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Abstract

We investigate the extent to which word sur-
prisal can be used to predict a neural measure
of human language processing difficulty—the
N400. To do this, we use recurrent neural net-
works to calculate the surprisal of stimuli from
previously published neurolinguistic studies of
the N400. We find that surprisal can predict
N400 amplitude in a wide range of cases, and
the cases where it cannot do so provide valu-
able insight into the neurocognitive processes
underlying the response.

1 Introduction

The N400 component of the event-related brain
potential is generally understood to be a neural sig-
nal of processing difficulty (Kutas and Federmeier,
2011). After over 1,000 articles published on the
topic, we know that all else being equal, an up-
coming word that is supported by the semantics of
the context will elicit a lower-amplitude N400 than
a word that is not (Kutas and Federmeier, 2011;
Kuperberg et al., 2020). However, despite the great
amount of experimental research on the topic, many
aspects of the N400 are still not well understood.

In addition to ‘long-standing and recent lin-
guistic [...] inputs’ (Kutas and Federmeier, 2011,
p. 641), the context that impacts N400 amplitude is
thought to include factors such as world experience,
attentional state, and mood (Kutas and Federmeier,
2011). Over the last decade, there have been a num-
ber of attempts to use computational modeling to
test hypotheses about the neurocognitive processes
underlying the N40O and how the aforementioned
factors may impact its amplitude (Parviz et al.,
2011; Laszlo and Plaut, 2012; Laszlo and Arm-
strong, 2014; Rabovsky and McRae, 2014; Frank
et al., 2015; Ettinger et al., 2016; Cheyette and
Plaut, 2017; Brouwer et al., 2017; Delaney-Busch
etal., 2017; Rabovsky et al., 2018; Venhuizen et al.,
2018; Fitz and Chang, 2019).
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As the majority of experimental research on the
N400 involves manipulating the relationship be-
tween the stimulus and the preceding linguistic
context (Kutas and Federmeier, 2011), a compu-
tational account of how linguistic inputs impact
N400 amplitude is a logical starting point. Lan-
guage models are inherently models of linguistic
prediction based only on language input. Since
N400 amplitude reflects how unexpected an up-
coming word is based on context, the predictions
of a language model can be used to model how
expected a word is based on the linguistic input,
and thereby investigate the extent to which N400
amplitude is explainable by linguistic input alone.

Recent research has shown that surprisal, a mea-
sure of how unlikely a language model predicts the
next word in sequence to be, correlates overall with
N400 amplitude (Frank et al., 2015; Aurnhammer
and Frank, 2019). Thus, to investigate the extent
to which N400 amplitude is explained by linguistic
input alone, we ask to what extent surprisal can
explain the variance observed in N400 amplitude.

In order to investigate this, we run experimental
stimuli from eleven experiments from six papers
(Urbach and Kutas, 2010; Kutas, 1993; Ito et al.,
2016; Osterhout and Mobley, 1995; Ainsworth-
Darnell et al., 1998; Kim and Osterhout, 2005)
through two recurrent neural network language
models (Jozefowicz et al., 2016; Gulordava et al.,
2018), systematically comparing the significant pre-
dictors of N400 amplitude and surprisal. We find
that in the majority of cases, significant differences
in surprisal predict significant differences in N400
amplitude, and discuss the implications of the cases
where it does not.

2 Background

2.1 The N400

The N400 is a negative deflection in the event-
related brain potential (ERP) that peaks roughly
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400ms after the presentation of a stimulus (Kutas
and Hillyard, 1980; Kutas and Federmeier, 2011).
Most current accounts agree that N400 amplitude
reflects processing difficulty for a specific lexical
item, where a lower amplitude reflects prior acti-
vation of some of the semantic content associated
with the word (Kutas and Federmeier, 2011; Ku-
perberg, 2016; Kuperberg et al., 2020).

Recent research has found that N400 amplitude
‘decreases with supportive context, but does not
increase when predictions are violated” (DeLong
and Kutas, 2020, p. 2, emphasis in original; see Ku-
tas and Federmeier, 2011; Van Petten and Luka,
2012; Luke and Christianson, 2016; Kuperberg
et al., 2020, for discussion). Crucially, therefore,
we should not think of N400 amplitude as a gen-
eral measure of prediction error. It is not the case
that the N400 elicited by a word increases when
the word is more semantically anomalous or unex-
pected based on the preceding context; rather, it
is the case that N400 amplitude is reduced when
the word is semantically congruous or predictable
because it is facilitated by the preceding context.

