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Abstract

Discourse Representation Theory (DRT) is a
formal account for representing the meaning
of natural language discourse. Meaning in
DRT is modeled via a Discourse Represen-
tation Structure (DRS), a meaning represen-
tation with a model-theoretic interpretation,
which is usually depicted as nested boxes. In
contrast, a directed labeled graph is a com-
mon data structure used to encode seman-
tics of natural language texts. The paper de-
scribes the procedure of dressing up DRSs as
directed labeled graphs to include DRT as a
new framework in the 2020 shared task on
Cross-Framework and Cross-Lingual Meaning
Representation Parsing. Since one of the goals
of the shared task is to encourage unified mod-
els for several semantic graph frameworks, the
conversion procedure was biased towards mak-
ing the DRT graph framework somewhat sim-
ilar to other graph-based meaning representa-
tion frameworks.

1 Introduction

Graphs are a common data structure for repre-
senting meaning of natural language sentences or
texts. Several shared tasks on semantic parsing
have been organized, and the target meaning repre-
sentations of the shared tasks were predominantly
encoded as directed labeled graphs:1 Semantic De-
pendency Graphs (Oepen et al., 2014, 2015), Ab-
stract Meaning Representation (May, 2016; May
and Priyadarshi, 2017), and Universal Conceptual
Cognitive Annotation (Hershcovich et al., 2019).
Some of these graphs are presented in Figure 1.
Recently, Oepen et al. (2019) packaged several
meaning representation graphs in a uniform graph

∗Part of the work was done while the author was at the
University of Groningen.

1Throughout the paper, we mean a directed labeled graph
when simply talking about graphs, unless stated otherwise.

abstraction and serialization for cross-framework
meaning representation parsing.

Parallel to these developments our point of de-
parture is Discourse Representation Theory (DRT,
Kamp and Reyle, 1993), a well-studied framework
for studying formal semantics beyond sentences.
Its meaning representation structures, Discourse
Representation Structure (DRS), are directly trans-
latable into formal logic. A sample DRS, in its
traditional box format, is illustrated in Figure 2.
We will discuss the DRS in more details in Sec-
tion 2.

Obviously, DRSs are meaning representation
structures, but they are different from the already
mentioned graph-based meaning representations
in two aspects. First, DRSs are not inherently
graphs. A DRS is more like a formula of predicate
logic which is further organized in sub-formulas
and governed with additional operations that ac-
count for co-reference and presupposition. That’s
why DRSs are usually not considered as graph-
based meaning representations. For example, DRT
was not among the frameworks of the shared task
on cross-framework meaning representation pars-
ing (MRP 2019, Oepen et al., 2019) since the
meaning representations at the shared task were
all uniformly formatted as graphs. Žabokrtský
et al. (2020) excluded DRSs when surveying sen-
tence meaning representations as they “limit [them-
selves] to meaning representations whose backbone
structure can be described as a graph over words
(possibly with added non-lexical nodes) [. . . ]”. The
second main contrast between DRSs and several of
the graph-based meaning representations is that
DRSs are very different from syntactic struc-
tures. DRSs have roots in formal semantics, and
they are geared to account for negation, quantifica-
tion, and semantic scope rather than for syntactic
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(d) UCCA: Universal Conceptual Cognitive Annotation
(Abend and Rappoport, 2013)

b1 REF x1 0:3 b3 REF x2 24:27
b1 PRESUPPOSITION b2 0:3 b3 PRESUPPOSITION b4 24:27
b1 Name x1 "house" 4:9 b3 Name x2 "Senate" 28:34
b1 house "n.05" x1 4:9 b3 senate "n.01" x2 28:34
b2 REF e1 14:19 b4 REF t2 35:39
b2 REF t1 10:13 b4 EQU t2 "now" 35:39
b2 TPR t1 "now" 10:13 b4 time "n.08" t2 35:39
b2 Time e1 t1 10:13 b5 Time e2 t2 35:39
b2 time "n.08" t1 10:13 b4 NEGATION b5 39:42
b2 Agent e1 x1 14:19 b5 REF e2 43:46
b2 vote "v.01" e1 14:19 b5 Agent e2 x2 43:46
b2 CONTRAST b4 20:23 b5 act "v.01" e2 43:46

