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Abstract

This paper tackles the task of named entity
recognition (NER) applied to digitized his-
torical texts obtained from processing digital
images of newspapers using optical character
recognition (OCR) techniques. We argue that
the main challenge for this task is that the OCR
process leads to misspellings and linguistic er-
rors in the output text. Moreover, historical
variations can be present in aged documents,
which can impact the performance of the NER
process. We conduct a comparative evalua-
tion on two historical datasets in German and
French against previous state-of-the-art mod-
els, and we propose a model based on a hi-
erarchical stack of Transformers to approach
the NER task for historical data. Our find-
ings show that the proposed model clearly im-
proves the results on both historical datasets,
and does not degrade the results for modern
datasets.

1 Introduction

With the emergence of large scale archives of
digitized contents, the need for efficient preser-
vation and accessibility of historical documents
through appropriate technologies increased expo-
nentially. At the same time, there is a growing
interest in extracting relevant information from his-
torical sources. In this paper, we address the named
entity recognition (NER) task which aims at identi-
fying real-world entities, such as names of people,
organizations, and locations within historical docu-
ments.

Since most of the state-of-the-art research fo-
cuses on NER for modern available datasets, the
performance of the NER systems grew at a fast
pace, enabled by the representational capacity of
neural networks and off-the-shelf pre-trained word
embeddings (Ma and Hovy, 2016; Lample et al.,
2016; Yadav and Bethard, 2018). More recently,

NER models based on contextual word and sub-
word representations provided by ELMo (Peters
et al., 2018), Flair (Akbik et al., 2018), or BERT
(Devlin et al., 2019), achieved impressive improve-
ments. The Transformer-based (Vaswani et al.,
2017) architectures for NER became popular since
the release of the BERT (Bidirectional Encoder
Representations from Transformers) model.

However, while most NER systems have been
developed to generally address contemporary data,
NER systems for processing historical documents
are less common. To extract entities from histor-
ical documents, NER tools face additional chal-
lenges. As the majority of these documents are
hardcover, they are scanned and processed by an
OCR to transcribe the text. However, an OCR
tool can occasionally misrecognize letters and im-
properly identify its textual content. This can be
due to the level of degradation of the actual doc-
ument being scanned, to the digitization artifacts
and also to the quality of the OCR tool. This leads
to digitization errors in the transcribed text, such
as misspelled locations or person names.

Languages evolve through time and certain
words can have a different meaning depending on
the period of time analyzed (Hamilton et al., 2016).
The spelling of words can also change due to new
orthographic conventions or cultural tendencies
(Scheible et al., 2011). This high level of spelling
differences can be incompatible with modern or-
thography and the produced noise can severely af-
fect modern NLP systems (Lopresti, 2009).

To address these challenges of NER on historical
documents, we propose a robust NER model based
on a stack of Transformers that includes fine-tuned
BERT encoders. We study the impact of such a
model, and we conclude that this type of model is
suited for the extraction of entities from historical
documents.
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The remainder of this paper is organized as fol-
lows. In Section 2, we present and discuss a selec-
tion of works concerning NER in modern and his-
torical documents. Then, in Section 3, the datasets
explored in this work are presented. The proposed
model is detailed in Section 4. The experiments
are described in Section 5. We present and discuss
the obtained results in Section 6. Finally, Section 7
concludes this paper and hints at future work.

2 Related Work

NER for modern documents The first end-to-
end systems for sequence labeling tasks are based
on pre-trained word and character embeddings en-
coded either by a bidirectional Long Short Term
Memory (BiLSTM) network or a Convolutional
Neural Network (CNN) (Collobert et al., 2011;
Lample et al., 2016; Ma and Hovy, 2016; Aguilar
et al., 2017; Chiu and Nichols, 2016), along with
a Conditional Random Fields (CRF) decoder. One
shortcoming of this type of model is that they were
based on a single context-independent representa-
tion for each word. This problem has been further
attenuated by methods based on language model
pre-training that produced context-dependent word
representations. These recent large-scale language
models methods such as BERT (Devlin et al., 2019)
and ELMo (Peters et al., 2018) further enhanced
the performance of NER, yielding state-of-the-art
performances (Peters et al., 2017, 2018; Baevski
et al., 2019).