This facilitation can occur in a large number of
ways. All else being equal, words that are more
semantically congruous, typical, or plausible com-
pletions of a sentence elicit lower N400 amplitudes
than words that are more semantically incongruous,
atypical, and implausible completions, respectively
(e.g. Kutas and Hillyard, 1980; Urbach and Kutas,
2010; Ito et al., 2016; Osterhout and Mobley, 1995;
Ainsworth-Darnell et al., 1998; Kim and Osterhout,
2005; Kutas and Federmeier, 2011).

One well-known correlate of N400 amplitude is
the cloze probability (Taylor, 1953; Bloom and
Fischler, 1980) of a word—the probability that
it will be offered to fill a specific gap in a sen-
tence by a given sample of individuals in a norm-
ing study. All else being equal, higher-cloze com-
pletions elicit lower N400 amplitudes (Kutas and
Hillyard, 1984; Kutas and Federmeier, 2011). Ad-
ditionally, even when matched for cloze, words
semantically related to the highest-cloze comple-
tion elicit lower-amplitude N400Os than unrelated
words (Kutas, 1993; Federmeier and Kutas, 1999;
Ito et al., 2016).

2.2 Cognitive Plausibility of RNN-LMs in
N400 modeling

To disentangle the effect of linguistic input from
other factors affecting N400 amplitude, a valid
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model of such linguistic input is needed. Recurrent
Neural Network Language Models (RNN-LMs)
are, in many ways, perfect models of the ‘long-
standing and recent linguistic [...] inputs’ (Kutas
and Federmeier, 2011, p. 641) thought to impact
N400 amplitude. Long-standing linguistic inputs
in humans are made up of previous language ex-
perience, which is analogous to a model’s training
data; and recent linguistic input is the linguistic
context that impacts how humans understand the
current utterance, which is analogous to the word
sequence preceding the word to be predicted in the
model’s test data.

Beyond being largely developed as models of hu-
man language comprehension (Elman, 1990), recur-
rent neural network language models (RNN-LMs)
have certain properties that make them reasonable
models of human cognition. Keller (2010) identi-
fies five features of the human language processing
system that he argues are vital for a language model
to be cognitively plausible. Three of these are ex-
emplified by unidirectional RNN-LMs—Iike hu-
mans, they can make predictions about upcoming
words, have a distance-based memory cost, and pro-
cess language word-by-word in order in an incre-
mental fashion (unlike bidirectional RNN-LMs and
most transformer networks). The two remaining
features, efficiency and robustness and broad cov-
erage are determined more by the model’s specific
architecture and training than general architecture.

2.3 Surprisal and N400 amplitude

As discussed in Section 2.1, the neurolinguistic evi-
dence suggests that the N400 is a measure of lexical
processing difficulty. Recent work, both theoreti-
cal and experimental (e.g. Hale, 2001; Levy, 2008;
Boston et al., 2008; Demberg and Keller, 2008;
Smith and Levy, 2008; Roark et al., 2009; Brouwer
et al., 2010; Mitchell et al., 2010; Monsalve et al.,
2012; Fossum and Levy, 2012; Frank and Thomp-
son, 2012; Smith and Levy, 2013; Frank, 2014;
Willems et al., 2016; Delaney-Busch et al., 2017),
has argued that surprisal, the negative logarithm
of the probability of a word w; given its preceding
context wy...w;—1, as shown in Equation (1), is a
good predictor of lexical processing difficulty.

S(’UJ,L) = —log P(w,|w1wz,1) (1)

Several researchers (Frank et al., 2015; Delaney-
Busch et al., 2017; Aurnhammer and Frank, 2019)
have directly demonstrated that surprisal is corre-



lated with N400 amplitude. In their study, Delaney-
Busch et al. (2017) use a Bayesian approach to cal-
culate the surprisal associated with a target word
given a related or unrelated prime (using word as-
sociation norms and word frequency), and find that
this is correlated with N400 amplitude. Frank et al.
(2015) and Aurnhammer and Frank (2019) used a
number of language models (including RNN-LMs)
to calculate the surprisal of words in a natural lan-
guage text, and compared this to the N400 elicited
by these words in human participants, finding a
statistically significant correlation.

