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Abstract

The 2020 Shared Task at the Conference for
Computational Language Learning (CoNLL)
was devoted to Meaning Representation Pars-
ing (MRP) across frameworks and languages.
Extending a similar setup from the previous
year, five distinct approaches to the represen-
tation of sentence meaning in the form of di-
rected graphs were represented in the English
training and evaluation data for the task, pack-
aged in a uniform graph abstraction and serial-
ization; for four of these representation frame-
works, additional training and evaluation data
was provided for one additional language per
framework. The task received submissions
from eight teams, of which two do not par-
ticipate in the official ranking because they ar-
rived after the closing deadline or made use of
additional training data. All technical informa-
tion regarding the task, including system sub-
missions, official results, and links to support-
ing resources and software are available from
the task web site at:

http://mrp.nlpl.eu

1 Background and Motivation

The 2020 Conference on Computational Language
Learning (CoNLL) hosts a shared task (or ‘system
bake-off’) on Cross-Framework Meaning Repre-
sentation Parsing (MRP 2020), which is a revised
and extended re-run of a similar CoNLL shared task
in the preceding year. The goal of these tasks is to
advance data-driven parsing into graph-structured
representations of sentence meaning. For the first
time, the MRP task series combines formally and
linguistically different approaches to meaning rep-

resentation in graph form in a uniform training and
evaluation setup.

Key differences in the 2020 edition of the task
include the addition of a graph-based encoding
of Discourse Representation Structures (dubbed
DRG); a generalization of Prague Tectogrammati-
cal Graphs (to include more information from the
original annotations); and a separate cross-lingual
track, introducing one extra language (beyond En-
glish) for four of the frameworks involved.1

Participants were invited to develop parsing
systems that support five distinct semantic graph
frameworks in four languages (see §3 below)—
all encoding core predicate–argument structure,
among other things—in the same implementation.
Ideally, these parsers predict sentence-level mean-
ing representations in all frameworks in parallel.
Architectures utilizing complementary knowledge
sources (e.g. via parameter sharing) were encour-
aged, though not required. Learning from multiple
flavors of meaning representation in tandem has
hardly been explored (with notable exceptions, e.g.
the parsers of Peng et al., 2017; Hershcovich et al.,
2018; Stanovsky and Dagan, 2018; or Lindemann
et al., 2019).

The task design aims to reduce framework-
specific ‘balkanization’ in the field of meaning
representation parsing. Its contributions include

1To reduce the threshold to participation, two of the target
frameworks represented in MRP 2019 are not in focus this
year, viz. the purely bi-lexical DELPH-IN MRS Bi-Lexical De-
pendencies and Prague Semantic Dependencies (PSD). These
graphs largely overlap with the corresponding (but richer)
frameworks in 2020, EDS and PTG, respectively, and the
original bi-lexical semantic dependency graphs remain inde-
pendently available (Oepen et al., 2015).

http://mrp.nlpl.eu


2

(a) a unifying formal model over different seman-
tic graph banks (§2), (b) uniform representations
and scoring (§4 and §6), (c) contrastive evaluation
across frameworks (§5), and (d) increased cross-
fertilization of parsing approaches (§7).

2 Definitions: Graphs and Flavors

Reflecting different traditions and communities,
there is wide variation in how individual meaning
representation frameworks think (and talk) about
semantic graphs, down to the level of visual conven-
tions used in rendering graph structures. Increased
terminological uniformity and guidance in how to
navigate this rich and diverse landscape are among
the desirable side-effects of the MRP task series.
The following paragraphs provide semi-formal def-
initions of core graph-theoretic concepts that can
be meaningfully applied across the range of frame-
works represented in the shared task.

Basic Terminology Semantic graphs (across dif-
ferent frameworks) can be viewed as directed
graphs or digraphs. A semantic digraph is a
triple (T,N,E) where N is a set of nodes and
E ⊆ N × N is a set of edges. The in- and out-
degree of a node count the number of edges arriving
at or leaving from the node, respectively. In con-
trast to the unique root node in trees, graphs can
have multiple (structural) roots, which we define as
nodes with in-degree zero. The majority of seman-
tic graphs are structurally multi-rooted. Thus, we
distinguish one or several nodes in each graph as
top nodes, T ⊆ N ; the top(s) correspond(s) to the
most central semantic entities in the graph, usually
the main predication(s).

In a tree, every node except the root has in-
degree one. In semantic graphs, nodes can have
in-degree two or higher (indicating shared argu-
ments), which constitutes a reentrancy in the graph.
In contrast to trees, general digraphs may contain
cycles, i.e. a directed path leading from a node to
itself. Another central property of trees is that they
are connected, meaning that there exists an undi-
rected path between any pair of nodes. In contrast,
semantic graphs need not generally be connected.

Finally, in some semantic graph frameworks
there is a (total) linear order on the nodes, typi-
cally (though not necessarily) induced by the sur-
face order of corresponding tokens. Such graphs
are conventionally called bi-lexical dependencies
(probably deriving from a notion of lexicalization
articulated by Eisner, 1997) and formally consti-

tute ordered graphs. A natural way to visualize a
bi-lexical dependency graph is to draw its edges
as semicircles in the halfplane above the sentence.
An ordered graph is called noncrossing if in such a
drawing, the semicircles intersect only at their end-
points (this property is a natural generalization of
projectivity as it is known from dependency trees).

A natural generalization of the noncrossing prop-
erty, where one is allowed to also use the halfplane
below the sentence for drawing edges is a prop-
erty called pagenumber two. Kuhlmann and Oepen
(2016) provide additional definitions and a quanti-
tative summary of various formal graph properties
across frameworks.

Hierarchy of Formal Flavors In the context of
the MRP shared task series, we have previously de-
fined different flavors of semantic graphs based on
the nature of the relationship they assume between
the linguistic surface signal (typically a written
sentence, i.e. a string) and the nodes of the graph
(Oepen et al., 2019). We refer to this relation as
anchoring (of nodes onto sub-strings); other com-
monly used terms include alignment, correspon-
dence, or lexicalization.

Flavor (0) is characterized by the strongest form
of anchoring, obtained in bi-lexical dependency
graphs, where graph nodes injectively correspond
to surface lexical units (i.e. tokens or ‘words’). In
such graphs, each node is directly linked to one
specific token (conversely, there may be semanti-
cally empty tokens), and the nodes inherit the linear
order of their corresponding tokens.

Flavor (1) includes a more general form of an-
chored semantic graphs, characterized by relaxing
the correspondence between nodes and tokens, al-
lowing arbitrary parts of the sentence (e.g. sub-
token or multi-token sequences) as node anchors,
as well as unanchored nodes, or multiple nodes
anchored to overlapping sub-strings. These graphs
afford greater flexibility in the representation of
meaning contributed by, for example, (derivational)
affixes or phrasal constructions and facilitate lexi-
cal decomposition (e.g. of causatives or compara-
tives).

Finally, Flavor (2) semantic graphs do not con-
sider the correspondence between nodes and the
surface string as part of the representation of mean-
ing (thus backgrounding notions of derivation and
compositionality). Such semantic graphs are sim-
ply unanchored.

While different flavors refer to formally defined
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Figure 1: Semantic dependency graphs for the running example A similar technique is almost impossible to apply
to other crops, such as cotton, soybeans and rice: Elementary Dependency Structures (EDS). Node properties are
indicated as two-column records below the node labels.

sub-classes of semantic graphs, we reserve the
term framework for specific linguistic approaches
to graph-based meaning representation (typically
encoded in a particular graph flavor, of course).
However, the coarse classification into three dis-
tinct flavors does not fully account for the variabil-
ity of anchoring relations observed across frame-
works. For example, graphs can be partially an-
chored, meaning that only a subset of nodes are
explicitly linked to the surface string; the anchor-
ing relations that are present, can in turn stand in
one-to-one correspondence to surface tokens, or
allow overlapping and sub-token or phrasal rela-
tionships. At the same time, a framework may
impose a total ordering of nodes independent (or
possibly only partly dependent) on anchoring. We
will interpret Flavors (0) and (2) strictly, as fully
lexically anchored and wholly unanchored, respec-
tively, leading to the categorization of mixed forms
of anchoring as Flavor (1), and allow for the pres-
ence of ordered graphs, in principle at least, at all
levels of the hierarchy.2

2Albeit in the realm of syntactic structure, the popular Uni-
versal Dependencies (UD; Nivre et al., 2020) initiative is cur-
rently exploring the introduction of ‘enhanced’ dependencies,

3 Meaning Representation Frameworks

The shared task combines five distinct frameworks
for graph-based meaning representation, each with
its specific formal and linguistic assumptions. This
section reviews the frameworks and presents En-
glish example graphs for sentence #20209013 from
the venerable Wall Street Journal (WSJ) Corpus
from the Penn Treebank (PTB; Marcus et al.,
1993):

(1) A similar technique is almost impossible to
apply to other crops, such as cotton, soybeans
and rice.