NER for historical documents Historical docu-
ments pose multiple challenges that either depend
on the quality of digitization or the historical vari-
ations of a language. Studies on how the NER
models can be impacted by the digitization process
(Miller et al., 2000; Rodriquez et al., 2012; Hamdi
et al., 2019; van Strien et al., 2020) have clearly
shown that the performance scores of a NER model
can significantly decrease when applied on histori-
cal documents.

The increased interest in contributing to histori-
cal language resources is driven forward by the cre-
ation of new gold standards for historical document
processing. For example, Hubková (2019) created
and annotated a corpus using scanned Czech histor-
ical newspapers, and Ahmed et al. (2019) proposed
a German gold standard for NER in historical bio-
diversity literature.

A recent competition organized by the Identify-
ing Historical People, Places, and other Entities

(HIPE) lab at CLEF 20201, not only that it created
a gold standard for German and French historical
texts, but also encouraged researchers to partici-
pate in two sub-tasks, named entity recognition
and classification and entity linking.

Considering the high level of spelling differences
between modern and historical documents, vari-
ance (inconsistency), and uncertainty (digitization
errors) found in historical documents, the recent
methods assess these shortcomings differently.

Erdmann et al. (2016) presented a CRF-based
model with handcrafted features for Latin historical
texts and motivated the choice of Part-of-Speech
(POS) tagger by the fact that this NLP tool lever-
ages the highly informative morphological com-
plexity of Latin. The BiLSTM-based model pro-
posed by Hubková (2019) applied a character-
based CNN to encode the different spellings of
words.

Similar to the latter approach, we also consider
that the NER model itself can help in alleviating
the historical documents issues, without the use
of language-specific engineered features. Differ-
ently, we introduce the NER for historical docu-
ments to the language model methods based on
the Transformer architecture (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) methods, that, to
our knowledge, have not been approached in previ-
ous research, with regard to processing historical
documents.

With new needs and resources in the context of
historical NER processing, we evaluate our pro-
posed model on the dataset proposed by the HIPE
competition, and we also propose a new gold stan-
dard for German and French, to assess our assump-
tions.

3 Datasets

We conduct experiments on two datasets that com-
prise digitized historical newspapers, HIPE and
NEWSEYE datasets in French and German. Ad-
ditionally, we study how the proposed methods
behave in the case of contemporary data, by ex-
perimenting on the English CoNLL 2003 dataset
(Tjong Kim Sang and De Meulder, 2003).

The HIPE dataset was created by the CLEF 2020
Evaluation Lab HIPE challenge (Ehrmann et al.,
2020a). It is composed of articles from several
Swiss, Luxembourgish, and American historical
newspapers from 1790 to 2010 (Ehrmann et al.,

1impresso.github.io/CLEF-HIPE-2020/

https://impresso.github.io/CLEF-HIPE-2020/
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2020b). More concisely, the German articles were
collected from 1790 to 1940, and the French ar-
ticles, from 1790 to 2010. The corpus was man-
ually annotated by natives following the annota-
tion guidelines derived from the Quaero annotation
guide2.

We also present the NEWSEYE dataset, com-
posed of historical newspapers in French (1814-
1944) and German (1845-1945). The documents
were collected through the national libraries of
France3 (BnF) and Austria4 (ONB), respectively.
This dataset was annotated following guidelines
derived from the Quaero annotation guide5. The
annotation process was made by native speakers for
each language using the Transkribus tool6. In order
to compute the inter-annotator agreement (IAA),
we used the Kappa coefficient introduced by Co-
hen (1960). Several pages from each corpus (Ger-
man and French) have been annotated twice by two
groups of annotators. Satisfactory IAA scores were
reached for the two corpora (0.90 for French and
0.91 for German). The NewsEye corpus is split
into 80% for training and 20% for both validation
and testing.