Frank et al. (2015) and Aurnhammer and Frank
(2019) also find that surprisal is a better predictor
of N400 amplitude than a number of RNN-LM-
derived metrics based on the full probability dis-
tributions predicted by the model such as entropy.
We suggest that this may be explained by the afore-
mentioned finding that while the N400 amplitude
for a word decreases when its semantic content has
been pre-activated, it does not increase when a spe-
cific prediction is violated. In other words, N400
amplitude is a kind of positive prediction error—
a measure of how not-predicted the target word
was. This is what surprisal is by definition—it only
takes into account how much the actual target word
was predicted and is not affected by the rest of the
probability distribution. The other metrics, on the
other hand, also take into account the rest of the
predicted probability distribution, which does not
appear to be reflected in N400 amplitude. Thus,
there is a theoretical reason for using surprisal to
predict N400 amplitude based on previous neurolin-
guistics research.

2.4 Predicting N400 effects

An alternative approach, that taken by Ettinger et al.
(2016), is to use a language-model-derived metric
as an analogue of the N400 and investigate whether
experimental manipulations in the stimuli that re-
sult in statistically significant differences in N400
amplitude also result in statistically significant dif-
ferences in the chosen metric. This approach allows
researchers to investigate whether the reason for
the correlation between the metric and N400 am-
plitude is in fact the experimental manipulation or
some other factor.

This is the general approach that we take in this
study; however, rather than focusing on the cosine
similarity between the word embedding of target
word and the combined embeddings of the previ-

ous words in the sentence (Ettinger et al., 2016),
we model N400 amplitude as surprisal (following
Frank et al., 2015; Delaney-Busch et al., 2017; Au-
rnhammer and Frank, 2019). Additionally, whereas
Ettinger et al.’s (2016) proof-of-concept paper is
based on 40 sample sentences from a single study
investigating one phenomenon, we use stimuli from
eleven experiments (with over 100 sentences each)
covering a wide range of phenomena.

2.5 Other Models of N400 amplitude

While a number of other researchers have used
neural networks to model specific N400 findings
this way (Laszlo and Plaut, 2012; Laszlo and
Armstrong, 2014; Rabovsky and McRae, 2014;
Cheyette and Plaut, 2017; Brouwer et al., 2017;
Rabovsky et al., 2018; Venhuizen et al., 2018; Fitz
and Chang, 2019), these studies differ in that these
models all have semantic representations as part of
their input or are trained to learn to output some
form of semantic representation. Thus, these mod-
els are also limited to the experiments for which
they were trained.

For the same reason, these models can also not
be used on their own to disentangle the effects of
linguistic input from the semantic knowledge pro-
vided to them—this can only be done by compari-
son to models without this. While two of the stud-
ies compare their models to simple recurrent net-
works (SRNs) trained on the same data (Rabovsky
et al., 2018; Fitz and Chang, 2019), these SRNs are
not representations of the extent of what is possi-
ble with lingusitic input alone—these models are
simple (for example, they do not use long short-
term memory), and much of the power of RNNs
comes from large training datasets (see, e.g., the
discussion in Chelba et al., 2013).

Finally, it should be noted that while all of the
studies discussed in this section aim to model real
N400 effects, only two (Laszlo and Armstrong,
2014; Rabovsky and McRae, 2014) use stimuli
from real N400 experiments; in the remaining stud-
ies, stimuli are chosen to represent manipulations
that studies have found to influence N400 ampli-
tude. Given that the N40O is still not fully under-
stood, it is important to verify that the experimental
manipulations investigated actually do elicit the ex-
pected N400 effect. For this reason, we only use
experimental stimuli provided for published N400
experiments, and compare the effect on surprisal
directly to the reported effects on N400 amplitude.
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3 Approach, Motivations, and
Hypotheses

The aim of this study is to investigate the boundary
conditions of using surprisal to model N400 am-
plitude. While there is evidence that surprisal and
N400 amplitude are correlated overall (Frank et al.,
2015; Aurnhammer and Frank, 2019), it is unclear
what variance in N400 amplitude is actually be-
ing explained by surprisal. While it is tempting to
assume that surprisal is correlated with the N400
because the same factors that lead to reduced N400
amplitudes lead to reduced surprisal, this has thus
far not been shown empirically.

This is the question that we investigate in this pa-
per: which experimental manipulations that elicit a
difference in N400 amplitude elicit the same differ-
ence in surprisal, and which do not?