The example exhibits some interesting linguis-
tic complexity, including what is called a tough
adjective (impossible), a scopal adverb (almost), a
tripartite coordinate structure, and apposition. The
example graphs in Figures 1 through 4 are pre-

where unanchored nodes for unexpressed material beyond the
surface string can be postulated (Schuster and Manning, 2016).
Whether or not these nodes occupy a well-defined position in
the otherwise total order of basic UD nodes remains an open
question, but either way the presence of unanchored nodes
will take enhanced UD graphs beyond the bi-lexical Flavor (0)
graphs in our terminology.
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sented in order of (arguably) increasing ‘abstrac-
tion’ from the surface string, i.e. ranging from fully
anchored Flavor (1) to unanchored Flavor (2).

Elementary Dependency Structures The EDS
graphs (Oepen and Lønning, 2006) originally
derive from the underspecified logical forms
computed by the English Resource Grammar
(Flickinger et al., 2017; Copestake et al., 2005).
These logical forms are not in and of themselves
semantic graphs (in the sense of §2 above) and
are often refered to as English Resource Semantics
(ERS; Bender et al., 2015).3 Elementary Depen-
dency Structures (EDS; Oepen and Lønning, 2006)
encode English Resource Semantics in a variable-
free semantic dependency graph—not limited to
bi-lexical dependencies—where graph nodes corre-
spond to logical predications and edges to labeled
argument positions. The EDS conversion from
underspecified logical forms to directed graphs dis-
cards partial information on semantic scope from
the full ERS, which makes these graphs abstractly—
if not linguistically—similar to Abstract Meaning
Representation (see below).

Nodes in EDS are in principle independent of
surface lexical units, but for each node there is an
explicit, many-to-many anchoring onto sub-strings
of the underlying sentence. Thus, EDS instanti-
ates Flavor (1) in our hierarchy of different formal
types of semantic graphs and, more specfically,
are fully anchored but unordered. Avoiding a one-
to-one correspondence between graph nodes and
surface lexical units enables EDS to adequately rep-
resent, among other things, lexical decomposition
(e.g. of comparatives), sub-lexical or construction
semantics (e.g. corresponding to morphological
derivation or syntactic compounding, respectively),
and covert (e.g. elided) meaning contributions. All
nodes in the example EDS in Figure 1 make explicit
their anchoring onto sub-strings of the underlying
input, for example span 〈2 : 9〉 for similar.

In the EDS analysis for the running ex-
ample, nodes representing covert quantifiers
(e.g. on bare nominals, labeled udef q4), the

3The underlying grammar is rooted in the general linguistic
theory of Head-Driven Phrase Structure Grammar (HPSG;
Pollard and Sag, 1994).

4In the EDS example in Figure 1, all nodes correspond-
ing to instances of bare ‘nominal’ meanings are bound by a
covert quantificational predicate, including the group-forming
implicit conj and and c nodes that represent the nested, binary-
branching coordinate structure. This practice of uniform quan-
tifier introduction in ERS is acknowledged as “particularly
exuberant” by Steedman (2011, p. 21).

two-place such+as p relation, as well as the
implicit conj(unction) relation (which reflects re-
cursive decomposition of the coordinate structure
into binary predications) do not correspond to indi-
vidual surface tokens (but are anchored on larger
spans, overlapping with anchors from other nodes).
Conversely, the two nodes associated with similar
indicate lexical decomposition as a comparative
predicate, where the second argument of the comp
relation (the ‘point of reference’) remains unex-
pressed in Example (1).

Prague Tectogrammatical Graphs These
graphs present a conversion from the multi-layered
(and somewhat richer) annotations in the tradition
of Prague Functional Generative Description
(FGD; Sgall et al., 1986), as adopted (among
others) in the Prague Czech–English Dependency
Treebank (PCEDT; Hajič et al., 2012) and Prague
Dependency Treebank (PDT; Böhmová et al.,
2003). For more details on how the graphs are
obtained from the original annotations, see Zeman
and Hajič (2020).

The PTG structures essentially recast core pred-
icate–argument structure in the form of mostly
anchored dependency graphs, albeit introducing
‘empty’ (or generated, in FGD terminology) nodes,
for which there is no corresponding surface token.
Thus, these partially anchored representations in-
stantiate Flavor (1) in our hierarchy of different
formal types of semantic graphs, where anchoring
relations can be discontinuous: For example, the
technique node in Figure 2 is anchored to both the
noun and its indefinite determiner a. PTG struc-
tures assume a total order of nodes, which provides
the foundation for an underlying theory of topic–
focus articulation, as proposed by Hajičová et al.
(1998).

The PTG structure for our running example has
many of the same dependency edges as the EDS
graph (albeit using a different labeling scheme and
inverse directionality in a few cases), but it ana-
lyzes the predicative copula as semantically con-
tentful and does not treat almost as ‘scoping’ over
the entire graph. In the example graph, there are
two generated nodes to represent the unexpressed
BEN(efactive) of the impossible relation as well
as the unexpressed ACT(or) argument of the three-
place apply relation, respectively; these nodes are
related by an edge indicating grammatical coref-
erence. In this graph, the indefinite determiner,
infinitival to, and the vacuous preposition marking
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Figure 2: Semantic dependency graphs for the running example A similar technique is almost impossible to apply
to other crops, such as cotton, soybeans and rice: Prague Tectogrammatical Graphs (PTG). In addition to node
properties, visualized similarly to the EDS in Figure 1, boolean edge attributes are abbreviated below edge labels,
for true values.

the deep object of apply can be argued to not have
a semantic contribution of their own.

The ADDR argument relation to the apply pred-
icate has been recursively propagated to both el-
ements of the apposition and to all members of
the coordinate structure. Accordingly, edge labels
in PTG are not always functional, in the sense of
allowing multiple outgoing edges from one node
with the same label.

In FGD, role labels (called functors) ACT(or),
PAT(ient), ADDR(essee), ORIG(in), and EFF(ect)
indicate ‘participant’ positions in an underlying va-
lency frame and, thus, correspond more closely to
the numbered argument positions in other frame-
works than their names might suggest.5 The PTG
annotations are grounded in a machine-readable
valency lexicon (Urešová et al., 2016), and the
frame values on verbal nodes in Figure 2 indi-
cate specific verbal senses in the lexicon.

5Accordingly, multiple instances of the same core partic-
ipant role—as ADDR:member in Figure 2—will only occur
with propagation of dependencies into paratactic construc-
tions.

Universal Conceptual Cognitive Annotation
Universal Cognitive Conceptual Annotation
(UCCA; Abend and Rappoport, 2013) is based
on cognitive linguistic and typological theo-
ries, primarily Basic Linguistic Theory (Dixon,
2010/2012). The shared task targets the UCCA
foundational layer, which focuses on argument
structure phenomena (where predicates may be
verbal, nominal, adjectival, or otherwise). This
coarse-grained level of semantics has been shown
to be preserved well across translations (Sulem
et al., 2015). It has also been successfully used
for improving text simplification (Sulem et al.,
2018c), as well as to the evaluation of a number
of text-to-text generation tasks (Birch et al., 2016;
Sulem et al., 2018a; Choshen and Abend, 2018).

The basic unit of annotation is the scene, denot-
ing a situation mentioned in the sentence, typically
involving a predicate, participants, and potentially
modifiers. Linguistically, UCCA adopts a notion of
semantic constituency that transcends pure depen-
dency graphs, in the sense of introducing separate,
unlabeled nodes, called units. One or more labels
are assigned to each edge. Formally, UCCA has a
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Figure 3: Universal Conceptual Cognitive Annotation (UCCA), foundational layer, for the running example A
similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice. The dashed edge
whose target is the node anchored to technique abbreviates a boolean remote edge attribute.

Type (1) flavor, where leaf (or terminal) nodes of
the graph are anchored to possibly discontinuous
sequences of surface sub-strings, while interior (or
‘phrasal’) graph nodes are formally unanchored.

