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Abstract

Semantic parsing is one of the key components
of natural language understanding systems. A
successful parse transforms an input utterance
to an action that is easily understood by the
system. Many algorithms have been proposed
to solve this problem, from conventional rule-
based or statistical slot-filling systems to shift-
reduce based neural parsers. For complex pars-
ing tasks, the state-of-the-art method is based
on autoregressive sequence to sequence mod-
els to generate the parse directly. This model
is slow at inference time, generating parses in
O(n) decoding steps (n is the length of the
target sequence). In addition, we demonstrate
that this method performs poorly in zero-shot
cross-lingual transfer learning settings. In this
paper, we propose a non-autoregressive parser
which is based on the insertion transformer to
overcome these two issues. Our approach 1)
speeds up decoding by 3x while outperform-
ing the autoregressive model and 2) signifi-
cantly improves cross-lingual transfer in the
low-resource setting by 37% compared to au-
toregressive baseline. We test our approach on
three well-known monolingual datasets: ATIS,
SNIPS and TOP. For cross lingual semantic
parsing, we use the MultiATIS++ and the mul-
tilingual TOP datasets.

1 Introduction

Given a query, a semantic parsing module identifies
not only the intent (play music, book a flight) of the
query but also extracts necessary slots (entities) that
further refines the action to perform (which song
to play? Where or when to go?). A traditional rule-
based or slot-filling system classifies a query with
one intent and tags each input token (Mesnil et al.,
2013). However, supporting more complex queries
that are composed of multiple intents and nested
slots is a challenging problem (Gupta et al., 2018).
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Gupta et al. (2018) and Einolghozati et al. (2019)
propose to use a Shift-Reduce parser based on Re-
current Neural Network for these complex queries.
Recently, Rongali et al. (2020) propose directly
generating the parse as a formatted sequence and
design a unified model based on sequence to se-
quence generation and pointer networks. Their
approach formulates the tagging problem into a
generation task in which the target is constructed
by combining all the necessary intents and slots in
a flat sequence with no restriction on the semantic
parse schema.

A relatively unexplored direction is the cross-
lingual transfer problem (Duong et al., 2017; Su-
santo and Lu, 2017), where the parsing system is
trained in a high-resource language and transfered
directly to a low-resource language (zero-shot).

The state-of-the-art model leverages the autore-
gressive decoder such as Transformer (Vaswani
et al., 2017) and Long-Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
generate the target sequence (representing the
parse) from left to right. The left to right autore-
gressive generation constraint has two drawbacks:
1) generating a parse takes O(n) decoding time,
where n is the length of the target sequence. This
is further exacerbated when paired with standard
search algorithms such as beam search. 2) In the
cross-lingual setting, autoregressive parsers have
difficulty transferring between languages.

A recent direction in machine translation and
natural language generation to speed up sequence
to sequence models is non-autoregressive decod-
ing (Stern et al., 2019; Gu et al., 2018, 2019). Since
the parsing task in the sequence to sequence frame-
work only requires inserting tags rather than gener-
ating the whole sequence, an insertion based parser
is both faster and more natural for language transfer
than an autoregressive parser.

In this paper, we leverage insertion based se-
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quence to sequence models for the semantic parsing
problem that require only O(log(n)) decoding time
to generate a parse. We enhance the insertion trans-
former (Stern et al., 2019) with the pointer mech-
anism, since the entities in the source sequence
are ensured to appear in the target sequence. Our
non-autoregressive based model can also boost the
performance on the zero-shot and few-shot cross-
lingual setting, in which the model is trained on a
high-resource language and tested on low-resource
languages. We also introduce a copy source mech-
anism for the decoder to further improve the cross
lingual transfer performance. In this way, the
pointer embedding will be replaced by the corre-
sponding outputs from the encoder. We test our
proposed model on several well known datasets,
TOP (Gupta et al., 2018), ATIS (Price, 1990),
SNIPS (Coucke et al., 2018), MultiATIS++ (Xu
et al., 2020) and multilingual TOP (Xia and Monti,
2021).