(e) DRS: Discourse Representation Structure in a clausal form
(Kamp and Reyle, 1993; Bos et al., 2017; Abzianidze et al., 2017)

Figure 1: The meaning representation graphs (a-d) of the MRP 2020 frameworks for the sentence The House has
voted but the Senate doesn’t act. (e) is the DRS of Figure 2 in the clausal form, a suitable format for semantic
parsing. The goal is to convert (e) into a graph somewhat similar to (a-d).

structures.2

Given that graphs are mainstream when it comes
to representing meaning and semantically parsing
wide-coverage natural language texts, it is impor-
tant that DRSs are also convertible into graphs, and
we refer to these structures as Discourse Repre-
sentation Graphs (DRGs). This will make DRSs
accessible for researchers that primarily focus on
graph-based meaning representations and parsing:
(a) already existing graph-based semantic parsing
models can be re-used or tested on DRGs; and (b)
the specific structure of DRGs, reflecting formal se-
mantics of the meaning, will pose new challenges
for graph representation learning.

In a nutshell, to embrace DRSs in the second
edition of the shared task on cross-framework
(and cross-lingual) meaning representation pars-

2For instance, this fact is another reason for excluding
DRSs from the survey by Žabokrtský et al. (2020): “we do
not include primarily logical representations which are too dis-
tant from sentence structures; this leaves out some prominent
frameworks such as the Groningen Meaning Bank [. . . ]”.

ing (MRP 2020; Oepen et al., 2020), we investigate
the conversion of DRSs from clausal form (the
form adapted to semantic parsing, see Figure 1e)
into graphs. While doing so, our goal is to (i) make
DRGs structurally as close as possible to the graphs
of other frameworks in MRP 2020 (see Figure 1),
and (ii) keeping redundant information in DRGs
to a minimum to prevent graphs of extensive size
and to avoid inflation of the evaluation score. Our
efforts contribute to unified parsing models and
evaluation tools across the frameworks. Hopefully,
it will also save the time of participants by pre-
venting them from developing a completely new
parsing model for DRGs.

The rest of the paper is organized as follows.
First, Section 2 briefly describes the building
blocks of DRSs, and then Section 3 outlines al-
ready existing approaches of converting DRSs into
graphs. In addition to the existing ones, Section 4
introduces several candidate graph-based encod-
ings of DRSs. In Section 5, we compare several
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Class Type symbol SDRS signature Examples
E

nt
ity t

C constant now, house, senate

r discourse referent x1, x2, e1, e2, t1, t2

B box label b1, b2, b3, b4, b5

Pr
ed

ic
at

e

B
S semantic role Agent, Name, Time
M comparison relation ≺, =

C concept house.n.05, act.v.01

Discourse
connective

R discourse relation CONTRAST

O DRS operator NEGATION, PRESUPPOSITION

Table 1: Classification of the DRS signature. Each element of the signa-
ture has a type symbol (in a bold font). t is for terms, which might be
a constant or a discourse referent, while B stands for binary relations,
which are semantic roles and comparison relations.

x1 b1

house.n.05(x1)
Name(x1, house)

x2 b3

senate.n.01(x2)
Name(x2, senate)

t2 b4

time.n.08(t2)
t2 = now

e1 t1 b2

vote.v.01(e1)
Agent(e1, x1)
Time(e1, t1)
time.n.08(t1)
t1 ≺ now

e2 b5

act.v.01(e2)
Agent(e2, x2)
Time(e2, t2)

PRESUPPOSITION(b1,b2)
PRESUPPOSITION(b3,b4)
CONTRAST(b2,b4)
NEGATION(b4,b5)

Figure 2: A flat visualization of a
box-formatted DRS for the sentence
The House has voted but the Senate
doesn’t act.