The UCCA graph for the running example (see
Figure 3) includes a single scene, whose main re-
lation is the Process (P) evoked by apply. It also
contains a secondary relation labeled Adverbial
(D), almost impossible, which is broken down into
its Center (C) and Elaborator (E); as well as two
complex arguments, labeled as Participants (A). Un-
like the other frameworks in the task, the UCCA
foundational layer integrates all surface tokens into
the graph, possibly as the targets of semantically
bleached Function (F) and Punctuation (U) edges.
UCCA graphs need not be rooted trees: Argument
sharing across units will give rise to reentrant nodes
much like in the other frameworks. For example,
technique in Figure 3 is both a Participant in the
scene evoked by similar and a Center in the parent
unit. UCCA in principle also supports implicit (un-
expressed) units which do not correspond to any
tokens, but these are currently excluded from pars-
ing evaluation and, thus, suppressed in the UCCA
graphs distributed in the context of the shared task.

Abstract Meaning Representation The shared
task includes Abstract Meaning Representation
(AMR; Banarescu et al., 2013), which in the MRP
hierarchy of different formal types of semantic
graphs (see §2 above) is simply unanchored, i.e.
represents Flavor (2). The AMR framework is inde-
pendent of particular approaches to derivation and
compositionality and, accordingly, does not make
explicit how elements of the graph correspond to
the surface utterance. Although most AMR pars-
ing research presupposes a pre-processing step that

‘aligns’ graph nodes with (possibly discontinuous)
sets of tokens in the underlying input, this anchor-
ing is not part of the meaning representation proper.

At the same time, AMR frequently invokes lexi-
cal decomposition and normalization towards ver-
bal senses, such that AMR graphs often appear to
‘abstract’ furthest from the surface signal. Since
the first general release of an AMR graph bank in
2014, the framework has provided a popular tar-
get for data-driven meaning representation parsing
and has been the subject of two consecutive tasks
at SemEval 2016 and 2017 (May, 2016; May and
Priyadarshi, 2017).

The AMR example graph in Figure 4 has a topo-
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Figure 4: Abstract Meaning Representation (AMR) for
the running example A similar technique is almost im-
possible to apply to other crops, such as cotton, soy-
beans and rice. Edge labels in parentheses indicate nor-
malized (i.e. un-inverted) roles.
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Figure 5: Discourse Representation Graph (DRG) for the running example A similar technique is almost impossible
to apply to other crops, such as cotton, soybeans and rice. Different node shapes are not formally part of the graph
but serve as a visual aid to distinguish different types of the underlying DRS elements.

logy broadly comparable to EDS, with some no-
table differences. Similar to the UCCA example
graph (and unlike EDS), the AMR representation
of the coordinate structure is flat. Although most
lemmas are linked to derivationally related forms
in the sense lexicon, this is not universal, as seen
by the nodes corresponding to similar and such as,
which are labeled as resemble-01 and exemplify-01,
respectively. These sense distinctions (primarily
for verbal predicates) are grounded in the inventory
of predicates from the PropBank lexicon (Kings-
bury and Palmer, 2002; Hovy et al., 2006).

Role labels in AMR encode semantic argument
positions, with the particular roles defined accord-
ing to each PropBank sense, though the counting in
AMR is zero-based such that the ARG1 and ARG2
roles in Figure 4 often correspond to ARG2 and
ARG3, respectively, in the EDS of Figure 1. Prop-
Bank distinguishes such numbered arguments from
non-core roles labeled from a general semantic in-
ventory, such as frequency, duration, or domain.

Figure 4 also shows the use of inverted edges
in AMR, for example ARG1-of and mod. These
serve to allow annotators (and in principle also pars-
ing systems) to view the graph as a tree-like struc-
ture (with occasional reentrancies) but are formally
merely considered notational variants. Therefore,
the MRP rendering of the AMR example graph
also provides an unambiguous indication of the
underlying, normalized graph: Edges with a label
component shown in parentheses are to be reversed
in normalization, e.g. representing an actual ARG0
edge from resemble-01 to technique or a domain
edge from other to crop.

Given the non-compositionality of AMR anno-
tation, AMR allows the introduction of semantic
concepts which have no explicit lexicalization in
the text, for example the et-cetera element in the

coordinate structure in Figure 4. Conversely, like
in the other frameworks (except UCCA), some sur-
face tokens are analyzed as semantically vacuous.
For example, parallel to the PTG graph in Figure 2,
there is no meaning contribution annotated for the
determiner a (let alone for covert determiners in
bare nominals, as made explicit in EDS).

Discourse Representation Graphs Finally, Dis-
course Representation Graphs (DRG) provide a
graph encoding of Discourse Representation Struc-
ture (DRS), the meaning representations at the core
of Discourse Representation Theory (DRT; Kamp
and Reyle, 1993; Van der Sandt, 1992; Asher,
1993). DRSs can model many challenging se-
mantic phenomena including quantifiers, negation,
scope, pronoun resolution, presupposition accom-
modation, and discourse structure. Moreover, they
are directly translatable into first-order logic for-
mulas to account for logical inference.

DRG used in the shared task represents a type
of graph encoding of DRS that makes the graphs
structurally as close as possible to the structures
found in other frameworks; Abzianidze et al. (2020)
provide more details on the design choices in the
DRG encoding. The source DRS annotations are
taken from data release 3.0.0 of the Parallel Mean-
ing Bank (PMB; Abzianidze et al., 2017; Bos et al.,
2017).6 Although the annotations in the PMB are
compositionally derived from lexical semantics,
anchoring information is not explicit in its DRSs;
thus, (like AMR) the DRG framework formally
instantiates Flavor (2) of meaning representations.

The DRG of the running example is given in Fig-
ure 5. The concepts (vissualized as oval shapes) are
represented by WordNet 3.0 senses and semantic
roles (in diamond shapes) by the adapted version

6https://pmb.let.rug.nl/data.php

https://pmb.let.rug.nl/data.php
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EDS PTG UCCA AMR DRG

Flavor 1 1 1 2 2

T
R

A
IN

Text Type newspaper newspaper mixed mixed mixed
Sentences 37,192 42,024 6,872 57,885 6,606

Tokens 861,831 1,026,033 171,838 1,049,083 44,692

VA
L

ID
A

T
E Text Type mixed mixed mixed mixed mixed

Sentences 3,302 1,664 1,585 3,560 885
Tokens 65,564 40,770 25,982 61,722 5,541

T
E

ST

Text Type mixed newspaper mixed mixed mixed
Sentences 4,040 2,507 600 2,457 898

Tokens 68,280 59,191 18,633 49,760 5,991

Table 1: Quantitative summary of English gold-standard training, validation, and evaluation data for the five frame-
works in the cross-framework track; token counts reflect the morpho-syntactic companion parses, see §4.

of VerbNet roles. Nodes with quoted labels rep-
resent entities which semantically behave as con-
stants. Such a node is used for the indexical “now”,
modelling the time of speech, which is part of the
semantics of the present-tense copula is.

Explicit encoding of the scope is one of the main
differences between DRG and the other frame-
works. Scopes can be triggered by discourse seg-
ments, negation, universal quantification, clause
embedding (e.g. to apply . . . ), and presuppositions
(e.g. other crops). The scopes are represented as
unlabeled (square-shaped) nodes in DRG (UCCA
also has unlabeled nodes, albeit for a different rea-
son). The node for the first discourse segment is
treated as a root, which is connected to the scope
of the embedded clause by the ATTRIBUTION dis-
course relation. The latter scope presupposes the
scope containing a crop which is different (with
NEQ inequality) from the group of crops consist-
ing of (with the Sub semantic role) rice, soybeans,
and cotton. Each concept, represented by a Word-
Net synset, has explicitly assigned its scope via in
edges.7

Compared to the other frameworks, DRG struc-
tures are larger in size due to the number of se-
mantic relations, explicit nodes for scope, scope
membership edges, role reification, and informa-
tion about the time (which usually introduces at
least four additional nodes).

7Since in principle the scope of a semantic role cannot be
uniquely determined by the scopes of its arguments, semantic
roles are reified as nodes and can have ingoing in edges. But
whenever the scopes of a role and its arguments coincide,
the scope membership edge for the role is omitted and hence
recoverable. This decision decreases the number of edges in
DRG.