In summary, the main contributions of our work
include:

• To our knowledge, we are the first to apply the
non-autoregressive framework to the seman-
tic parsing task. Experiments show that our
approach can reduce the decoding steps by
66.7%. By starting generation with the whole
source sequence, we can further reduce the
number of decoding steps by 82.4%.

• We achieve new state-of-the-art Exact Match
(EM) scores on ATIS (89.14), SNIPS (91.00)
and TOP (86.74, single model) datasets.

• We introduce a copy encoder outputs mecha-
nism and achieve a significant improvement
compared to the autoregressive decoder and
sequence labeling on the zero-shot and few-
shot setting in cross lingual transfer semantic
parsing. Our approach surpasses the autore-
gressive baseline by 9 EM points on average
over both simple (MultiATIS++) and complex
(multilingual TOP) queries and matches the
performance of the sequence labeling baseline
on MultiATIS++.

2 Background

In this section, we introduce the sequence gener-
ation via insertion operations and the pretrained
models we leverage in our work.

2.1 Sequence Generation Via Insertion
We begin by briefly describing sequence generation
via insertion, for a more complete description see
(Stern et al., 2019).

Let x1, x2, ..., xm be the source sequence with
length m and y1, y2, ..., yn denotes the target se-
quence with length n. We define the generated se-
quence ht at decoding step t. In the autoregressive
setting, ht = y1,2,...,t−1. In insertion based decod-
ing, ht is a subsequence of the target sequence y
that preserves order. For example, if the final se-
quence y = [A,B,C,D,E], then ht = [B,E] is a
valid intermediate subsequence while ht = [C,A]
is an invalid intermediate subsequence.

During decoding step t + 1, we insert tokens
into ht. In the previous example, there are three
available insertion slots: before token B, between
B andE and afterE. We always add special tokens
such as bos (begin of the sequence) and eos (end
of the sequence) to the subsequences. The number
of available insertion slots will be T −1 where T is
the length of ht including bos and eos. If we insert
one token in all available slots, multiple tokens can
be generated in one time step.

In order to predict the token to insert in a slot, we
form the representation for each insertion slot by
pooling the representations of adjacent tokens. We
have T − 1 slots for a sequence with length T . Let
r ∈ RT×d, where T is the sequence length and d
denotes the hidden size of the transformer decoder
layer. All slots s ∈ R(T−1)×d can be computed as:

s = concat(r[1 :], r[: −1]) ·Ws, (1)

where r[1 :] is the entire sequence representation
excluding the first token, r[: −1] is the entire se-
quence representation excluding the last token and
Ws ∈ R2d×d is a trainable projection matrix. We
apply softmax to the slot representations to obtain
the token probabilities to insert at each slot.

2.2 Pretrained Models
Pretrained language models (Devlin et al., 2019;
Liu et al., 2019; Lan et al., 2020; Dong et al.,
2019; Peters et al., 2018) have sparked significant
progress in a wide variety of natural language pro-
cessing tasks. The basic idea of these models is
to leverage the knowledge from large-scale cor-
pora by using a language modeling objective to
learn a representation for tokens and sentences. For
downstream tasks, the learned representations are
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Figure 1: Example of a simple query (left) and complex query (right). The complex query contains multiple intents
and nested slots and can be represented as a tree structure. The two queries are represented as formatted sequences
that are treated as the target sequence in the parsing task. IN is the intent, SL is the slot. Source tokens that
appear in the target sequence are replaced by pointers with the form @n where n denotes its location in the source
sequence. For complex queries, we can build the parse from top to bottom and left to right.

fine-tuned for the task. This improvement is even
more significant when the downstream task has few
labeled examples.