The CoNLL 2003 dataset consists of newswire
from the Reuters RCV1 corpus and it includes stan-
dard train, development, and test sets.

Table 1 presents the statistics regarding the num-
ber and type of entities in the aforementioned
datasets. The statistics are divided according to
the training, development, and test sets.

4 Model

We based our NER model on the pre-trained model
BERT proposed by Devlin et al. (2019). Although
original recommendations suggest that unsuper-
vised pre-training of BERT encoders are expected
to be sufficiently powerful on modern datasets, we
consider that adding extra Transformer layers could
contribute to the alleviation of word errors or mis-
spellings.

First, we use a pre-trained BERT model, and
second, we stack n Transformer blocks on top, fi-
nalized with a CRF prediction layer. We refer to
this model as BERT+n×Transf where n is a hyper-

2Quaero guidelines
3https://www.bnf.fr
4https://www.onb.ac.at/
5The main difference is that several named entities sub-

types were ignored. In addition, the TIME type was not in-
cluded in the annotation of the NEWSEYE dataset.

6https://transkribus.eu/Transkribus/

FR DE
Type train dev test train dev test

H
IP

E

LOC 3,067 664 854 1,747 771 595
ORG 833 172 130 358 158 130
PERS 2,513 428 502 1,170 677 311
PROD 198 53 61 112 48 62
TIME 273 73 53 118 69 49

N
E

W
S
E

Y
E LOC 4,878 522 698 4,024 525 894

ORG 1,602 142 229 3,171 307 252
PERS 5,023 853 788 2,346 424 461
PROD 185 57 23 43 12 16

EN
Type train dev test

C
oN

L
L

-0
3 LOC 7,140 1,837 1,668

ORG 6,321 1,341 1,661
PERS 6,600 1,842 1,617
MISC 3,438 922 702

Table 1: Overview of the HIPE, NEWSEYE, and
CoNLL 2003 datasets statistics. LOC = Location, ORG
= Organization, PERS = Person, PROD = Product,
TIME = Time and MISC = Miscellaneous.
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Figure 1: Main architecture of the BERT+n×Transf.

parameter referring to the number of Transformer
layers. The global architecture of our model is de-
picted in Figure 1. We used Transformer blocks
with parameters that we chose empirically similar
to the configuration of the blocks in the fine-tuned
model7.

The reasons for using BERT models are that they
can easily be fine-tuned for a wide range of tasks,
but also that they produce high-performing systems
(Devlin et al., 2019; Conneau and Lample, 2019;
Radford et al., 2018). Nonetheless, despite the
major impact of BERT in the NLP community, re-

7Note that they can vary as multiple BERT-based models
are available for different languages.

http://www.quaero.org/media/files/bibliographie/quaero-guide-annotation-2011.pdf
https://www.bnf.fr
https://www.onb.ac.at/
https://transkribus.eu/Transkribus/
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searchers question the ability of this model to deal
with noisy text (Sun et al., 2020) unless comple-
mentary techniques are used (Muller et al., 2019;
Pruthi et al., 2019).

More specifically, the built-in tokenizer of BERT
first performs simple white-space tokenization,
then applies a Byte Pair Encoding (BPE) based
tokenization, WordPiece (Wu et al., 2016). For ex-
ample, word can be split into character n-grams
(e.g. compatibility→ ’com’, ’##pa’, ’##ti’, ’##bil-
ity’), where ## is a special symbol for representing
the presence of a sub-word that was recognized.