We do this by running the (English language)
stimuli from previously published N400 studies
through two neural networks that have been used
extensively to model human language processing
(e.g., in Wilcox et al., 2018; Futrell et al., 2019;
Wilcox et al., 2019; An et al., 2019; Costa and
Chaves, 2020). The two models used are the the
best English LSTM from Gulordava et al. (2018)
and BIG LSTM+CNN INPUTS from Jozefowicz
et al. (2016), henceforth (following Futrell et al.,
2019) GRNN and JRNN, respectively. These mod-
els are both LSTM-RNN-LMs, but differ most no-
tably in size and training data: The JRNN has two
hidden layers (8192 and 1024 units), a 793471-
word vocabulary, and was trained on 1 billion to-
kens (Chelba et al., 2013); while the GRNN has
two hidden layers (both 650 units), a 50000-word
vocabulary, and was trained on 90 million tokens.

In addition to answering questions about the na-
ture of the neurocognitive systems underlying the
N400, the results of this study also serve as a base-
line for future research—they represent the best
that current cognitively plausible neural network
language models can do at predicting N400 am-
plitude using surprisal. Thus, future research that
argues for additional sources of information or neu-
rocognitive processes being involved in the N400
on the basis of modeling success should demon-
strate that the inclusion of such components in the
model improves upon the results presented here.

This aim of establishing a useful baseline is an-
other reason for our choice of models—both are
provided pre-trained by the authors, allowing for
our results to be replicated and expanded upon. We
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also only use sets of stimuli that have been made
available in papers or their supplementary mate-
rials. The stimuli from these papers (Urbach and
Kutas, 2010; Kutas, 1993; Ito et al., 2016; Oster-
hout and Mobley, 1995; Ainsworth-Darnell et al.,
1998; Kim and Osterhout, 2005), which cover a
range of experimental manipulations that are dis-
cussed in Section 4, are included in text format in
our supplementary materials'.

4 Experiments

Figure 1 is a visualization of the findings of the
original N400 studies and the results of the simula-
tions. Given the differences in measurements, there
is no scale—the heights of the bars indicate which
conditions elicited higher or lower N400 ampli-
tudes or surprisals relative to the others in the same
experiment or simulation. All and only the signifi-
cant differences between conditions for significant
predictors of the N40O or surprisal are shown, not
including significant interactions with recording
locations on the scalp (which are beyond the scope
of the present study). Black bars represent success-
ful modeling of the differences in N400 amplitude,
red bars represent unsuccessful or partially unsuc-
cessful modeling, and purple bars indicate that the
results are more complex than can be represented
in this way. Only stimuli sets with over 100 stimu-
lus sentences were run through the models (GRNN
and JRNN); and while the models were not able to
predict the surprisal of all target words (due to lim-
ited vocabularies or being unable to process certain
characters in sentences), both models successfully
calculated the surprisals of over 100 target words
in each study. Stimuli, target word surprisals, and
the code used to run the models are all included in
our supplementary materials.

Where possible, the significant predictors of the
surprisal of the GRNN and JRNN models were
selected via backwards model selection using like-
lihood ratio tests of linear-mixed effects models
(R Core Team, 2018; Bates et al., 2015) with and
without the predictor under investigation as a main
effect. When this was not possible, the signifi-
cance of predictors were evaluated using a Type 111
ANOVA with Satterthwaite’s method for estimat-
ing degrees of freedom (Kuznetsova et al., 2017).
Significant differences between experimental con-
ditions (i.e. between the levels of a predictor) were
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Figure 1: The significant differences between all conditions of significant predictors of N400O amplitude in the
original studies and the surprisal of the GRNN and JRNN models. Black bars indicate successful modeling of the
differences in N400 amplitude, red bars indicate unsuccessful or partially unsuccessful modeling, and purple bars

indicate that the results are more complex than shown.

calculated via t-test based on the selected linear-
mixed effects model, using Satterthwaite’s method
to estimate degrees of freedom (Kuznetsova et al.,
2017). In this paper, significant predictors and sig-
nificant differences between conditions are consid-
ered those where p < 0.05 in the relevant statistical
test. All code for the statistical analyses is included
in our supplementary materials.

The remainder of this section discusses the ex-

periments (and the original N400 studies on which
they are based) in more detail.

4.1 Urbach and Kutas (2010): Experiment 1

Experiment 1 of Urbach and Kutas (2010) inves-
tigates the N400’s sensitivity to the typicality of
a patient of a described event. There were two
kinds of sentences in this experiment exemplified
by the following stimulus pair: prosecutors accuse
defendants (TYPICAL; T in Figure 1) / sheriffs
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(ATYPICAL; A) of committing a crime. As ex-
pected, the N400 elicited by TYPICAL object nouns
is significantly lower in amplitude than that elicited
by ATYPICAL object nouns.