4 Task Setup

The following paragraphs summarize the ‘logistics’
of the MRP 2020 shared task. Except for the addi-
tion of the new cross-lingual track, the overall task
setup mirrored that of the 2019 predecessor; please
see Oepen et al. (2019) for additional background.

Cross-Framework Track The English training,
validation, and evaluation data are summarized in
Table 1. For EDS, PTG, UCCA, and AMR the
provenance of these gold-standard annotations is
the same as in the MRP 2019 setup (Oepen et al.,
2019).8 The DRG target structures have been con-
verted using the procedure sketched in §3 above.
Unlike in the 2019 edition of the task, designated
validation segments have been provided for all five
frameworks in the cross-framework track; this data
could be used during system development, e.g. for
parameter tuning, but not for training the final sys-
tem submission. For EDS, UCCA, and AMR, the
2020 validation data corresponds to the 2019 evalu-
ation segments, thus allowing some comparability
across the two editions of the MRP shared task.

As a common point of reference, the training
data includes a sample of 89 WSJ sentences an-
notated in all five frameworks (twenty for DRG);
for all frameworks but DRG, the evaluation data
further includes parallel annotations over the same
random selection of 100 sentences from the novel
The Little Prince (by Antoine de Saint-Exupéry) as
used in MRP 2019, dubbed LPPS. These parallel
subsets of the gold-standard data are available for
public download from the task site (see §9 below).

8There are slightly more EDS and PTG (compared to PSD
in 2019) graphs this year, because the two underlying re-
sources are no longer intersected; for UCCA, the 2020 release
includes additional, recent gold-standard annotations.
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EDS PTG UCCA AMR−1 DRG

(02) Average Tokens per Graph 22.17 24.42 25.01 18.12 6.77
(03) Average Nodes per Token 1.26 0.74 1.33 0.64 2.09
(04) Distinct Edge Labels 10 72 15 101 16

P
R

O
P

O
R

T
IO

N
S (05) Percentage of top nodes 0.99 1.27 1.66 3.77 3.40

(06) Percentage of node labels 29.02 21.61 – 43.91 39.81
(07) Percentage of node properties 12.54 26.22 – 7.63 –
(08) Percentage of node anchors 29.02 19.63 38.80 – –
(09) Percentage of (labeled) edges 28.43 26.10 56.88 44.69 56.79
(10) Percentage of edge attributes – 5.17 2.66 – –

T
R

E
E

N
E

SS

(11) %g Rooted Trees 0.09 22.63 28.19 22.05 0.35
(12) %g Treewidth One 68.60 22.67 34.17 49.91 0.35
(13) Average Treewidth 1.317 2.067 1.691 1.561 2.131
(14) Maximal Treewidth 3 7 4 5 5
(15) Average Edge Density 1.015 1.177 1.055 1.092 1.265
(16) %n Reentrant 32.77 16.23 4.90 19.89 25.92
(17) %g Cyclic 0.27 33.97 0.00 0.38 0.27
(18) %g Not Connected 1.90 0.00 0.00 0.00 0.00
(19) %g Multi-Rooted 99.93 0.00 0.00 71.64 32.32

Table 2: Contrastive graph statistics for the MRP 2020 English training data using a subset of the properties defined
by Kuhlmann and Oepen (2016). Here, %g and %n indicate percentages of all graphs and nodes, respectively, in
each framework; AMR−1 refers to the normalized form of the graphs, with inverted edges reversed, as discussed
in §3. The second block of statistics indicates the proportional distribution of different formal types of information
in the graphs, according to the categorization used in the MRP cross-framework evaluation metric (see §5).

Table 2 provides a quantitative side-by-side com-
parison of the training data, using some of the
graph-theoretic properties discussed by Kuhlmann
and Oepen (2016); see §2 for semi-formal def-
initions. The table indicates clear differences
among the frameworks. The underlying input
strings for AMR (where text selection is more var-
ied), for example, are shorter, and much shorter
in turn for DRG. EDS, UCCA, and DRG have
many more nodes per token, on average, than the
other frameworks—reflecting lexical decomposi-
tion, ‘phrasal’ grouping, and role reification, re-
spectively, as evident in Figures 1, 3, and 5. In
some respects, the PTG and UCCA graphs are
more tree-like than graphs in the other frameworks,
for example in their proportions of actual rooted
trees, the frequencies of reentrant nodes, and the
lack of multi-rooted structures. At the same time,
PTG exhibits comparatively high average and max-
imal treewidth and is the only framework with a
non-trivial percentage of cyclic graphs.

Cross-Lingual Track For four of the frame-
works (excluding EDS), gold-standard training and
evaluation data has been compiled in other lan-
guages than English: Mandarin Chinese for AMR,
Czech for PTG, and German for UCCA and DRG.
For UCCA and in particular DRG, however, avail-
able data is comparatively limited, as summarized
in Table 3. These target representations constitute a

separate cross-lingual track, which transcends the
MRP 2019 task setup.

Additional Resources For reasons of compara-
bility and fairness, the shared task constrained
which additional data or pre-trained models (e.g.
corpora, word embeddings, language models, lex-
ica, or other annotations) can be legitimately
used besides the resources distributed by the task
organizers—such that all participants should in
principle have access to the same range of data.
However, to keep such constraints to the minimum
required, a ‘white-list’ of legitimate resources was
compiled from nominations by participants (with a
cut-off date eight weeks before the end of the eval-

PTG UCCA AMR DRG

Language Czech German Chinese German
Flavor 1 1 1 2

T
R

A
IN

Text Type newspaper mixed mixed mixed
Sentences 43,955 4,125 18,365 1,575

Tokens 740,466 95,634 428,054 9,088

T
E

ST

Text Type newspaper mixed mixed mixed
Sentences 5,476 444 1,713 403

Tokens 92,643 10,585 39,228 2,384

Table 3: Quantitative summary of gold-standard data
for the four frameworks in the cross-lingual track.
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uation period).9 Thus, the task design reflects what
is at times called a closed track, where participants
are constrained in which additional data and pre-
trained models can be used in system development.

Companion Syntactic Parses At a technical
level, training (and evaluation) data were dis-
tributed in two formats, (a) as sequences of ‘raw’
sentence strings and (b) in pre-tokenized, part-
of-speech–tagged, lemmatized, and syntactically
parsed form. For the latter, premium-quality
morpho-syntactic dependency analyses were pro-
vided to participants, called the MRP 2020 compan-
ion parses. These parses were obtained using a pre-
release of the ‘future’ UDPipe architecture (Straka,
2018; Straka and Straková, 2020), trained on avail-
able gold-standard UD 2.x treebanks, for English
augmented with conversions from PTB-style anno-
tations in the WSJ and OntoNotes corpora (Hovy
et al., 2006), using the UD-style CoreNLP 4.0 to-
kenizer (Manning et al., 2014) and jack-knifing
where appropriate (to avoid overlap with the texts
underlying the MRP semantic graphs).

Rules of Participation While the various mean-
ing representation frameworks and graph banks
represented in the shared task inevitably present
considerable linguistic variation, all MRP 2020
data was repackaged in a uniform and normalized
abstract representation with a common serializa-
tion, the same JSON Lines format as used in the
previous year (Oepen et al., 2019). Because some
of the semantic graph banks involved in the shared
task had originally been released by the Linguis-
tic Data Consortium (LDC), the training data was
made available to task participants by the LDC
under no-cost evaluation licenses. All task data (in-
cluding system submissions and evaluation results)
is being prepared for general release through the
LDC, while subsets that are copyright-free will also
become available for direct, open-source download.

The shared task was first announced in March
2020, the initial release of the cross-framework
training data became available in late April, and
the evaluation period ran between July 27 and Au-
gust 10, 2020; during this period, teams obtained
the unannotated input strings for the evaluation
data and had available a little more than two weeks
to prepare and submit parser outputs. Submission
of semantic graphs for evaluation was through the

9See http://svn.nlpl.eu/mrp/2020/public/
resources.txt for the list of legitimate extra resources.

EDS PTG UCCA AMR DRG

Top Nodes 3 3 3 3 3

Node Labels 3 3 7 3 3

Node Properties 3 3 7 3 7

Node Anchors 3 3 3 7 7

Labeled Edges 3 3 3 3 3

Edge Attributes 7 3 3 7 7

Table 4: Different tuple types per framework.

on-line CodaLab infrastructure. Teams were al-
lowed to make repeated submissions, but only the
most recent successful upload to CodaLab within
the evaluation period was considered for the offi-
cial, primary ranking of submissions. Task partici-
pants were encouraged to process all inputs using
the same general parsing system, but—owing to
inevitable fuzziness about what constitutes ‘one’
parser—this constraint was not formally enforced.