We also follow this trend, and use the Trans-
former (Vaswani et al., 2017) based pretrained lan-
guage model. We use the RoBERTa base (Liu
et al., 2019) (we refer to this model as RoBERTa)
as our query encoder to fairly compare with the
previous method. This model has the same archi-
tecture as BERT base (Devlin et al., 2019) with
several modifications during pretraining. It uses
a dynamic masking scheme and removes the next
sentence prediction task. RoBERTa is also trained
with longer sentences and larger batch sizes with
more training samples. For the multilingual zero-
shot and few-shot semantic parsing task, we use
XLM-R (Conneau et al., 2020) and multilingual
BERT (Devlin et al., 2019) which are trained on
text for more than 100 languages.

3 Methodology

In this section, we introduce our non-autoregressive
sequence to sequence model for the semantic pars-
ing problem.

3.1 Query Formulation

To train a sequence to sequence model, we prepare
a source sequence and a target sequence. For the
task of semantic parsing, the source sequence is
the query in natural language. We construct the
target sequence following Rongali et al. (2020) and
Einolghozati et al. (2019). Tokens in the source
sequence that are present in the target sequence
are replaced with the special pointer token ptr-n,
where n is the position of that token in the source
sequence. By using pointers in the decoder, we can

drastically reduce the vocabulary size. We follow
previous work and use symmetrical tags for intents
and slots. Fig. 1 shows two examples, a simple
query and a complex query with the corresponding
target sequences. This formulation is also able to
express other tagging problems like named entity
recognition (NER).

3.2 Insertion Transformer

We use the insertion transformer (Stern et al., 2019)
as the base framework for the decoder. The inser-
tion transformer is a modification of the original
transformer decoder architecture (Vaswani et al.,
2017). The original transformer decoder predicts
the next token based on the previously generated
sequence while the insertion transformer can pre-
dict tokens for all the available slots. In this setup,
tokens in the decoder side can attend to the entire
sequence instead of only their left side. This means
we remove the causal self-attention mask in the
original decoder.

3.2.1 Pointer Network with Copy
Pointer Network: In the normal sequence to se-
quence model, target tokens are generated by feed-
ing the final representations (decoder hidden states)
through a feed-forward layer and applying a soft-
max function over the whole target vocabulary.
This is slow when the vocabulary size is large (Yang
et al., 2018). In parsing, the entities in the source
sequence will always appear in the target sequence.
We can leverage the pointer mechanism (Vinyals
et al., 2015) to reduce the target vocabulary size by
dividing the vocabulary into two types: tokens that
are the parsing symbols like intent and slot names,
and pointers to words in the source sequence.

Since we have two kinds of target tokens, we use
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two slightly different ways to obtain unnormalized
probabilities for each type. For the tokens in the
tagging vocabulary, we feed the hidden states gen-
erated by the insertion transformer and slot pooling
to a dense layer to produce the logits of size V (tag-
ging vocabulary). The tagging vocabulary contains
only the parse symbols like intents and slots to-
gether with several special tokens such as bos, eos,
the padding and unknown token. For the pointers,
we compute the scaled dot product attention scores
between the slot representation and the encoder
output. The attention scores will be computed as

a(Q,K) =
QKT

√
h
, (2)

where query (Q) is the slot representation, the
encoder outputs would be the key (K) and h is the
hidden size of the query. Since the hidden size of
encoder and decoder may be different, we also do a
projection of query and key to the same dimension
with two dense layers. Notice that the length of
attention scores follows the length of the source
sequence. Concatenating the attention scores with
size n and the logits for the tagging vocabulary (V),
we get the unnormalized distribution over V + n
tokens. We apply the softmax function to obtain
the final distribution over these tokens.
Copy Mechanism: Rongali et al. (2020) use a set
of special embeddings to represent pointer tokens.
This is a problem because the pointer embedding
cannot encode semantic information since it points
to different words across examples. Instead, we
reuse the encoder output that the pointer token
points to. Without copying, the special pointer
embedding would learn a special position based
representation for the source language that is hard
to transfer to other languages.

3.3 Training and Loss

Training the insertion decoder requires sampling
source and target sequences from the training data.
We randomly sample valid subsequences from the
target sequence to mimic intermediate insertion
steps. We first sample a length k ∈ [0, n] for the
subsequence, where n is the length of the target
sequence (here n excludes the bos and eos tokens).
We select k tokens from the target sequence and
maintain the original ordering. This sampling helps
the model learn to insert tokens from the initial
generation state as well as intermediate generation.