Typicality was also a significant predictor of the
surprisal of both the GRNN and JRNN models
(GRNN: p < 0.001; JRNN: p < 0.001), with
TYPICAL object nouns eliciting a lower surprisal
than ATYPICAL ones (GRNN: p < 0.001; JRNN:
p < 0.001).

4.2 Urbach and Kutas (2010): Experiment 2

Expanding on Experiment 1, Urbach and Kutas
(2010) ask whether the results are affected by
whether the sentences begin with the word most
or few (or synonymous expressions), e.g. most
prosecutors accuse defendants. The main effect of
typicality remained. In addition, while the main
effect of quantifier type was not significant overall
(nor was there an interaction with typicality without
an interacting electrode location variable), Urbach
and Kutas (2010) found that FEW-type quantifiers
reduced the N400 amplitude of ATYPICAL patients
and reduced the extent to which N400 amplitude
was lowered for TYPICAL patients, with this latter
effect being found to be statistically significant via
t-test.

Typicality predicted the surprisals of both RNNs
in the same direction as in Experiemnt 1 (p < 0.001
for all statistical tests). The surprisal of the GRNN
was also significantly predicted by quantifier type
(p < 0.001), with FEW-type quantifiers eliciting
significantly higher surprisals (p < 0.001). As this
pattern is limited only to the GRNN (and the anal-
ogous main effect does not appear in Experiment
3 for either model), this finding is not considered
further. The t-test comparing the N400 of TYPICAL
objects under the FEW and MOST quantifiers does
not replicate with surprisal—there is no significant
difference (GRNN: p = 0.107; JRNN: p = 0.249).

4.3 Urbach and Kutas (2010): Experiment 3

Experiment 3 of Urbach and Kutas (2010) is a vari-
ant of Experiment 2. Instead of MOST or FEW sen-
tence beginnings, the words often or rarely appear
after the subject (agent) noun, e.g. prosecutors of-
ten accuse defendants of committing a crime. The
aim of this was to investigate whether proximity
of the quantifier to the target noun had an effect.
Urbach and Kutas (2010) again found the same
result—only typicality was a significant predictor
of N400 amplitude overall; and a t-test found that
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the N400 reduction for TYPICAL nouns was attenu-
ated by the word rarely.

GRNN and JRNN surprisals were only signifi-
cantly predicted by typicality, with typical nouns
eliciting a lower surprisal than atypical nouns
(p < 0.001 for all tests). The t-test comparing the
N400 of TYPICAL objects under the FEW and MOST
quantifiers does not replicate with surprisal—there
is no significant difference (GRNN: p = 0.367;
JRNN: p = 0.283).

4.4 Kutas (1993)

Kutas (1993) examines the effect of relatedness to
the BEST COMPLETION (the highest-cloze comple-
tion). An example of a BEST COMPLETION (BC)
and RELATED completion can be demonstrated by
the following stimulus pair: The pizza was too hot
to chew (RELATED; R) / eat (BC). An example of
a BC and UNRELATED pair is the following sen-
tence: The paint turned out to be the wrong con-
sistency (UNRELATED; U)/ color (BC). BC nouns
were found to elicit the lowest N400 amplitude,
followed by RELATED nouns, followed by UNRE-
LATED nouns.

Experimental condition is a significant predic-
tor of both GRNN and JRNN surprisal. However,
while the surprisals in the GRNN are different be-
tween the BC and other nouns (p < 0.001 for both
RELATED and UNRELATED), there is no significant
difference between RELATED and UNRELATED
(p = 0.820). On the other hand, the surprisals
of the JRNN are lowest for BC nouns, followed by
RELATED nouns, followed by UNRELATED nouns
(p < 0.001 for all pairwise comparisons).