5 Evaluation

Following the previous edition of the shared task,
the official MRP metric for the task is the micro-
average F1 score across frameworks over all tuple
types that encode ‘atoms’ of information in MRP
graphs. The cross-framework metric uniformly
evaluates graphs of different flavors, regardless of
a specific framework exhibiting (a) labeled or un-
labeled nodes or edges, (b) nodes with or without
anchors, and (c) nodes and edges with optional
properties and attributes, respectively (see Table 4).

The MRP metric generalizes earlier framework-
specific metrics (Dridan and Oepen, 2011; Cai
and Knight, 2013; Hershcovich et al., 2019a) in
terms of decomposing each graph into sets of
typed tuples, as indicated in Figure 6. To quantify
graph similarity in terms of tuple overlap, a corre-
spondence relation between the nodes of the gold-
standard and system graphs must be determined.
Adapting a search procedure for the NP-hard max-
imum common edge subgraph (MCES) isomor-
phism problem, the MRP scorer will search for the
node-to-node correspondence that maximizes the
intersection of tuples between two graphs, where
node identifiers (m and n in Figure 6) act like vari-
ables that can be equated across the gold-standard
and system graphs.10 This means that during eval-
uation all information in the MRP graphs is con-

10Conceptually, the search expands both graphs into larger
structures with ‘lightly labeled’ nodes and edges, e.g. treat-
ing node properties much like ‘pseudo-edges’ with globally
unique constant-valued target nodes.

http://svn.nlpl.eu/mrp/2020/public/resources.txt
http://svn.nlpl.eu/mrp/2020/public/resources.txt
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Cross-Framework Cross-Lingual

Teams AMR DRG EDS PTG UCCA AMR DRG PTG UCCA Reference

Hitachi 3 3 3 3 3 3 3 3 3 Ozaki et al. (2020)
ÚFAL 3 3 3 3 3 3 3 3 3 Samuel and Straka (2020)
HIT-SCIR 3 3 3 3 3 3 3 3 3 Dou et al. (2020)
HUJI-KU 3 3 3 3 3 3 3 3 3 Arviv et al. (2020)
ISCAS 3 3 3 3 3 7 7 7 7
TJU-BLCU 3 3 3 3 3 3 3 3 7

JBNU 3 7 7 7 7 7 7 7 7 Na and Min (2020)
ÚFAL 3 3 3 3 3 3 3 3 3 Samuel and Straka (2020)

ERG 7 7 3 7 7 7 7 7 7 Oepen and Flickinger (2019)

Table 5: Overview of participating teams and the tracks they participated in. Columns correspond to tracks and
frameworks, and rows correspond to teams. The top block represents ‘official’ submissions, which participated
in the competition. The middle block represents ‘unofficial’ submissions, which were submitted after the closing
deadline. The bottom row represents the ERG baseline.

sidered with equal weight, i.e. tops, node and edge
labels, properties and attributes, and anchors.

MRP scoring is carried out using the open-
source mtool software—the Swiss Army Knife
of Meaning Representation11—which implements
a refinement of the MCES algorithm by McGre-
gor (1982). Based on pre-computed per-node re-
wards and upper bounds on adjacent edge corre-
spondences, candidate node-to-node mappings are
initialized and scheduled in decreasing order of
expected similarity. For increased efficiency (in
principle tractability, in fact), mtool will return
the best available solution when it exhausts its pre-
set search space limits. This anytime behavior of
the scores provides a distinction between exact
vs. approximate solutions (which contrasts with

11https://github.com/cfmrp/mtool

ln
p vp

le
a va

〈i:j〉

tops:
〈m〉

labels:
〈m, ln〉

properties:
〈m, p, vp〉

edges:
〈m,n, le〉

attributes:
〈m,n, le, a, va〉

anchors:
〈n, i, . . . , j〉

Figure 6: Representing an abstractMRP graph as a set
of typed tuples, with m and n as node identifiers for the
top and bottom node, respectively.

the greedy hill-climbing search of e.g. Smatch;
Cai and Knight, 2013). MRP scoring is robust
with respect to equivalent variations of values, e.g.
case and string vs. number type distinctions for
all literals. Comparison of anchor values ignores
whitespace character positions, internal segmen-
tation of adjacent anchors, and basic punctuation
marks in the left or right periphery of a normalized
anchor. Assuming the string Oh no! as a hypotheti-
cal parser input, the following anchorings will all
be considered equivalent: {〈0:6〉}, {〈0:2〉, 〈3:6〉},
{〈0:1〉, 〈1:6〉}, and {〈0:5〉}.

6 Submissions and Results

Six teams submitted parser outputs to the shared
task within the official evaluation period. In addi-
tion, we received two submissions after the sub-
mission deadline, which we mark as ‘unofficial’.
We further include results from an additional ‘ref-
erence’ system by one of the task co-organizers,
namely EDS outputs from the grammar-based ERG
parser (Oepen and Flickinger, 2019).

Table 5 presents an overview of the participating
systems and the tracks and frameworks they sub-
mitted results for. All official systems submitted
results for the cross-framework track (across all
frameworks), and additionally five of them submit-
ted results to the cross-lingual track as well (where
TJU-BLCU did not submit UCCA parser outputs
in the cross-lingual track). We note that the shared
task explicitly allowed partial submissions, in order
to lower the bar for participation (which is no doubt
substantial). Two of the teams—ISCAS and TJU-
BLCU—declined the invitation to submit a system
description paper to the shared task proceedings.

https://github.com/cfmrp/mtool
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Team Cross-Framework Cross-Lingual

All EDS PTG UCCA AMR DRG All PTG UCCA AMR DRG

Hitachi 1 1 2 1 1 – – – – – –
1 1 1 2 1 2 1 2 3 1 1

ÚFAL
1 2 1 1 2 – – – – – –
1 2 2 1 1 1 1 1 1 2 2

HIT-SCIR 3 3 3 3 3 – – – – – –
3 3 3 2 3 3 3 3 2 3 3

HUJI-KU 4 5 4 4 5 – – – – – –
4 5 4 4 5 5 4 4 4 4 4

ISCAS 5 4 6 6 4 – – – – – –
5 4 6 6 4 4 – – – – –

TJU-BLCU 6 6 5 5 6 – – – – – –
6 6 5 5 6 6 5 5 – 5 5

Team Tops Labels Properties Anchors Edges Attributes All

P R F P R F P R F P R F P R F P R F P R F

Hitachi .93 .93 .93 .65 .68 .66 .63 .62 .62 .71 .70 .70 .82 .80 .81 .39 .32 .34 .85 .85 .85
.95 .95 .95 .72 .72 .72 .54 .54 .54 .57 .55 .56 .83 .80 .82 .24 .23 .24 .88 .85 .86

ÚFAL
.93 .93 .93 .68 .68 .68 .61 .60 .60 .69 .71 .70 .80 .79 .80 .42 .33 .36 .85 .85 .85
.94 .94 .94 .74 .73 .74 .55 .54 .54 .56 .57 .56 .80 .80 .80 .23 .24 .24 .87 .86 .86

HIT-SCIR .94 .94 .94 .63 .64 .64 .45 .41 .43 .71 .71 .71 .77 .76 .77 .37 .30 .33 .80 .80 .80
.94 .94 .94 .70 .69 .69 .44 .37 .40 .57 .56 .57 .77 .75 .76 .22 .22 .22 .82 .80 .81

HUJI-KU .87 .84 .85 .36 .36 .36 .29 .18 .20 .66 .67 .67 .67 .62 .64 .15 .07 .10 .73 .63 .67
.88 .83 .85 .29 .29 .29 .40 .24 .28 .51 .51 .51 .65 .62 .64 .07 .08 .07 .73 .58 .64

ISCAS .70 .70 .70 .50 .49 .48 .22 .26 .24 .35 .41 .37 .52 .35 .39 – – – .53 .43 .43
.75 .74 .74 .56 .55 .55 .22 .22 .21 .29 .31 .29 .57 .40 .44 – – – .58 .46 .48

TJU-BLCU .83 .82 .83 .41 .29 .34 – – – .45 .30 .35 .53 .30 .37 – – – .57 .30 .39
.75 .74 .75 .54 .29 .38 – – – .33 .14 .19 .44 .18 .24 – – – .55 .22 .30