The insertion transformer can do parallel de-
coding since we can insert tokens in all available
insertion slots. However, for each insertion slot,
there may be multiple candidate tokens that can
be inserted. For example, given a target sequence
[A,B,C,D,E] and a valid subsequence [A,E],
the candidates for the slot between token A and E
are B,C,D. We use the two different weighting
schemes proposed in Stern et al. (2019): uniform
weights and balanced binary tree weights.
Binary Tree Weights: The motivation for apply-
ing binary tree weighting is to make the decoding
time nearly O(log(n)). Consider the example of
sequence A,B,C,D,E again, the desired order of
generation would be [bos, eos]→ [bos, C, eos]→
[bos,A,C,E, eos] → [bos,A,B,C,D,E, eos].
To achieve this goal, we weight the candidates
according to their positions. For the sequence
above, candidates in the span of [bos, eos] are
A,B,C,D,E. We assign token C the highest
weight, then lower weights forB,D and the lowest
weights for A,E.

Given a sampled subsequence with length k +
1, we have k insertion slots at location l =
(0, 1, ..., k − 1). Let cl0 , ...cli be the candidates for
one location l. We can define a distance function
dj for each token j in the candidates of l:

dl(j) = |j −
i

2
|, (3)

where i is the number of candidates in the location
l. We then use the negative distance to compute
the softmax based weighting (Rusu et al., 2016;
Norouzi et al., 2016):

wl(j) =
exp(−dl(j)/τ)∑i

m=0 exp(−dl(m)/τ)
. (4)

Where τ is the temperature hyperparameter which
allows us to control the sharpness of the weight
distribution.
Uniform Weights: Instead of encouraging the
model to follow a tree structure generation order,
we can also treat the candidates equally. This per-
forms better than the binary tree weights when we
input the whole source sequence to the decoder as
the initial sequence. In this case, we only need to
insert the tagging tokens; the number of candidates
is not as large as from scratch ([bos, eos]). This
uniform weighting can be easily done by taking
τ →∞.
Loss Function:The autoregressive sequence to se-
quence model uses the negative log-likelihood loss
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since in each decoding step, there is only one
ground-truth label. However, in our approach, we
have multiple candidates for each insertion slot.
Therefore, we use the KL-divergence between the
predicted token distribution and the ground truth
distribution. Then the loss for insertion slot l is:

Lslot(x, ht, l) = DKL((pl|(x, ht))||gl), (5)

where pl is the distribution output by the decoder
and gl is the target distribution where we set the
probability to 0 for tokens that are not candidates.
Note that the ground truth distribution depends on
the weighting scheme for generation.

Finally, we have the complete loss averaged over
all the insertion slots:

L(x, ht) =
1

k + 1

k∑
l=0

Lslot(x, ht, l) (6)

3.4 Termination Strategy

Terminating generation for insertion based decod-
ing is not as straightforward as autoregressive de-
coding, which only needs the no-insertion token to
be predicted. Insertion decoding requires a similar
mechanism for every insertion slot. When com-
puting the slot-loss above, if there are no candi-
dates for the slot we set the ground truth label as
the no-insertion token. At inference time, we can
stop decoding when all available slots predict the
no-insertion token. However, there is a problem
when combining the sampling method and this ter-
mination strategy. The no-insertion token is more
frequent compared with other tokens. The same
situation is also encountered in (Stern et al., 2019).
This is solved by adding a penalty hyperparame-
ter to control the sequence length generated by the
decoder. The hyperparameter is simply a scalar sub-
tracted from the log probability of the no-insertion
token for each insertion slot during inference. By
doing this, we set a threshold for the difference
between the no-insertion token and the second-best
choice.

4 Experiments

In this section, we introduce the datasets and base-
line models we experiment with. Then we report
the results of monolingual experiments and cross
lingual transfer learning experiments.