4.5 TIto et al. (2016): Experiments 1 and 2

Ito et al. (2016) further investigate the relatedness
effect by investigating whether a word that is re-
lated in form to the most PREDICTABLE word (i.e.
the best completion) has a similar effect on N400
amplitude as being semantically related. The condi-
tions can be illustrated with the following example
sentence: The student is going to the library to
borrow a book (PREDICTABLE; P)/ hook (FORM-
RELATED; FR)/ page (SEMANTICALLY RELATED;
SR)/ sofa (UNRELATED; U) tomorrow. In both
Experiments 1 and 2, where the difference was
in the amount of time that the stimuli were pre-
sented, Ito et al. (2016) found that experimental
condition was a significant predictor, and specifi-
cally that PREDICTABLE words elicited the lowest
N400 amplitude, followed by SEMANTICALLY RE-



LATED words, followed by the FORM-RELATED
and UNRELATED completions, which did not differ
in N400 amplitude.

We found the same pattern in the surprisal of
both models (p < 0.001 for condition as a predic-
tor; p < 0.001 for all significant pairwise compar-
isons; FR vs. U with GRNN surprisal: p = 0.080;
FR vs. U with JRNN surprisal: p = 0.399).

4.6 Osterhout and Mobley: Experiment 2

4.6.1 Pronoun Matching

Osterhout and Mobley (1995) investigate the effect
on the amplitude of the N400 elicited by words
in sentences where pronouns either do or do not
match a preceding noun, as illustrated in the fol-
lowing example: The aunt heard that she (MATCH,;
M) / he (MISMATCH; MM) had won the lottery.
The MISMATCH sentences can be interpreted as
grammatical sentences where the pronoun refers to
a different person than that denoted by the sentence
subject; or ungrammatical sentences, where the
pronoun refers back to the sentence subject with
the wrong gender. Osterhout and Mobley (1995)
ask whether there is a difference in N400 ampli-
tude between the two conditions, and whether this
is affected by which interpretation is taken by par-
ticipants.

Target Words First, Osterhout and Mobley
(1995) look at the N400O measured at the pronoun
itself, finding no significant effect of condition.

For both RNN-LMs, however, experimental con-
dition is a significant predictor of surprisal, with
matched pronouns eliciting a significantly lower
surprisal (p < 0.001 for all tests).

Sentence-Final Words The N400 was also mea-
sured at the last word in the sentence. Under this
condition, it was found that there was a reduced
N400 for matching compared to mismatching pro-
nouns, but only for participants who interpreted
mismatching sentences to be ungrammatical.

In both models, condition was not found to be
a significant predictor of surprisal (GRNN:p =
0.775; JRNN: p = 0.112). However, whether this
is a successful replication of the responses of the
participants who found the sentence to be grammat-
ical (‘Gramm.” in Figure 1) or a failure to replicate
the results of those who found the sentence un-
grammatical (‘Ungramm.” in Figure 1) is unclear
without further research, and thus this result is not
discussed further in this paper.
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4.6.2 Semantic Anomaly

In parallel to the pronoun stimuli, Osterhout and
Mobley (1995) also compared N400 responses
to sentences under the following experimental
conditions: The boat sailed down the river and
sank (CONTROL; C) / coughed (SEMANTICALLY
ANOMALOUS; SA) during the storm.

Target Words N400 amplitude was significantly
lower in response to the experimentally manip-
ulated CONTROL words compared to SEMANTI-
CALLY ANOMALOUS words. This effect was repli-
cated in the surprisals of both models (p < 0.001
for all tests).

Sentence-Final Words The N400 and surprisals
to sentence-final words followed the same pattern
as target words (p < 0.001 for all tests).

4.7 Ainsworth-Darnell et al. (1998)

Ainsworth-Darnell et al. (1998) investigate the dif-
ference in N400 amplitude in response to syntac-
tic and semantic anomaly, operationalized in the
following way: The chef entrusted the recipe to
relatives before he left Italy (CONTROL; C) / The
chef entrusted the recipe to carrots before he left
Italy (SEMANTIC ANOMALY; SEM) / The chef
entrusted the recipe relatives before he left Italy
(SYNTACTIC ANOMALY; SYN) / The chef entrusted
the recipe carrots before he left Italy (DOUBLE
ANOMALY; DA). While previous research argued
that the N400 does not respond to SYNTACTIC
ANOMALY, they found that the CONTROL nouns
elicited lower N400 amplitudes than nouns in other
conditions, but they did not find a significant dif-
ference between the SYNTACTIC ANOMALY and
SEMANTIC ANOMALY conditions or between the
SEMANTIC ANOMALY and DOUBLE ANOMALY
conditions. Ainsworth-Darnell et al. (1998) do not
report a test comparing the SYNTACTIC ANOMALY
and DOUBLE ANOMALY conditions, but it should
be noted that SYNTACTIC ANOMALY has a lower
amplitude (based on the graphs) than SEMANTIC
ANOMALY, so an unreported significant difference
between these should not be ruled out.
Experimental condition is a significant predictor
of both GRNN and JRNN surprisal (p < 0.001).
For both models, the surprisal is lower for words in
the CONTROL condition compared to other condi-
tions (p < 0.001 for all pairwise comparisons),
and there is no significant difference between
word in the SYNTACTIC ANOMALY and SEMAN-