DRG formats on the computational feasibility of
finding maximum common edge subgraph (MCES)
because the computational feasibility is crucial
for evaluating the meaning representation graphs
against the gold standard. In the end, based on the
findings of the MCES experiment and our desire
for similarity with other graph-based frameworks,
we select the specific DRG format that is included
in MRP 2020.

2 Discourse Representation Structures

DRT is a framework that dates back to the early
1980s (Kamp, 1981; Heim, 1982). Since then, the
framework has gone through several extensions
and modifications to account for certain semantic
or pragmatic phenomena. Throughout the paper
we use DRSs that are derived from the Parallel
Meaning Bank (PMB, Abzianidze et al., 2017).
One such DRS is presented in Figure 2. The DRS
signature is given in Table 1.

The PMB incorporates several extensions to
DRSs. On a micro level, the extensions aim to
make DRSs language-neutral by disambiguating
non-logical symbols with WordNet (Miller, 1995)
synsets and VerbNet (Bonial et al., 2011) roles,
where the VerbNet roles are used in combination
with neo-Davidsonian event semantics (Parsons,
1990). On a macro level, presuppositions are mod-
eled and explicitly represented following Van der
Sandt (1992) and Projective DRT (Venhuizen et al.,
2013) while discourse is analyzed following Seg-
mented DRT (Asher and Lascarides, 2003) and
flattened by treating discourse relations and DRS
operators in a unified way. Due to these extensions,

all boxes are labeled with identifiers.
Let’s decipher what the DRS in Figure 2 is ex-

pressing. It consists of two parts: a set of boxes
and a set of discourse connectives applied to box
labels (i.e., identifiers). Boxes can be seen as
sub-formulas whose separation is relevant for fine-
grained semantics. Each box includes a (possibly
empty) set of discourse referents stacked on a (pos-
sibly empty) set of conditions. The example sen-
tence contains two clauses, corresponding to boxes
b2 and b4, that are related with each other via the
CONTRAST discourse relation. Both b2 and b4 pre-
suppose the existence of entities x1 (for the House)
and x2 (for the Senate), which are further char-
acterized with concepts (using WordNet synsets)
and the naming semantic role. The presupposi-
tions are put in separate boxes labeled with b1
and b3. The presupposition relations are explicitly
stated with the binary PRESUPPOSITION DRS op-
erator. Since we use a flat visualization of DRSs,
b5, which is negated and nested in b4 (expressed by
NEGATION(b4, b5)), is depicted outside b4. In ad-
dition to modeling verb argument structure via neo-
Davidsonian event semantics and semantic roles,
the DRS also contains information about tense.3

3 Related Work

There have been several approaches to represent
DRSs as graphs. These representations are put
side-by-side in Figure 3.

3Note that t2 is in b4 because it has to be out of the scope
of negation: there is a time t2, and it is not the case that at t2
the Senate acts.
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(a) The augmented graph of
Power (1999) corresponding to
the simplified sample DRS. The
graph is a felicitous extension of
Power’s original proposal over
DRSs with presuppositions and
discourse relations.
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(b) The BB∗ encoding largely follows Basile
and Bos (2013) and incorporates several ad-
ditional simplifications. The encoding is
node-centric. B and C are encoded as la-
beled nodes while R, O and argument po-
sitions (A) as labeled edges. Only B and r
are unlabeled nodes.
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(c) L18 is the edge-centric encoding by Liu
et al. (2018). B and C are represented as
unlabeled nodes with B- and C-labeled
incoming edges. R, O and argument po-
sitions (A) are encoded as labeled edges.
Unlabeled nodes are introduced not only
by B and r but also by B and C.