4.1 Datasets
4.1.1 SNIPS
The SNIPS dataset (Coucke et al., 2018) is a pub-
lic dataset aimed to improve the semantic pars-
ing models. It contains seven different intents:
SearchCreativeWork, GetWeather, BookRestau-
rant, PlayMusic, AddToPlaylist, RateBook, and
SearchScreeningEvent. For each intent, there are
about 2000 training samples and 100 test samples.
The SNIPS dataset consists of only simple queries.

4.1.2 ATIS
The Airline Travel Information System
(ATIS) (Price, 1990) dataset was originally
collected in the early 90s. The utterances are
transcribed from the audio recordings of flight
reservation calls. Similar to SNIPS, it consists
of only simple queries. ATIS contains seventeen
different intents. However, nearly 70% of the
queries are the FLIGHT intent.

Recently, a multilingual version of ATIS called
MultiATIS++ is introduced by Xu (2020). It is
an extension of the Multilingual ATIS (Upadhyay
et al., 2018). Besides the original three languages
(English, Hindi and Turkish), MultiATIS++ adds
six new languages including Spanish, German, Chi-
nese, Japanese, Portuguese and French annotated
by human experts and consists of a total of 37,084
training samples and 7,859 test samples. We ex-
clude Turkish in our experiments as the test set size
is limited.

4.1.3 TOP
Since ATIS and SNIPS contain only simple
queries, the Facebook Task Oriented Parsing (TOP)
dataset (Gupta et al., 2018) was introduced for com-
plex hierarchical and nested queries that are more
challenging. The dataset contains around 45,000
annotated queries with 25 intents and 36 slots. They
further split them into training (31,000), validation
(5,000) and test (9,000). As shown in Fig. 1, the
nested slots make it harder to parse using a simple
sequence tagging model. We also do experiments
on multilingual TOP (Xia and Monti, 2021) with
Italian and Japanese data. In this dataset, the train-
ing and validation set is machine translated while
the test set is annotated by human experts.

4.2 Baseline Models
Monolingual Baselines: For monolingual experi-
ments, we select the algorithms reported in Ron-
gali et al. (2020) as baselines for ATIS and SNIPS.



501

TOP ATIS SNIPS
Method

EM IC EM IC EM IC
Joint BiRNN (Hakkani-Tür et al., 2016) - - 80.70 92.60 73.20 96.90
Attention BiRNN (Liu and Lane, 2016) - - 78.90 91.10 74.10 96.70

Slot Gated Full Attention (Goo et al., 2018) - - 82.20 93.60 75.50 97.00
CapsuleNlU (Zhang et al., 2019) - - 83.40 95.00 80.90 97.30

SR(S)+ELMO+SVMRank (Gupta et al., 2018) 83.93 - - - - -
SR(E)+ELMO+SVMRank (Gupta et al., 2018) 87.25 - - - - -

AR-S2S-PTR (paper) (Rongali et al., 2020) 86.67 98.13 87.12 97.42 87.14 98.00
AR-S2S-PTR (reproduce) (Rongali et al., 2020) 85.67 98.17 88.91 97.09 90.71 98.43

IT-S2S-PTR (τ = 1) 86.74 98.47 89.14 97.31 91.00 98.43
IT-S2S-PTR (input-src, uniform) 85.41 98.71 - - - -

Table 1: Exact Match and Intent Classification scores for on the test set. Input-src means the initial input of the
decoder is the whole source sequence. For the shift reduce parsing models, E denotes the ensemble model and S is
the single model.

Model Avg. steps
# tokens generated per step

1 2 3 4 5 6 7 8 9
AR-S2S-PTR 17.7 1 1 1 1 1 1 1 1 1
IT-S2S-PTR 5.9 1.0 2.0 3.96 6.66 6.24 3.17 1.6 1.4 1.2

IT-S2S-PTR(input-src) 3.1 4.99 2.92 1.37 1.00 0.54 0.27 0.25 1.0 1.0

Table 2: Decoding statistics on the TOP dataset. Average target sequence length of TOP is 17.7 tokens, we see
that the insertion based parser can fully utilize binary tree decoding. ”input-src” means we set the whole source
sequence as the initial decoder state.