Between the types of OCR errors that can be
encountered in historical documents, the character
insertion modification has the minimum influence
(Sun et al., 2020), because the tokenization at the
sub-word level of BERT would not change much in
some cases, such as ‘practically’→ ‘practicaally’.
Meanwhile, the substitution and deletion errors can
hurt the performance of the tokenizer the most due
to the generation of uncommon samples, such as
’professionalism’→ ’pr9fessi9nalism’ that is tok-
enized as ’pr’, ’##9’, ’##fes’, ’##si’, ’##9’, ’##nal’,
’##sm’. BERT has been demonstrated to have a sen-
sitivity to its sub-word segmentation when it comes
to such words, as the meaning of the sub-words
can diminish the initial meaning of the correctly
spelled word (Sun et al., 2020). Thus, these new
noisy tokens could influence the performance of
BERT-based models8.

On top of BERT, we add a stack of Transformer
blocks (encoders). A Transformer block (encoder),
as proposed in (Vaswani et al., 2017), is a deep
learning architecture based on multi-head attention
mechanisms with sinusoidal position embeddings.
It is composed of a stack of identical layers. Each
layer has two sub-layers. The first is a multi-head
self-attention mechanism, and the second is a sim-
ple, position-wise fully connected feed-forward
network. A residual connection is around each of
the two sub-layers, followed by layer normaliza-
tion. All sub-layers in the model, as well as the
embedding layers, produce outputs of dimension
512. In our implementation, we used learned abso-
lute positional embeddings (Gehring et al., 2017)
instead, as it is a common practice9. Vaswani et al.

8To increase the chances for misspelled, non-canonical,
or new words to be recognized, we enrich the vocabulary of
the tokenizer with these tokens, while allowing not only the
BERT encoder but also the added Transformer layers to learn
them from scratch.

9https://huggingface.co/

(2017) found that the two versions produced nearly
identical results.

We assume that the additional Transformer lay-
ers can alleviate the sensitivity of the built-in to-
kenizer of BERT towards OOV, OCR errors, or
misspellings, and contribute to the learning or find-
ing the proper informative words around entities.

5 Experiments

5.1 Baseline
We chose as a baseline the model proposed by Ma
and Hovy (2016), an end-to-end model combining
a BiLSTM and a CNN character encoding, in or-
der to take advantage of the word and character
features. The character-level features are known
to capture morphological and shape information
(Kanaris et al., 2007; Santos and Zadrozny, 2014;
dos Santos and Guimarães, 2015) that can also of-
fer the possibility of obtaining a representation for
misspelled, custom, or abnormal words. For the
baseline, we used the FastText10 pre-trained word
embedding models (Grave et al., 2018)11.

Additionally, we analyze the aid that can be
brought by an available larger dataset by training
the baseline model in two stages in a transfer learn-
ing setting, similar to the setting in which the BERT
encoder is used in our model:

1. pre-training, where the network is trained on
a larger-scale available contemporary dataset

2. fine-tuning, where the pre-trained network is
further trained on the historical datasets

The modern datasets are the following:

• For French, we use the fr-WikiNER12 dataset
that is extracted from Wikipedia articles.
It contains about 500k tokens from which
around 31k are named entities.

• For German, we use the de-GermEval13

dataset generated from German Wikipedia and
News Corpora as a collection of citations. The
dataset covers over 31k sentences correspond-
ing to over 590k tokens from which around
33k are named entities.

10https://fasttext.cc/docs/en/
crawl-vectors.html

11For a more detailed description of the model and of the
hyperparameters can be found in Ma and Hovy (2016).

12https://figshare.com/articles/
Learning_multilingual_named_entity_
recognition_from_Wikipedia/5462500

13https://sites.google.com/site/
germeval2014ner/data

https://huggingface.co/
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
https://figshare.com/articles/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500
https://sites.google.com/site/germeval2014ner/data
https://sites.google.com/site/germeval2014ner/data
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5.2 Metrics

The evaluation of the NER task is done in a coarse-
grained manner, with the entity (not token) as the
unit of reference (Makhoul et al., 1999). We com-
pute precision (P), recall (R), and F1 measure (F1)
at micro-level, i.e. error types are considered over
all documents. Two evaluation scenarios were con-
sidered: micro-strict, which looks for an exact
boundary matching, and micro-fuzzy, where a pre-
diction is correct when there is at least one token
overlap (Ehrmann et al., 2020a). Further, statistical
significance is measured through a two-tailed t-test,
with an estimated p-value between 0.01 and 0.05.

