
framework track, with its performance virtually

8Fine-grained results for each framework are available in
the task overview by Oepen et al. (2020).
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System Tops Labels Properties Anchors Edges Attributes Average

HUJI-KU (Arviv et al., 2020) 85.85% 22.80% 29.48% 46.79% 61.35% 7.67% 62.43%
Hitachi (Ozaki et al., 2020) 95.67% 68.93% 48.89% 61.95% 80.14% 24.93% 85.81%
HIT-SCIR (Dou et al., 2020) 94.37% 61.84% 30.80% 52.18% 71.41% 22.51% 75.66%
ÚFAL PERIN* 94.20% 70.36% 49.34% 63.45% 79.68% 27.07% 86.26%

Table 3: Overall results for different MRP metrics, macro-averaged over all frameworks and languages. The best
results are typeset in bold.

Configuration Tops Labels Properties Anchors Edges Average

ÚFAL PERIN* 89.53% 93.45% 94.34% 93.40% 90.74% 92.73%
w/o MoS 88.04% 93.39% 93.79% 93.48% 90.76% 92.65%
w/o focal loss 89.08% 93.33% 93.59% 93.21% 90.46% 92.46%
BERT encoder 89.95% 92.97% 94.74% 92.92% 89.84% 92.27%
w/o balanced losses 89.23% 92.28% 94.46% 92.12% 89.19% 91.60%

Table 4: Ablation study showing MRP scores of different configurations on EDS. The top row contains the sub-
mitted configuration without any changes; then we report the results for 1) label classifier without the mixture of
softmaxes (MoS); 2) label loss not multiplied by the focal loss coefficient; 3) encoder with finetuned BERT-large
(English) instead of multilingual XLM-R and 4) constant loss weights, equally set to 1.0.

System AMReng EDSeng UCCAeng

best from MRP 2019 73.11% 92.55% 82.61%
ÚFAL PERIN* 78.43% 95.17% 82.71%

Table 5: The last year’s shared task had three frame-
works – English AMR, EDS and UCCA – in common
with MRP 2020. All parsers were evaluated on The Lit-
tle Prince dataset, the first row shows the F1 scores of
the best performing parser for each framework (Oepen
et al., 2019).

identical to the system by Hitachi (Ozaki et al.,
2020). Our bugfixed submission reached the first
rank in both tracks, improving the cross-lingual
score by nearly one percent point. Our system ex-
cels in label prediction, which might suggest the
effectiveness of the relative label encoding. Fur-
thermore, our system surpasses the best systems
from the last year’s semantic shared task, MRP
2019 (Oepen et al., 2019), by a wide margin – as
can be seen in Table 5.

PERIN falls short in AMReng parsing by 1.31 %.
On closer inspection, this follows from the inferior
edge accuracy on this framework – the difference
to Hitachi is 4.56 % on AMReng and 2.78 % on
AMRzho. Furthermore, Hitachi is better in all as-
pects of EDSeng and DRGdeu. On the other hand
PERIN consistently beats Hitachi in both PTG and
both UCCA frameworks. We hope that combining
the strengths of these two parsers will help to fur-
ther advance the state of meaning representation
parsing.

4.1 Ablation Experiments
We conducted several additional experiments to
evaluate the effects of various components of our
architecture. The results are summarized in Table 4.
We have decided to use EDS for these experiments
because – in our eyes – it represents the “average”
framework without any significant irregularities.

The experiments show that using the mixture
of softmaxes for label prediction does not have a
substantial effect and can be potentially omitted to
reduce the parameter count. On the other hand, the
inferior results of the model with constant equal
loss weights demonstrate the importance of balanc-
ing them.

5 Conclusion

We introduced a novel permutation-invariant
sentence-to-graph semantic parser called PERIN.
Given its state-of-the-art performance across a
number of frameworks, we believe permutation-
invariant node prediction might be the first step
in a promising direction of semantic parsing and
generally of graph generation.
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shcovich, Marco Kuhlmann, Tim O’Gorman, Nian-
wen Xue, Jayeol Chun, Milan Straka, and Zdeňka
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