Two of them leverage the power of RNNs: with
attention (Liu and Lane, 2016) and without atten-
tion (Hakkani-Tür et al., 2016). Another model
works completely with attention (Goo et al., 2018).
A Capsule Networks based model is also in-
cluded (Zhang et al., 2019). Finally, we compare
with the autoregressive sequence to sequence with
pointer model which is most recent (Rongali et al.,
2020). Simple tagging based models cannot easily
handle the complex queries in the TOP dataset. For
the TOP dataset, we compare with two previous
models, a shift reduce parsing model (Gupta et al.,
2018) and the autoregressive sequence to sequence
model (Rongali et al., 2020). For all monolingual
experiments, we use RoBERTa as our pretrained
encoder (Liu et al., 2019).
Cross lingual Baselines: For multilingual experi-
ments (zero-shot and few-shot), we use a sequence
labelling model based on multilingual BERT and an
autoregressive sequence to sequence model (Ron-
gali et al., 2020) as our baseline. To make fair
comparasion, we also use the copy source mech-
anism in the AR model. For sequence labeling,
instead of using F1 score, we also use the exact

match (EM) which requires all intents and slots are
labeled correctly by the model.

4.3 Results

4.3.1 Model Configuration
We use the pretrained RoBERTa and mBERT as
the encoder for our model. For the decoder side,
we use 4 layers with 12 heads transformer decoder.
The hidden size of the decoder is the same as the
embedding size of the pretrained encoder. For op-
timization, we use Adam (Kingma and Ba, 2015)
with β1 = 0.9 and β2 = 0.98, paired with the
Noam learning rate (initialized with 0.15) sched-
uler (Vaswani et al., 2017) with 500 warmup steps.
For cross-lingual experiments, we freeze the en-
coder’s embedding layer.

4.3.2 Monolingual Results
We use the exact match (EM) accuracy as the main
metric to measure the performance of different
models. By using EM, the entire parsing sequence
predicted by the model has to match the reference
sequence, since it’s not easy to apply the F1 score
or semantic error rate (Thomson et al., 2012) to
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en es pt de fr hi zh ja∗ avg
IT-S2S-PTR 87.23 50.06 39.30 39.46 46.78 11.42 28.72 12.60 32.69

AR-S2S-PTR 86.83 40.72 33.38 34.00 17.22 7.45 23.74 10.04 23.77
mBERT 86.33 48.46 38.56 39.12 42.98 15.22 21.89 23.29 32.78

Table 3: Zero-shot cross lingual EM scores by our approach (IT), autoregressive baseline (AR) and sequence
labeling baseline (mBERT). Results are averaged over four random seeds. For our approach, we initialize the
decoder with source sequences. ∗ indicates that the data format for the language is not consistent with the S2S
model tokenizer.

en it ja
IT-S2S-PTR 84.61 50.07 3.64

AR-S2S-PTR 85.4 41.06 0.64

Table 4: Zero-shot EM scores on multilingual TOP
dataset. Model is trained on English only.

complex queries. It’s better to use the EM here for
both simple and complex queries. We also report
the intent classification accuracy for our models.
Main Result: Table 1 shows the results from
monolingual experiments on three datasets: TOP,
ATIS and SNIPS. Our insertion transformer with
pointer achieves new state-of-the-art performance
on ATIS and SNIPS under EM metric. For TOP
dataset, our model matches the best performance
reported for single models (AR-S2S-PTR) despite
being 3x faster.