TIC ANOMALY conditions (GRNN: p = 0.274;
JRNN: p = 0.056). The surprisals of the two mod-
els differ in that while DOUBLE ANOMALY words
differ from SEMANTIC ANOMALY words in both
models (GRNN: p < 0.001; JRNN: p < 0.001),
they do not differ from the SYNTACTIC ANOMALY
in GRNN surprisal but they do in JRNN surprisal
(GRNN: p = 0.059; JRNN: p < 0.001). Based
on these findings and inspection of the graphs in
Ainsworth-Darnell et al. (1998), it appears that syn-
tactic anomaly of this kind has a larger relative
effect on surprisal than N400 amplitude.

4.8 Kim and Osterhout (2005): Experiment 1

Experiment 1 Kim and Osterhout (2005) investi-
gate whether words that violate the event-structure
of the described event are still facilitated if they are
related to the event being described. The stimuli
were of the following form: The murder had been
witnessed in the dark (PASSIVE CONTROL; PC)
| The bystanders had been witnessing the crime
(ACTIVE CONTROL; AC) / The murder had been
witnessing by the three bystanders (ATTRACTION
VIOLATION; AV). General analysis found that con-
dition only marginally predicted N40O amplitude,
but pairwise comparison found one significant dif-
ference bwetween conditions: PC completions
elicited lower-amplitude N400s than AC comple-
tions.

In both models, condition was a significant pre-
dictor of surprisal, and PCs elicited the lowest sur-
prisals, followed ACs, followed by AVs (p < 0.001
for all tests).

4.9 Kim and Osterhout (2005): Experiment 2

Experiment 2 added the NO-ATTRACTION VIOLA-
TION (NV) condition to the study, which is exem-
plified by the following sentence: The unpleasant
cough syrup was witnessing in the dark. These
were compared to results of the PC and AV con-
ditions in Experiment 1. There was a significant
main effect of condition, with PCs and AVs elicit-
ing significantly lower-amplitude N400Os than NVs.

Condition was a significant predictor the sur-
prisals of both RNNs, with PCs eliciting a lower
surprisal than AVs, followed by NVs with the high-
est surprisals (p < 0.001 for all tests).

5 General Discussion

We compared human N400 responses with sur-
prisal in two RNN-LMs presented with the same
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stimuli, in the interest of determining the extent
to which exposure to linguistic input alone can
account for this particular component of human
language processing. The results confirmed pre-
vious findings that surprisal is generally a good
predictor of N400 amplitude, while also clearly
demonstrating limitations of the models at captur-
ing the human behavior.

5.1 Successful Predictions

The models effectively predicted certain kinds of
contrast that the N400 is sensitive to.

Cloze The surprisals of both models for the Ku-
tas (1993) and Ito et al. (2016) studies show that
the surprisal of a language model is sensitive to
cloze probability in the same direction as N400
amplitude—higher-cloze words elicit lower N400
amplitudes than lower-cloze words, and the same
is true of surprisal.

Relatedness The results of the Kutas (1993) and
Ito et al. (2016) experiments also show that sur-
prisal matches N400 amplitude in that words that
are related to the highest-cloze completion in terms
of semantics, but not form, elicit a lower surprisal
than semantically unrelated words, even control-
ling for these words’ cloze.

Semantic typicality The surprisals of both mod-
els to the stimuli from Urbach and Kutas’s (2010)
three experiments demonstrate that the surprisal
of a language model patterns in the same way as
N400 amplitude in that more typical words (in a
given context) elicit a lower surprisal than atypical
words in the same context.

Semantic anomaly While the results are framed
in the opposite direction in the original studies, the
results from the Anomaly stimuli from Osterhout
and Mobley (1995) and Experiment 1 of Ainsworth-
Darnell et al. (1998) show that, all else being equal,
completions that are not semantically anomalous
(labeled ‘controls’ in these experiments) elicit a
lower surprisal from language models than seman-
tically anomalous completions, which is the result
reported for N40O amplitude in the original studies.