ÚFAL
.93 .93 .93 .68 .68 .68 .61 .60 .60 .71 .71 .71 .80 .80 .80 .43 .34 .37 .85 .85 .85
.94 .94 .94 .74 .73 .74 .55 .54 .54 .57 .57 .57 .80 .80 .80 .23 .24 .24 .87 .86 .87

Team Tops Labels Properties Anchors Edges Attributes All

P R F P R F P R F P R F P R F P R F P R F

Hitachi .96 .96 .96 .65 .65 .65 .44 .42 .43 .7 .68 .69 .8 .77 .78 .27 .27 .26 .86 .84 .85
ÚFAL .95 .95 .95 .66 .66 .66 .43 .43 .43 .65 .72 .68 .78 .79 .79 .3 .33 .31 .84 .86 .85
HIT-SCIR .95 .95 .95 .53 .52 .53 .21 .18 .20 .47 .47 .47 .66 .65 .66 .23 .24 .23 .72 .67 .69
HUJI-KU .9 .84 .87 .15 .15 .15 .31 .32 .32 .42 .42 .42 .59 .58 .59 .08 .08 .08 .69 .54 .60
TJU-BLCU .56 .55 .56 .41 .21 .27 – – – .23 .12 .15 .28 .13 .18 – – – .35 .15 .20

ÚFAL .95 .95 .95 .66 .66 .66 .43 .43 .43 .71 .72 .72 .79 .79 .79 .3 .33 .31 .86 .86 .86

Table 6: Official rankings (top) for both tracks, and MRP scores for the cross-framework (middle) and cross-lingual
(bottom) tracks. Each cross-framework submission is evaluated in two settings, where the top scores present results
for the LPPS sub-corpus, and the bottom ones for the full English evaluation set. The rankings are presented both
for the overall average scores (All), and separately per framework. Evaluation results are broken down by ‘atomic’
component pieces. For each component we report precision (P), recall (R), and F1 score (F). Entries in the two
MRP tables are split into the same blocks as in Table 5: official (top) vs. unofficial (bottom) submissions, omitting
the two highly partial unofficial submissions by JBNU and ERG.
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EDS PTG UCCA AMR DRG

P R F P R F P R F P R F P R F

Hitachi 0.97 0.97 0.97 0.80 0.84 0.82 0.86 0.80 0.83 0.78 0.79 0.79 – – –
0.94 0.93 0.94 0.89 0.89 0.89 0.78 0.72 0.75 0.83 0.80 0.82 0.94 0.92 0.93

ÚFAL
0.96 0.95 0.95 0.81 0.84 0.83 0.84 0.82 0.83 0.77 0.79 0.78 – – –
0.93 0.92 0.93 0.88 0.89 0.88 0.75 0.78 0.76 0.81 0.79 0.80 0.95 0.93 0.94

HIT-SCIR 0.90 0.89 0.89 0.78 0.78 0.78 0.84 0.80 0.82 0.68 0.71 0.70 – – –
0.87 0.88 0.87 0.85 0.84 0.84 0.75 0.74 0.75 0.74 0.66 0.70 0.90 0.89 0.89

HUJI-KU 0.83 0.76 0.79 0.71 0.49 0.58 0.80 0.76 0.78 0.56 0.5 0.53 – – –
0.83 0.76 0.80 0.69 0.44 0.54 0.73 0.73 0.73 0.57 0.49 0.52 0.84 0.5 0.63

ISCAS 0.86 0.90 0.88 0.12 0.25 0.16 0.45 0.08 0.13 0.68 0.47 0.56 – – –
0.85 0.87 0.86 0.14 0.26 0.18 0.42 0.03 0.06 0.74 0.53 0.61 0.78 0.63 0.69

TJU-BLCU 0.83 0.51 0.64 0.41 0.24 0.30 0.52 0.13 0.21 0.50 0.34 0.4 – – –
0.84 0.35 0.49 0.38 0.15 0.21 0.50 0.06 0.10 0.54 0.21 0.30 0.49 0.34 0.40

JBNU – – – – – – – – – 0.74 0.73 0.74 – – –
– – – – – – – – – 0.71 0.62 0.66 – – –

ÚFAL
0.96 0.95 0.95 0.83 0.84 0.84 0.84 0.81 0.83 0.77 0.79 0.78 – – –
0.93 0.92 0.93 0.89 0.89 0.89 0.75 0.78 0.76 0.81 0.79 0.80 0.95 0.93 0.94

ERG 0.95 0.96 0.96 – – – – – – – – – – – –
0.94 0.91 0.93 – – – – – – – – – – – –

Table 7: Per-framework results for the cross-framework track, using the same groupings as in Table 6.

Table 6 presents the official rankings for the offi-
cial submissions (top), including an overall score
for each track and per-framework rankings. Rank-
ings are given over the LPPS dataset, a sample
from the Little Prince annotated by all frameworks
save for DRG, and over the entire test set. Results
are consequently more readily comparable for the
LPPS sub-corpus, but should be more robust on the
entire test corpus, due to its larger size (see §4).
That said, LPPS and overall test results are very
similar, both in terms of ranking and in terms of
bottom line scores.

The main task results are summarized in Ta-
ble 6 for both the cross-framwork (middle) and
cross-lingual (bottom) tracks. Results are broken
down into component pieces. Edge attributes are
only present in PTG and UCCA. While they are
still predicted with fairly low results, this consti-
tutes a notable improvement over the findings of
MRP 2019 (the best score on the official track on
UCCA edge attributes was 0.12 F1 then, as op-
posed to 0.36 now). Anchors are predicted with
substantially lower scores compared to MRP 2019,
probably since we did not include in MRP 2020
the bi-lexical Flavor (0) frameworks. Edges and
tops are slightly more accurate, while labels and
properties slightly less, but these are not directly
comparable since the frameworks and data are dif-
ferent. See §8 for an overall discussion of the state
of the art, considering MRP 2019 and MRP 2020.

Results show that the Hitachi and ÚFAL sub-

missions share the first place for both tracks, and
together rank first or second for almost all the in-
dividual frameworks (save for UCCA parsing in
the cross-lingual track, where Hitachi ranks third).
HIT-SCIR further ranks second for UCCA parsing
in both tracks. Interestingly, rankings in the per-
framework track are similar across frameworks,
which may indicate some similarity in the parsing
problem exhibited by different linguistic schemes,
despite differences in structure and content.

Per-framework scores using the official MRP
metric are given in Table 7 for the cross-framework
track and Table 8 for the cross-lingual track. Exam-
ining these results, we note that cross-framework
and cross-lingual scores are quite similar, an en-
couraging sign of cross-linguistic applicability. An-
other trend to note is that precision and recall are
surprisingly close to each other for many systems,
often identical.

7 Overview of Approaches

Compared with systems from MRP 2019, there has
been a fairly clear shift in approaches for partic-
ipating systems this year, resulting in significant
improvements in performance. The improvements
for some of the frameworks are fairly substantial.
For example, the Hitachi system, one of the two
winning systems, achieves a score of 0.82 F1 in
AMR parsing, in comparison to 0.73 F1 achieved
by the top AMR parser in MRP 2019. This reflects
an improvement of over eight points, reflecting a
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PTG UCCA AMR DRG

P R F P R F P R F P R F

Hitachi .89 .86 .87 .79 .79 .79 .82 .79 .8 .93 .94 .93
ÚFAL .91 .91 .91 .79 .83 .81 .75 .81 .78 .90 .89 .90
HIT-SCIR .82 .75 .78 .78 .82 .80 .60 .42 .49 .68 .69 .68
HUJI-KU .65 .53 .58 .74 .76 .75 .55 .38 .45 .82 .50 .62
TJU-BLCU .51 .14 .22 – – – .46 .17 .25 .42 .28 .34

ÚFAL .93 .92 .92 .79 .83 .81 .81 .8 .81 .9 .89 .9

Table 8: Per-framework results for the cross-lingual track.

number of innovations from the participants this
year, as well as contemporaneous developments
outside the shared task (see §8).

Broadly speaking, top performers at MRP 2020
have all adopted a system architecture that is based
on an encoder–decoder framework in which the
input sentence is encoded into contextualized token
embeddings that are used as input to the decoder.
The system vary in the decoding strategies.