We also experiment with starting generation with
the entire source sequence as the initial state of the
decoder. The performance degrades slightly in this
case, possibly due to a training/inference mismatch
in this setting. This degradation is likely due to
training the model to generate the entire target se-
quence but only asking the model to generate tags
during inference.
Decoding Steps: Since our approach can do paral-
lel decoding, the number of decoding steps is only
O(log(n)). Table 2 shows the statistics for the av-
erage decoding steps for the TOP dataset and the
number of generated tokens per step. The inser-
tion transformer with pointer only needs 5.9 steps
while the autoregressive needs 17.7, resulting in a
3x speedup with insertion decoding. The decoding
steps can be further reduced to 3.1 when we start
decoding with the source sequence as the initial
sequence for the decoder. Theoretically, a perfect
binary tree based insertion model should generate
2n−1 tokens for the nth decoding step. We can see

that our approach can make full use of the paral-
lel decoding during the first three steps, since the
average length of TOP’s test samples is only 17.7.
Weighting Strategy: We do experiments on both
binary tree weighting and uniform weighting for
the TOP dataset. We set τ ∈ [0.5, 1.0, 1.5, 2.0]
and find 1.0 performs best. Binary tree weights are
better than uniform in the setting of decoding from
scratch. However, uniform performs better when
we decode from the whole source sequence.

4.3.3 Cross Lingual Transfer Results
For MultiATIS++, we train on English training data
and test on all languages. Table 3 shows the results
of our approach compared to the autoregressive and
sequence labeling baselines. We find that:

• Our approach outperforms the baseline on
most of the languages except Hindi and
Japanese. For Japanese, we found inconsisten-
cies in the tokenizer that is the likely cause of
the degradation 1.

• The autoregressive baseline performs poorly
on cross lingual experiments. For example,
it only achieves 17.22 EM on the French test
set while the other two systems achieve > 40
EM. This highlights the weakness of autore-
gressive parsers that cannot produce parses
directly from the encoded representations of
the source sequence.

• The order of the sentence in Hindi and
Japanese is different from others, this may
limit the performance of transfer learning for
S2S parsers.

We also test on the multilingual TOP dataset (Xia
and Monti, 2021), which extends the TOP datasets

1Chinese is tokenized at the character level in mBERT,
while Katakana/Hiragana are tokenized with whitespace. Data
in MultiATIS++ is mixed in these two fashions.
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IT-S2S-PTR AR-S2S-PTR
# samples 0 10 50 100 0 10 50 100

it 50.07 50.13 52.69 56.42 41.06 42.23 44.98 46.96
ja 3.64 4.7 18.01 18.96 0.64 1.73 10.78 18.56

Table 5: Few-shot EM scores on multilingual TOP dataset with model pretrained on English. Training samples
used in few-shot are sampled from the test set and excluded during testing.

to other languages providing human annotated Ital-
ian and Japanese test sets. TOP contains a much
larger test set compared to ATIS. Table 4 shows the
zero-shot results and Table 5 shows the few-shot
results.

In the zero-shot setting, our approach achieves
50.07 EM score for Italian while AR only achieves
41.06. Both models are unable to achieve good
performance in the zero-shot setting for Japanese.
We speculate on this behavior in the few-shot ex-
periment results.

In the few shot setting, we finetune the model
in two stages, first on the entire English data and
then with 10, 50, 100 training samples from other
languages. Our approach outperforms the AR base-
line in all few shot settings. For Italian, increasing
training samples from 10 to 100 does not result
in much gain, since the knowledge from English
can readily be transferred to Italian, probably due
to the similarity of the languages. To further im-
prove the performance on Italian, the model may
need many more training samples. However, for
Japanese little knowledge (like word order) can be
transferred from English so both models can per-
form as if training from scratch. There may be two
reasons here: 1) the order of a sentence is different
from English. 2) the annotated target is aligned
with the original words in the multilingual TOP so
the order of pointers are mixed. Thus, we see the
EM scores improves drastically as the number of
training samples increases.

4.4 Ablation Study

For ablation study, we separate the experiments
to monolingual and multilingual as above. For
multilingual experiments, we use the Italian from
multilingual TOP dataset.