Event structure violations The results for Ex-
periment 2 of Kim and Osterhout (2005) show that
both surprisal and N400 amplitude are reduced
when a word is in line with event-structure norms,
compared to a word that is not and is semantically
unrelated to the preceding context.



5.2 Limitations and further directions

At the same time, there are areas where the predic-
tive capabilities of the models are limited.

Quantifiers While the surprisal of the models
matched the significant differences in Experiments
2 and 3 of Urbach and Kutas (2010) based on typ-
icality overall, it did not replicate the finding that
N400 amplitude was less reduced for TYPICAL
nouns when they appeared with FEW or RARELY
quantifiers. Thus, it may be the case that some more
explicit (or at least more specific) representation of
quantification is involved in the neurocognitive pro-
cesses underlying the N400 than can be modeled
by surprisal alone.

Event structure violations Overall, the sur-
prisal of both models is more sensitive to mor-
phosyntactic or event structure violations than
N400 amplitude is (for a discussion on the extent to
which these can be considered separate in the con-
text of ERPs, see Kuperberg, 2016). For the stimuli
from both Kim and Osterhout (2005) experiments,
despite the ATTRACTION VIOLATION stimuli elic-
iting both a significantly reduced N400 amplitude
and surprisal compared to the NO-ATTRACTION VI-
OLATION stimuli, surprisal remained significantly
higher for ATTRACTION VIOLATION stimuli than
either of the control stimuli, which is not the case
with N400 amplitude. Thus, by contrast with the
case of quantifiers discussed above (Urbach and
Kutas, 2010), which seems to require a more de-
tailed semantic representation, shallower or broader
semantic representation might be needed to capture
responses to the kinds of stimuli presented in Kim
and Osterhout (2005). If the goal is to improve the
extent to which models capture human behavior,
then there might be ways to accomplish this. Frank
and Willems (2017), for example, use cosine dis-
tance between the sum of the vectors of all the pre-
ceding words in the sentence and the target word to
predict the BOLD response (using fMRI) in N400
areas. Given the collateral facilitation of words se-
mantically related to the highest-cloze completions
of sentences, it is not unreasonable to assume that
a similar process of spreading activation may occur
for the preceding as well as the predicted upcom-
ing word in the sentence. One way to implement
this could be to weight the RNN model’s predic-
tions of the next word by each word’s similarity
to a general sentence-vector such as that used by
Frank and Willems (2017) before the probabilities

are transformed into surprisal’.

Morphosyntactic Anomaly While there has
been some discussion about the extent to which
event structure violation and morphosyntactic
anomalies can be considered separate in the con-
text of ERPs (see, e.g. Kuperberg, 2016), there
are clear cases where the surprisal of the language
models appear to be more sensitive to morphosyn-
tactic anomaly than N400 amplitude is. This can
be seen in humans in the results of Experiment 1
of Ainsworth-Darnell et al. (1998), where words
that exhibit either semantic or syntactic anomalies
elicit equally reduced surprisal. By contrast, the
models predict grammatical continuations to a sen-
tence over ungrammatical ones. This leads to lower
surprisals for semantically anomalous words that
are syntactically acceptable than those that are both
syntactically and semantically anomalous. This
difference between humans and the models sup-
ports the idea that there needs to be some way to
weight predictions by semantic relatedness to the
preceding context.

6 Conclusions

Previous work has found that surprisal is a good
predictor of N400 amplitude overall. Comparisons
of surprisal in RNN-LMs to human N400 responses
to the same input sentences showed for the first
time that suprisal manages to account for a wide
range of phenomena found in human N400 exper-
iments. But at the same time, there are linguis-
tic phenomena where it overpredicts, and others
where it underpredicts a significant difference in
the human N400 response. From the perspective
of human language processing, this suggests that
the activation of semantic and lexical features in-
dexed by the N400 cannot be entirely captured by
exposure to linguistic input alone. Specifically,
quantification, aspects of event structure, and mor-
phosyntactic anomalies seem to require some other
learning architecture than the bottom-up statistical
learning represented by standard recurrent neural
networks. From the perspective of model-building,
in order to improve a language-model based cog-
nitive model of the N400, we need to allow for
the addition of more shallow semantic processing
(independent of syntax and event structure) such as
an implementation of spreading activation.

2See Kuperberg’s (2016) discussion on bag-of-word ap-
proaches to the N400.
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