5.3 Data Pre-processing

The HIPE dataset was initially segmented at the
article-level. Since BERT is able to consume only
a limited context of tokens as their input (512), we
segment the articles at sentence-level. We also
reconstruct the original text, including hyphen-
ated words. The reconstructed text was passed
through Freeling 4.1 (Padró and Stanilovsky, 2012)
to obtain a segmentation based on sentences. We
made use of the same segmentation for the baseline
model. Moreover, for the BERT+n×Transf, we
feed the model with batches of same sized inputs.

5.4 Hyperarameters

The hyperparameters used for both models are de-
picted as follows.

For the German NER, we chose as a pre-trained
encoder the bert-base-german-europeana. This
BERT model has been used in other NER tasks
for processing contemporary and historical Ger-
man documents (Schweter and Baiter, 2019; Riedl
and Padó, 2018). It was trained using a large col-
lection of newspapers provided by the Europeana
Library.14

For the French NER, we rely on the large ver-
sion of the pre-trained CamemBERT (Martin et al.,
2020) model, i.e. (camembert-large). This model
was trained on a large French corpus. Camem-
BERT proposes some differences with respect
to other BERT models. For instance, it uses
whole-word masking and SentencePiece tokeniza-
tion (Kudo and Richardson, 2018) instead of Word-
Piece tokenization (Wu et al., 2016) as the original
BERT.

For the English dataset CoNLL, we ex-
perimented with both bert-base-cased and

14http://www.europeana-newspapers.eu/

bert-large-cased, pre-trained models presented
in (Devlin et al., 2019).

We denote the number of layers (i.e., Trans-
former blocks) as L, the hidden size as H ,
and the number of self-attention heads as A.
bert-base-cased has L=12, H=768, A=12,
bert-large-cased and camembert-large, L=24,
H=1024, A=16. In all the cases, the top Trans-
former blocks have L=1 for 1×Transf and L=2 for
2×Transf, H=128, A=12, chosen empirically. The
BERT-based encoders are fine-tuned on the task
during training.

For training, we followed the selection of pa-
rameters presented in (Devlin et al., 2019). We
found that 2× 10−5 learning rate and a mini-batch
of dimension 4 for German and English, and 2 for
French, provide the most stable and consistent con-
vergence across all experiments as evaluated on the
development set.

6 Results

In this section, we provide experimental results
of the baseline model and the proposed method.
In order to assess the ability of both models with
regard to the presence of errors provided by an
OCR, we present several experiments:

• In Table 2, the first two experiments are per-
formed with the baseline model, with and
without the pre-training proposed by the trans-
fer learning method on larger contemporary
datasets.

• It is necessary to analyze how sensitive the
proposed model is to the number of Trans-
former layers, the hyper-parameter n. There-
fore, we conduct two experiments for ablation
study with the n value ∈ {0, 1, 2}. The values
> 2 obtained lower performance results and
had a tendency to overfit. Therefore, in the
same Table 2, we present next these experi-
ments.

• In Table 3, the results for the baseline model
without any transfer learning (as it was un-
necessary) are presented, along with the same
ablation study for the BERT+n×Transf.