Figure 3: Contrasting the existing graph representations of DRSs. The graphs encode the sample DRS from
Figure 2. For brevity, the tense information is omitted from the DRS. Unlabeled nodes have a gray background.
The shapes of nodes are not part of the graphs but simply help with reading to distinguish the types of symbols.

The work by Power (1999) doesn’t aim to con-
vert DRSs into graphs as such, but it proposes
to augment object-oriented knowledge represen-
tation (OOKR) graphs with additional scope in-
formation to establish correspondence with DRSs.
Although the correspondence is incomplete, e.g.,
some OOKR graphs might have no corresponding
DRS. The augmentation of Power (1999) doesn’t
cover DRSs with discourse relations, presupposi-
tions (e.g., b1 to b2 in Figure 2) or with an embed-
ded box that contains base and complex conditions
(like b4 in Figure 2). Nevertheless, for demon-
stration purposes, we still present Power (1999)’s
augmented graph for a felicitous, simplified DRS
of Figure 2.

Basile and Bos (2013) proposed converting
DRSs into graphs, calling them Discourse Repre-
sentation Graphs (DRGs). Their goal was to facili-
tate word-level alignment between surface forms
and the corresponding DRSs to generate texts from
DRSs. The graph encoding, with several simpli-
fications, is exemplified in Figure 3b.4 The sim-
plifications decrease the number of nodes and out-

4Originally Basile and Bos (2013) use more labels for
edges that expresses type-specific information of nodes. For
example, they use different edge labels to distinguish the first
argument position of B from the only argument position of C
while in the paper we use the same label for both. Basile and
Bos (2013) also encodes O as a reified node that introduces

of-signature labels in the graph. The encoding can
be seen as node-centric since the most frequent
signature symbols, namely the symbols of type B
and C, are modeled as labeled nodes. Argument
positions (A) of binary predicates are distinguished
via edge labels. We call this DRG format BB∗.

To evaluate the output of their DRS parser, Liu
et al. (2018) converted DRSs into graphs, demon-
strated in Figure 3c. This graph encoding, in con-
trast to BB∗, is edge-centric as the symbols of type
B and C are used as edge labels. Moreover, com-
pared to BB∗, the encoding contains more unla-
beled nodes since B and C are also modeled with
reified nodes. We call Liu et al. (2018)’s encoding
L18.

Interestingly, in contrast to the proposed graph
encodings of DRS, van Noord et al. (2018a)
refused to convert DRSs into graphs and in-
stead used so-called clausal form of DRSs (see
Figure 1e). The clauses in clausal form are
triples, e.g., 〈b4, NEGATION, b5〉, or quadruples,
e.g., 〈b2, Agent, e1, x1〉, where the quadruples
are hyper-edges and fall out of the scope of stan-
dard graph encodings. The official evaluation of
the shared task on DRS parsing (Abzianidze et al.,

two edges b4
unary
−−−→ NEG

scope
−−−→ b5. Instead, we simply model

O with a single edge b4
NEG
−−−→ b5.
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2019) was also based on clausal form of DRSs.

4 More Graph-based Encodings of DRS

As illustrated in the previous section, there is no
agreement on how DRSs should be converted into
graphs (or whether they should be converted at all).
The range of graph encodings in Figure 3 presents
anything but an exhaustive list. Some encoding can
even be further refined and compressed without
affecting the readability or expressivness. For in-
stance, as explained in footnote 4, BB∗ represents
a refined version of DRGs proposed by Basile and
Bos (2013). L18 can also be further compressed by
discarding reified concept nodes and their outgoing

a1 edges, e.g., replacing b5
act.v.01
−−−−−−→c8

a1
−−→ e2 with

b5
act.v.01
−−−−−−→ e2. We will use L18∗ to refer to the

DRGs refined in such a way.
In general, the choices in which DRG formats

might differ are several. Here we will discuss some
of them, namely (see also Table 2):