The Hitachi system adopts a transformer-based
encoder–decoder architecture. The system uses
the standard transformer encoder in which self-
attention and position embeddings are used to com-
pute the contextualized token embeddings. In its
decoder, this system has a number of innovations,
however. First of all, the system rewrites the mean-
ing representation graphs into a reversible Plain
Graph Notation (PGN), and enhances PGN with a
number of pseudo-nodes that indicate the end of
node prediction, the end of label prediction, etc.
These correspond well with parsing actions com-
monly found in transition-based systems. In this
sense, the systems combines the strengths of graph-
based parsing on the encoder side resulting from
self attention with efficiency of transition-based
parsing on the decoder side. Another innovation
is the use of a ‘hierarchical’ decoding process in
which the model first predicts a mode, and then pre-
dicts the next action conditioned on the mode. For
example, if the mode is G(raph), the decoder pre-
dicts a meta node, and if the mode is S(urface), the
decoder predicts the node label of a specific con-
cept. This allows a fair competition among actions
that are similar in nature.

The PERIN system computes contextualized to-
ken embeddings with XLM-R (Conneau et al.,
2019) on the encoder side, and then on the de-
coder side, uses separate attention heads to predict
the node labels, identify anchors for nodes, and
predict edges between nodes, as well as edge la-
bels. Because the label set for nodes is typically

very large, rather than predicting the node labels di-
rectly, the PERIN system reduces the search space
by predicting ‘relative rules’ that can be used to
map surface token strings to node labels in meaning
representation graphs, an idea that is similar to the
use of Factored Concept Labels in Wang and Xue
(2017). Another innovation of the PERIN system
is that it is trained with a permutation-invariant loss
function that returns the same value independently
of how the nodes in the graph are ordered. This
captures the unordered nature of nodes in (most of
the MRP 2020) meaning representation graphs and
prevents situations in which the model is penalized
for generating the correct nodes in an order that is
different from that in the training data.

The HIT-SCIR and JBNU systems adopt the it-
erative inference framework first proposed by Cai
and Lam (2020) for Flavor (2) meaning represen-
tation graphs that do not enforce strict correspon-
dences between tokens in the input sentence and
the concepts in meaning representation graphs. The
iterative inference framework is also based on an
encoder–decoder architecture. The encoder takes
the sentence as input and computes contextualized
token embeddings that are used as text memory
by a decoder that iteratively predicts the next node
given the text memory and a predicted parent node
in the partially constructed graph memory at the
previous time step, and then identifies the parent
node for the newly predicted node from the par-
tially constructed graph. While the HIT-SCIR sys-
tem essentially uses the Cai and Lam (2020) archi-
tecture with little modification, the JBNU system
attempts to extend the work of Cai and Lam (2020)
by using a shared state to make both predictions
but did not observe substantial improvements.

Transition-based systems, which had achieved
strong performance in the 2019 shared task, are
also represented in the competition this year. The
HIT-SCIR team uses a transition-based system to
parse Flavor (1) meaning representations where
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there is a stricter correspondence between tokens in
the input sentence and concepts in the meaning rep-
resentation graph. The HIT-SCIR transition-based
system is essentially the overall top performing sys-
tem they developed for MRP 2019. It uses Stack
LSTM to compute transition states in the parsing
process, and the parsing actions are tailored to spe-
cific meaning representation frameworks. In the
training process, the system fine-tunes BERT con-
textualized encodings.

The HUJI-KU system also extends an entry in
the 2019 MRP shared task (originally called TUPA)
to parse additional frameworks and handle mean-
ing representation parsing in a multilingual set-
ting. TUPA is a transition-based system that sup-
ports general DAG parsing. TUPA applies separate
constraints tailored to each meaning representa-
tion framework. When parsing cross-framework
meaning representations for English, the system
is trained with a BERT-large-cased pretrained en-
coder, and when parsing cross-lingual meaning rep-
resentations, it is trained with multilingual BERT.

8 On the State of the Art

MRP 2019 (Oepen et al., 2019) yielded parsers
for five frameworks in a uniform format, of
which EDS, UCCA, and AMR are represented in
MRP 2020 again. Submissions included transition-,
factorization-, and composition-based systems, and
gold-standard target structures in 2019 were solely
for English. Comparability is limited by the fact
that two of the 2020 frameworks (PTG and DRG)
are new, training and (in particular) evaluation sets
for the others have been updated since MRP 2019,
and additional validation sets was introduced. How-
ever, the LPPS evaluation sub-corpus (Le Petite

EDS UCCA AMR

P R F P R F P R F

2019 .92 .93 .93 .84 .82 .83 .74 .72 .73
2020 .97 .97 .97 .86 .80 .83 .78 .79 .79

Table 9: Per-framework cross-task comparison of top
MRP metric scores on LPPS between the 2019 and
2020 editions of the MRP task, on the three frameworks
represented in both year, for English. The top systems
in MRP 2019 for EDS, UCCA, and AMR were Peking
(Chen et al., 2019), HIT-SCIR (Che et al., 2019), and
Saarland (Donatelli et al., 2019), respectively; in MRP
2020 the Hitachi system (Ozaki et al., 2020) was at the
top for all three frameworks, sharing the UCCA first
rank with ÚFAL (Samuel and Straka, 2020).

Prince) is identical between the two years for EDS,
UCCA, and AMR. This allows a comparison on
nearly equal grounds: as Table 9 shows, in terms
of LPPS F1, the state-of-the-art has substantially
improved for EDS and AMR parsing, but stayed
the same for UCCA. However, as mentioned in §6,
remote edge detection for UCCA improved sub-
stantially, though it carries only a small weight in
terms of overall scores due to the scarcity of remote
edges.

For EDS, the strongest results were obtained
in the MRP 2019 official competition by SUDA–
Alibaba (Zhang et al., 2019c). However, in the
post-evaluation stage, they were outperformed by
the Peking system (Chen et al., 2019). Both used
factorization-based parsing with pre-trained contex-
tualized language model embeddings (which has
consistently proved to be very effective for other
frameworks too). These parsers even approached
the performance of the carefully designed grammar-
based ERG parser (Oepen and Flickinger, 2019).

English PTG has not been comprehensively ad-
dressed by parsers prior to MRP 2020, but a bi-
lexical framework called PSD is a subset of PTG.
It was included in the SDP shared tasks (Oepen
et al., 2014, 2015) as well as in MRP 2019, and has
been addressed by numerous parsers since (Kurita
and Søgaard, 2019; Kurtz et al., 2019; Jia et al.,
2020, among others). Wang et al. (2019) estab-
lished the state of the art in supervised PSD us-
ing a second-order factorization-based parser, and
Fernández-González and Gómez-Rodrı́guez (2020)
matched it using a stack-pointer parser.

Czech PTG, in its original form as published
in the Prague Dependency Treebank (Hajič et al.,
2018), has been used in several version of the
TectoMT machine translation system (Rosa et al.,
2016); however, parsing results have not been pub-
lished separately. A (lossy) conversion has been
included in the CoNLL 2009 Shared Task on Se-
mantic Role Labeling (Hajič et al., 2009), but the
differences in task design are and conversion make
empirical comparison impossible.

UCCA parsing has been dominated by transition-
based methods (Hershcovich et al., 2017, 2018;
Che et al., 2019). However, both English and Ger-
man UCCA parsing featured in a SemEval shared
task (Hershcovich et al., 2019b), where the best
system, a composition-based parser (Jiang et al.,
2019), treated the task as constituency tree parsing
with the recovery of remote edges as a postprocess-
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ing task.

Prior to MRP 2019, Lyu and Titov (2018) parsed
AMR using a joint probabilistic model with la-
tent alignments, avoiding cascading errors due to
alignment inaccuracies and outperforming previ-
ous approaches. Lyu et al. (2020) recently im-
proved the latent alignment parser using stochas-
tic softmax. Lindemann et al. (2019) trained a
composition-based parser on five frameworks in-
cluding AMR and EDS, using the Apply–Modify
algebra, on which the third-ranked Saarland sub-
mission to MRP 2019 was based (Donatelli et al.,
2019). They employed multi-task training with
all tackled semantic frameworks and UD, estab-
lishing the state of the art on all graph banks but
AMR 2017. Since then, a new state-of-the-art has
been established for English AMR, using sequence-
to-sequence transduction (Zhang et al., 2019a,b)
and iterative inference with graph encoding (Cai
and Lam, 2019, 2020). Xu et al. (2020a) improved
sequence-to-sequence parsing for AMR by using
pre-trained encoders, reaching similar performance
to Cai and Lam (2020). Astudillo et al. (2020) in-
troduced a stack-transformer to enhance transition-
based AMR parsing (Ballesteros and Al-Onaizan,
2017), and Lee et al. (2020) improved it further,
using a trained parser for mining oracle actions
and combining it with AMR-to-text generation to
outperform the state of the-art.