From Table 6, we observe that the copy mech-
anism improves performance in the monolingual
setting. For the hyperparameter τ , recall that a
higher value for τ would result in flatter (more uni-
form) weights for the candidates. τ = 1.0 provides

EM
IT-S2S-PTR 86.74
τ = 0.1 74.84
τ = 0.5 85.47
τ = 1.0 86.74
τ = 1.5 86.33

no copy 86.09

Table 6: The ablation study for the τ parameter and
copy source embedding vector vs. no copy in the mono-
lingual setting. Results on the TOP dataset show the
importance of copying source embeddings. We also ob-
serve that small values of τ (i.e. weighting the central
token for insertion heavily) degrade performance.

Models EM
IT-S2S-PTR-Best 50.07
- copy 47.00
- input-src 42.03
AR-S2S-PTR-BEST 41.06
- copy 30.87

Table 7: The ablation study for source embedding copy-
ing and starting generation from source tokens in the
cross-lingual setting. Results are zero-shot in Italian.
For the IT-S2S model, both copying and starting gener-
ation with source tokens contribute to zero-shot perfor-
mance

the best balance between equally weighting the can-
didates and weighting the next token to be inserted
heavily. However, we find that when initializing the
decoder with source sequences, uniform weights
performs better than binary tree weights.

For cross-lingual experiments, we introduce two
components to improve the performance. Table 7
shows that both of them help in the zero-shot trans-
fer setting. From the results, we can observe that
initializing the decoder with the source sequence
plays an important role in zero-shot transfer, which
is impossible for the autoregressive based models.
The copy mechanism is again beneficial for both
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the sequence to sequence models, improving the
performance of even the autoregressive model from
30.87 EM to 41.06 EM in the zero-shot Italian ex-
periment.

5 Related Work

Monolingual Semantic Parsing: The task ori-
ented semantic parsing for intent classification and
slot detection is usually achieved by sequence la-
beling. Normally, the system will first classify the
query based on the sentence level semantic and
then label each word in the query. Conditional
Random Fields (CRFs) (Peters et al., 2018; Lan
et al., 2020; Jiao et al., 2006) is one of the most
successful algorithms applied to this task before
deep learning dominated the area. Deep learning
algorithms boost the performance of semantic pars-
ing, especially using recurrent neural networks (Liu
and Lane, 2016; Hakkani-Tür et al., 2016). Other
architectures are also explored, such as convolu-
tional neural networks (Kim, 2014) and capsule
networks (Zhang et al., 2019).
Cross Lingual Transfer Semantic Parsing: Mul-
tilingual natural language understanding has been
studied in a variety of tasks including part-of-
speech (POS) tagging (Plank and Agić, 2018;
Yarowsky et al., 2001; Täckström et al., 2013),
named entity recognition (Zirikly and Hagiwara,
2015; Tsai et al., 2016; Xie et al., 2018) and se-
mantic parsing (Xu et al., 2020). Before the ad-
vent of pretrained cross-lingual language models,
researchers leveraged the representations learned
by multilingual neural machine translation (NMT).
Another approach is to use NMT to translate be-
tween the source language and the target language.
However, it is challenging for the sequence tag-
ging tasks: labels on the source language need
to be projected on the translated sentences (Xu
et al., 2020). Pretrained cross-lingual language
models (Devlin et al., 2019; CONNEAU and Lam-
ple, 2019) achieve great success in various multi-
lingual natural language tasks.

6 Conclusion

In this paper, we tackle two shortcomings of the
autoregressive sequence to sequence semantic pars-
ing models: 1) expensive decoding and 2) poor
cross-lingual performance.

We propose 1) insertion transformer with point-
ers and 2) a copy mechanism which replaces the
pointer embeding with corresponding encoder out-

puts, to mitigate these two problems. Our model
can achieve O(log(n)) decoding time with parallel
decoding. For the specific task of semantic pars-
ing, we can further reduce the decoding steps by
initializing the decoder sequence with the whole
source sequence. Our model achieves new state-of-
the-art performance on both simple queries (ATIS
and SNIPS) and complex queries (TOP). In cross-
lingual transfer, our approach surpasses the base-
lines in the zero-shot setting by 9 EM points on
average across 9 languages.
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