(A) Expressing Argument positions of B via
forking and labeled edges ( B 1

2 , like
BB∗) or solely via graph configuration
( B1 2 , without labeled edges), e.g., encod-
ing Agent(e1, x1) as e1 −→ Agent −→ x1;

(B) Representing Binary predicates as labeled
nodes ( B , like BB∗) or unlabeled nodes with
B-labeled edges ( B , like L18);

(C) Encoding Concepts as labeled nodes ( C , like
BB∗), unlabeled nodes with incoming C-
labeled edges ( C , like L18), labeled edges
( C , like L18∗), or as a label on an r node
( C , which will be discussed further);

(I) Expressing box membership explicitly (Exp)
or implicitly (Imp). Whether a node (corre-
sponding to B, C, or r) is In a particular
B, can be depicted via an explicit connecting
edge or implicitly via graph configuration.

Here we would like to elaborate more on (I). The
box membership in DRT directly accounts for a se-
mantic scope. Like discourse referents, conditions
are also members of boxes. So, we also need to
express the box membership of condition predi-
cates in the graphs. All the encodings in Figure 3
explicitly express box membership. For instance,
Agent(e1, x1) belonging to b2 is expressed via con-
necting b2 to the Agent node (see Figure 3b) or
via the outgoing Agent edge from b2 to c3. Ex-
plicating all box memberships via labeled edges

DRG encoding Args B C In-box

BB∗+typed edges B 1
2 B C Exp

A<aB
◦C◦ B 1

2 B C Exp
A<aC

(

B

(

(L18) B 1
2

B C Exp
A<aB

(

C

�

(L18∗) B 1
2

B C Exp

A<aB
◦C

�

B 1
2 B

C Exp
A —•B◦C

�

B1 2 B
C Exp

A<aB

(

C• B 1
2

B
C Exp

A<aB
◦C• B 1

2 B C Exp
A —•B◦C• B1 2 B C Exp

A —•B◦C• I B1 2 B C Im-a1
A —•aB

◦C• I B1 2 B C Im-a1

Table 2: Several combinations of the choices in DRG
design. The choices concern representation of argu-
ment positions, B symbols, C symbols, and in-box re-
lations. The names of encodings visually follow the
combinations of the choices.

increases the graphs in size. To prevent this, one
can make box membership of certain predicates
or their arguments implicit but at the same time
easily and unambiguously recoverable from the
graphs. For example, if we assume that direction-
ality of arrows carries the in-box inheritance and
consider the case when argument positions are con-
figurationally encoded ( B1 2), then there is no
need to explicate the in-box relation for Name in
x1 −→ Name −→ house whenever the Name condition
and x1 are in the same box.5 We dub such an im-
plication of box membership of B from the first
argument as ‘Im-a1’.

Table 2 lists several DRG formats based on com-
binations of how argument positions, binary pred-
icates, concepts, and in-box relations are repre-
sented in a graph. While modeling the argument
position, B1 2 is preferred over B 1

2 from a
theoretical point of view because a1 and a2 labels
are not part of the DRS signature; They are ad-
hoc ingredients only helping with distinguishing
argument positions. When it comes to modeling
concepts, as we already discussed, C leads to
more economic graphs than C .

In the PMB annotation, for almost any discourse
referent, there exists the most specific concept
among the concepts applied to it. For example,
a discourse referent might have only two con-

5Remember that a discourse referent is considered to be
in a box if it is introduced in the top row of the box.
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Figure 4: A —•aB◦C• and A —•B◦C• I encodings. The r
nodes are labeled with Concepts and connected to the
boxes via in-edges. Dashed in-edges for Binary predi-
cates and the aN edge labels are recoverable. A —•B◦C• I
is obtained by ignoring dashed edges and gray edge la-
bels. Unlabeled nodes are colored in grey where their
labels merely serve to match graph components across
the different visualizations.

cepts, male.n.02 and person.n.01, applied to it,
but among these concepts there exists the most spe-
cific concept, namely male.n.02, as male.n.02 is
a hyponym of person.n.01 according to WordNet.
The C choice exploits this annotation property
of concepts in the PMB and labels the node of a
discourse referent with the corresponding most spe-
cific concept. This type of encoding of C is shown
in Figure 4.