Wang et al. (2018) parsed Chinese AMR with
a transition-based system. For cross-lingual AMR
parsing, Blloshmi et al. (2020) trained an AMR
parser similar to the approach of Zhang et al.
(2019b), using cross-lingual transfer learning, out-
performing the transition-based cross-lingual AMR
parser of Damonte and Cohen (2018) on German,
Spanish, Italian, and Chinese.

DRG is a novel graph representation format for
DRS that was specially designed for MRP 2020 to
make it structurally as close as possible to other
frameworks (Abzianidze et al., 2020). However,
several semantic parsers exist for DRS, which em-
ploy different encodings. Liu et al. (2018) used
a DRG format that dominantly labels edges com-
pared to nodes. van Noord et al. (2018) process
DRSs in a clausal form, sets of triples and quadru-
ples. The latter format is more common among
DRS parsers, as it was officially used by the shared
task on DRS parsing (Abzianidze et al., 2019).
The shared task gave rise to several DRS parsers:
Evang (2019); Liu et al. (2019); van Noord (2019);

Fancellu et al. (2019), among which the best re-
sults (F1 = 0.85) were achieved by the word-level
sequence-to-sequence model with Tranformer (Liu
et al., 2019). Note that the DRS shared task used F1

calculated based on the DRS clausal forms, which
is not comparable to MRP F1 over DRGs.

Similarly to English DRG, German DRG has not
been used for semantic parsing prior to the shared
task due to the new DRG format. Moreover, seman-
tic parsing with German DRG is novel in the sense
that its DRS counterpart is also new. In German
DRG, concepts are grounded in English WordNet
3.0 (Fellbaum, 2012) senses assuming that synsets
are language-neutral. The mismatch between Ger-
man tokens and English lemmas of senses must be
expected to add additional complexity to German
DRG parsing.

Direct comparison to non-MRP results is impos-
sible: we are using a new version of AMRbank.
Gold-standard tokenization is not provided for any
of the frameworks. We use the MRP scorer. How-
ever, general trends appear consistent with recent
developments. Pretrained embeddings and cross-
lingual transfer help; but multi-task learning less so.
There is yet progress to be made in sharing infor-
mation between parsers for different frameworks
and making better use of their overlap.

9 Reflections and Outlook

The MRP series of shared tasks has contributed to
general availability of accurate data-driven parsers
for a broad range of different frameworks, with
performance levels ranging between 0.76 MRP F1

(English UCCA) and 0.94 F1 (English EDS). Pars-
ing accuracies in the cross-lingual track present
comparable levels of performance, despite limited
training data in the case of UCCA and DRG. Fur-
thermore, the evaluation sets for most of the frame-
works comprise different text types and subject
matters—offering some hope of robustness to do-
main variation. We expect that these parsers will en-
able follow-up experimentation on the utility of ex-
plicit meaning representation in downstream tasks
like, for example, relation extraction, argumenta-
tion mining, summarization, or text generation.

Maybe equally importantly, the MRP task design
capitalizes on uniformity of representations and
evaluation, enabling resource creators and parser
developers to more closely (inter)relate representa-
tions and parsing approaches across a diverse range
of semantic graph frameworks. This facilitates
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both quantitative contrastive studies (e.g. the ‘post-
mortem’ analysis by Buljan et al. (2020), which
observes that top-performing MRP 2019 parsers
have complementary strengths and weaknesses)
but also more linguistic, qualitative comparison.
General availability of parallel gold-standard anno-
tations over the same text samples—drawing from
the WSJ and LPPS corpora—enables side-by-side
comparison of linguistic design choices in the dif-
ferent frameworks. This is an area of investigation
that we hope will see increased interest in the af-
termath of the MRP task series, to go well beyond
the impressionistic observations from §3 and ide-
ally lead to contrastive refinement across linguistic
schools and traditions.

Despite uniformity in packaging and evaluation,
cumulative overall complexity and inherent diver-
sity of the frameworks deemed participation in the
shared task a formidable challenge. Of the six-
teen teams who participated in MRP 2019, only
four teams (predominantly strong performers from
before) decided to submit parser outputs in 2020.
The two ‘newcomer’ teams, by comparison, only
made partial submissions in the cross-lingual track
and ended up not competing for top ranks over-
all. Similar trends of ‘competitive self-selection’
and declining participant groups for consecutive
instances have been observed with earlier CoNLL
shared task and similar benchmarking series. On
the upside, with the possible exception of English
AMR (where there has been much contemporane-
ous progress recently), the MRP 2020 empirical
results present a strong state-of-the-art benchmark
for meaning representation parsing.

On the more foundational question of the rele-
vance of explicit, discrete representations of sen-
tence meaning, the past several years of break-
through neural advances have been comparatively
insensitive to syntactico-semantic structure. In our
view, these developments have at least in part been
reflective of the stark lack of general techniques for
the encoding of hierarchical structure in end-to-end
neural architectures. Increased adoption of Graph
Convolutional Networks (Kipf and Welling, 2017)
and other hierarchical modeling techniques sug-
gest new opportunities for the exploration of both
structurally informed end-to-end archictures or e.g.
multi-task learning setups. Beyond such ultimately
performance-driven research, explicit encoding of
syntactico-semantic structure in our view further
bears promise in terms of model interpretability and

safe-guarding against ‘neural meltdown’ (e.g. dis-
carding something as foundational as negation or
inadvertently altering a date expression in summa-
rization or translation). In a similar vain, meaning
representations are being successfully applied in
evaluation, e.g. to quantify system output vs. gold
standard similarity beyond surface n-grams (Sulem
et al., 2018b; Xu et al., 2020b, inter alios).

All technical information regarding the
MRP 2019 shared task, including system sub-
missions, detailed official results, and links to
supporting resources and software are available
from the task web site at:

http://mrp.nlpl.eu
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ing Prague Czech-English Dependency Treebank
2.0. In Proceedings of the 8th International Confer-
ence on Language Resources and Evaluation, pages
3153 – 3160, Istanbul, Turkey.
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Daniel Zeman and Jan Hajič. 2020. FGD at MRP 2020:
Prague Tectogrammatical Graphs. In Proceedings
of the CoNLL 2020 Shared Task: Cross-Framework
Meaning Representation Parsing, pages 33 – 39, On-
line.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Yue Zhang, Wei Jiang, Qingrong Xia, Junjie Cao,
Rui Wang, Zhenghua Li, and Min Zhang. 2019c.
SUDA–Alibaba at MRP 2019: Graph-based models
with BERT. In Proceedings of the Shared Task on
Cross-Framework Meaning Representation Parsing
at the 2019 Conference on Computational Natural
Language Learning, pages 149 – 157, Hong Kong,
China.

https://doi.org/10.1093/jos/9.4.333
https://doi.org/10.1093/jos/9.4.333
https://www.aclweb.org/anthology/L16-1376
https://www.aclweb.org/anthology/L16-1376
https://www.aclweb.org/anthology/L16-1376
https://doi.org/10.18653/v1/D18-1263
https://doi.org/10.18653/v1/D18-1263
http://aclweb.org/anthology/K18-2020
http://aclweb.org/anthology/K18-2020
https://www.aclweb.org/anthology/2020.lt4hala-1.20
https://www.aclweb.org/anthology/2020.lt4hala-1.20
https://www.aclweb.org/anthology/2020.lt4hala-1.20
http://aclweb.org/anthology/W15-3502
http://aclweb.org/anthology/W15-3502
http://aclweb.org/anthology/N18-1063
http://aclweb.org/anthology/N18-1063
https://doi.org/10.18653/v1/N18-1063
https://doi.org/10.18653/v1/N18-1063
http://aclweb.org/anthology/P18-1016
http://aclweb.org/anthology/P18-1016
https://doi.org/10.18653/v1/N18-2040
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://arxiv.org/pdf/2010.01771.pdf
https://arxiv.org/pdf/2010.01771.pdf
https://arxiv.org/abs/2010.08728
https://arxiv.org/abs/2010.08728
https://arxiv.org/abs/2010.08728
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392