Figure 4 also depicts A —•B◦C• I DRG encoding
with implicit box membership of B. Though all the
box membership edges of B are made implicit in
the encoding example, this is not the case in general.
For example, attributive and predicative adjectives
usually introduce 〈b1, Attribute, x1, s1〉 clause,
where x1 is the attributed entity which is not nec-
essarily introduced in the same b1 box as the at-
tributing state s1. Another example is a construc-
tion with a locative preposition and a definite noun
phrase, e.g., hid a parcel under the bed, whose
DRS contains the following fragment:

b2 REF e1 b2 Location e1 x3

b2 hide "v.01" e1 b2 SZP x2 x3

b2 REF x1 b3 REF x2

b2 parcel "n.01" x1 b3 bed "n.01" x2

b2 Patient e1 x1

where the binary relation SZP (spatial above) is in
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Boxer↓ 78.2 89.5 86.8 87.5 87.6 87.7

chLSTM↑ 84.3 92.3 88.4 90.9 90.9 91.1

Boxer↑ 87.2 94.2 92.3 92.9 92.9 93.0

Table 3: Macro F-scores of the models when their out-
put is treated as DRS or DRG. F-score for DRS is com-
puted with Counter while for DRG with mtool.

a different box than its first argument.
As we have shown, there are at least a dozen

ways to dress up DRSs as graphs. Some of the
DRG formats are verbose, some can employ default
rules to ignore certain redundancies, some require
out-of-signature symbols, and some prefer labeled
edges over labeled nodes. There isn’t enough space
to illustrate the graphs listed in Table 2, but each of
the mentioned encoding choices is demonstrated
by at least one of the graphs from Figure 3 and
Figure 4.

5 Matching & Evaluating DRGs

In graph-based semantic parsing, system outputs
are conventionally evaluated against the gold stan-
dard graphs by finding the maximum common edge
subgraph (MCES) for each pair of produced and
gold graphs, and then calculating macro-average
F-score (Oepen et al., 2019). In general, the MCES
problem is NP-complete, and finding the maxi-
mum subgraph shared between two relatively large
graphs is sometimes computationally infeasible. In
this section, we experiment on how computation-
ally expensive is the MCES problem for each DRG
design.

5.1 Data & Tools

We run the experiments on the output of existing
DRS parsers. Four distinct parsing models are
selected to achieve diversity in the system out-
put graphs. Two of the parsers are end-to-end
character-based LSTM models from van Noord
et al. (2018b): one is their best model (chLSTM↑)
while another one is trained on fewer data on pur-
pose to have mediocre performance (chLSTM↓).
Another two parsers are based on the semantic
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9.2 10.3 9.7 3.6 4.8 6.7 4.8 2.0 2.2 3.5 2.2 1.0 0.1

8.3 9.8 13.1 4.3 5.2 6.6 5.2 3.0 3.2 4.4 3.2 2.2 1.6

4.4 5.1 4.8 1.3 2.7 3.3 2.7 1.0 1.0 1.8 1.0 0.9 0.3

NonExact_matches
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Table 4: The percentage of approximate (i.e., non-exact) matches w.r.t. the total non-null DRGs. Lower numbers
are better as more graph matches corresponding to MCES are found. The total number of DRSs is 885. While
converting DRSs into DRGs, 8-number of DRGs become null due to ill-formed DRSs and are excluded during
calculating the percentages. Encoding with C• additionally renders C• "-number of DRSs untranslatable.

parser Boxer (Bos, 2008), which is used in the
PMB to pack all annotations layers into DRS boxes.
Boxer↓ is Boxer based on the NLP tools of the
PMB pipeline6, on the other hand, Boxer↑ is Boxer
employing annotation layers output by MaChAmp
(van der Goot et al., 2020). As the names suggest,
Boxer↑ is a better model than Boxer↓. The output
DRSs are obtained by parsing the development set
(885 documents) of the PMB v3.0.0.7 Evaluation
of the models based on the DRSs of the dev set is
given in Table 3. DRSs are scored with Counter
(van Noord et al., 2018a), the clause matching tool
for DRSs in clausal form.8

For MCES-based matching of DRGs, we use
mtool9, the Swiss Army Knife for Graph-Based
Meaning Representation. Based on the graph con-
figurations, mtool schedules potential node-to-
node mappings between two graphs. This infor-
mation is used to initialize promising node-to-node
mappings that might lead to finding the MCES
early. mtool is the official scorer in both the
MRP 2019 and MRP 2020 shared tasks.

All types of graph encodings employed in the ex-
periments are obtained with the DRS2Graph tool.10

This new converter from clause-based DRSs to la-
beled directed graphs is one of the contributions of
the paper.

5.2 Results & Analysis

The results of finding MCES between the sys-
tem generated and converted DRGs and reference

6https://pmb.let.rug.nl/software.php
7https://pmb.let.rug.nl/data.php
8https://github.com/RikVN/DRS_parsing
9https://github.com/cfmrp/mtool

10https://github.com/kovvalsky/DRS2Graph

DRGs are provided in Table 4. The reference DRGs
were obtained by converting the gold standard DRS
of the PMB 3.0.0 development set. We run experi-
ments with 13 DRG formats. All 885 DRSs were
converted in each DRG format without problems.
In principle, the encodings with the C• choice are
lossy, however, they were successfully applied to
the gold DRSs. Several parser-produced DRSs
were not converted according to the C• choice since
the parsers assert the inconsistent concepts for dis-
course referents. For example, Boxer↑ produced
a DRS with measure.n.02 and book.n.01 applied
to the same discourse referent. Since these senses
are not in hyponymy/hypernymy relation, the DRS
didn’t meet the requirement from C• and was one of
the three DRSs of Boxer↑ that couldn’t be dressed
up as C• -based graphs.11

Table 4 shows the computational (in)feasibility
of the MCES problem across the combinations of
parsing models and graph encodings (using the
mtool implementation with default limits on its
search space). Given that models are sorted accord-
ing to their performance in ascending order from
top to bottom, the table shows that for relatively
distinct graphs it can be difficult to guarantee the
MCES solution.12 But things are not so straightfor-
ward as chLSTM↑ outperforms Boxer↓ but finding
MCES for Boxer↓ is easier for 10 encodings out
of 13. This can be explained by the fact that gold
DRSs are obtained from Boxer↓ while taking into
account added human annotations. Given this, it is

11From 6620 gold DRSs of the PMB 3.0.0 training part,
only 16 (0.24%) DRSs didn’t satisfy the constraint of C• .

12When exhausting its search space limits, mtool falls back
to an anytime strategy, returning the best overall match found
up to that point. This match will often correspond to the
MCES, but there is no correctness guarantee in this mode.

https://pmb.let.rug.nl/software.php
https://pmb.let.rug.nl/data.php
https://github.com/RikVN/DRS_parsing
https://github.com/cfmrp/mtool
https://github.com/kovvalsky/DRS2Graph
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expected that gold and Boxer↓’s DRSs have in com-
mon substantial chunks of boxes, and this sharing
is transferred on the DRGs too.

Interestingly, the encodings BB∗ (Basile and Bos,
2013) and A<a

a B

(

C

(

(Liu et al., 2018) are one of
the most inefficient encodings across all the mod-
els. For instance, non-exact (i.e., approximate)
MCES was found for 237 DRG pairs out of 872 for
chLSTM↓ and BB∗ encoding. For other encodings
the ratio of approximate matches halves.

Among the encodings with the C

�

choice,
A<a

a B

(

C

�

appears to provide most computationally
friendly graphs. Every encoding with C

�

becomes
even better when C

�

is replaced with C• . This is
because C• brings at least a 16% reduction in the
number of edges and increases the number of la-
beled nodes. The latter apparently helps mtool to
get better initializations for node mappings.

A<a
a B

(

C• is the best among C• -featured encod-
ings with explicit box membership. It doesn’t im-
prove further when changing its encoding choices,
including switching to A —•. The results show that
A<a

a is consistently better than A —•. Even when they
are combined, A —• adds no value to A<a

a . However,
the advantage of A —• over A<a

a is that it configura-
tionally distinguishes argument positions and there
is no need for out-of-signature labels. Moreover,
A —• invites the intuitive inheritance property about
in-box relation (see (I) discussed in Section 4).
When incorporating the implicit in-box relation
with A —•, the combination A —•B◦C• I yields a sub-
stantial decrease in the number of approximate
matches. This is explained by the fact that the num-
ber of edges decreases by at least 23%. Adding the
out-of-signature edge labels for marking argument
positions further improves the encoding.

Differences between F-scores calculated over
DRS (with Counter) and DRGs (with mtool)
are significant (see Table 3). The gap between
low- and high-performing model is greater than
10% and 5%, respectively. The DRS-based
score is more strict than the DRG-based one be-
cause DRSs are evaluated in the clausal form,
where some DRSs conditions (e.g., built with
B) are modeled via quadruples, i.e., hyper-edges.
In DRGs, the hyper-edges are represented by
multiple triples (〈nodeID, edgeLabel, nodeID〉 or
〈nodeID, label, labelValue〉), and this addition-
ally rewards the models when they get parts of
hyper-edges correctly.

6 Conclusion

There have been several approaches that encoded
DRSs as graphs (surveyed in Section 3), but their
objectives were to transform DRSs in a suitable for-
mat for particular applications rather than exploring
and comparing different types of DRG encodings.
This paper fills this gap. We have systematically
characterized a dozen of DRG encodings and con-
trasted them with each other, and compared them
to the DRS clausal form from an evaluation per-
spective.

We opt for the A —•B◦C• I DRG encoding (see
Figure 4) to represent DRSs at the MRP 2020
shared task. Despite the encoding being lossy, it
represents an excellent trade-off due to the advan-
tages it brings: (a) the encoding has at least 23%
fewer edges than other encodings, which makes
the DRGs more compact and easier to read; (b)
given that scope information inflates DRSs, learn-
ing relatively compact DRGs seems a good starting
point for the shared task; (c) only less than 0.25%
DRSs are lost when applying the encoding; (d) it
doesn’t employ the out-of-signature labels a1 and
a2; (e) for the DRGs obtained from the average-
performing DRS parsers, the evaluation tool can
find exact maximal matches for at least 98.4% of
DRG pairs.

When abstracting from the reification of the roles
as nodes, the chosen DRG encoding and the graphs
of other frameworks in MRP 2020 have abstractly
parallel graph topologies for linguistically parallel
predicate-argument structures.
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Mikulová, Petr Pajas, Jan Popelka, Jiřı́ Semecký,
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Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proceedings of the 8th International Workshop on
Semantic Evaluation (SemEval 2014), pages 63–72,
Dublin, Ireland. Association for Computational Lin-
guistics.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceed-
ings of the Fifth International Conference on
Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources
Association (ELRA).

Terence Parsons. 1990. Events in the Semantics of En-
glish: A Study in Subatomic Semantics. MIT Press.

Richard Power. 1999. Controlling logical scope in
text generation. In Proceedings of the 7th. Euro-
pean Workshop on Natural Language Generation
(EWNLG’99), pages 1–9, Toulouse.

Rob A. Van der Sandt. 1992. Presupposition projec-
tion as anaphora resolution. Journal of Semantics,
9(4):333–377.
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