From the results in the Table 2, we can see the ev-
idence that the BERT-based models with n×Transf
achieve, for both datasets and languages, higher
micro-fuzzy and micro-strict performance values
than the BERT model stand-alone and the baseline

http://www.europeana-newspapers.eu/
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HIPE NEWSEYE
DE FR DE FR

P R F1 P R F1 P R F1 P R F1
BiLSTM-CNN
fuzzy 83.3 70.1 76.1 89.9 83.9 86.8 81.2 42.4 55.7 82.2 77.2 79.6
strict 69.4 58.4 63.4 77.7 72.5 75.0 54.8 28.6 37.6 65.5 61.4 63.4
BiLSTM-CNN (transfer learning)†

fuzzy 81.1 75.0 77.9** 87.8 88.8 88.3 76.4 49.4 60.0** 83.6 77.8 80.6*
strict 67.4 62.2 64.7** 77.3 78.2 77.7 48.6 31.4 38.1** 66.9 62.3 64.5*
BERT
fuzzy 83.4 88.3 85.8** 89.5 91.9 90.7* 60.1 67.0 63.4** 86.1 81.8 83.9**
strict 74.1 78.5 76.2** 81.1 83.3 82.1* 46.8 52.2 49.4** 70.1 66.6 68.3**
BERT+1×Transf
fuzzy 85.8 87.3 86.5** 91.3 92.9 92.1** 82.3 66.4 73.5** 88.7 82.1 85.3**
strict 77.2 78.6 77.9** 83.5 84.9 84.2** 62.7 50.6 56.0** 74.4 68.9 71.5**
BERT+2×Transf
fuzzy 87.0 87.2 87.1** 91.5 92.4 91.9** 83.3 64.4 72.6** 89.7 80.1 84.7

**
strict 78.6 78.7 78.7** 83.4 84.2 83.8** 64.9 50.2 56.6** 75.0 67.0 70.8**

Table 2: NER test results for the HIPE and NEWSEYE datasets in French and German. All models have as a
decoder layer a CRF. †= with pre-training on larger modern datasets. All metrics are micro. Statistical significance
is measured through a two-tailed t-test. * denotes a significant improvement over the BiLSTM model at p ≤ 0.05,
** denotes p ≤ 0.01.

models. All models have a statistical significance
< 0.01, thus, adding n×Transf can improve model
generalizability for NER on historical documents.

Moreover, they generally manage to maintain
a balance between recall and precision, while the
baseline models vary, depending on the language.
We also notice that, while in general, both mod-
els obtain a more or less precision-recall balance,
there are two cases where there is a large im-
balance, more specifically in the NEWSEYE Ger-
man dataset. Comparing with the baseline models,
the BERT+n×Transf only achieves a 20 percent-
age points difference between precision and recall,
while the baseline suffers from 40 points differ-
ence.

In the context of transfer learning applied for
the baseline models, two performance results, for
NEWSEYE in German, and for HIPE in French
are higher due to the fine-tuning on these datasets,
while the others are not degraded by the pre-
training on larger contemporary datasets. This ob-
servation confirms the previous studies done on
this type of model regarding their robustness to
misspellings (Sun et al., 2020; Pruthi et al., 2019).
We also notice that for German both datasets, the
results for transfer learning from contemporary Ger-

man datasets are statistically significant (< 0.01%),
while contemporary datasets the performance dif-
ference for both French datasets was minimal (ei-
ther < 0.5 for French NEWSEYE or < 0.9 for
French HIPE).

CoNLL-03
EN

P R F1
BiLSTM-CNN
micro-fuzzy 91.0 89.7 90.4
micro-strict 89.2 87.9 88.5

P R F1 P R F1
bert-base-cased bert-large-cased

BERT
micro-fuzzy 91.7 93.0 92.3 92.4 93.5 92.9
micro-strict 90.3 91.6 90.9 91.1 92.2 91.6
BERT+1×Transf
micro-fuzzy 92.5 93.2 92.8 92.7 93.4 93.1
micro-strict 91.1 91.8 91.4 91.4 92.1 91.8
BERT+2×Transf
micro-fuzzy 92.0 93.2 92.6 92.9 93.4 93.1
micro-strict 90.6 91.8 91.2 91.6 92.1 91.8

Table 3: NER test results for the CoNLL 2003 dataset.
All models have as a decoder layer a CRF.
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Figure 2: An example of NER predictions on the HIPE dataset in French (top part) and German (bottom part).

In the context of modern data, in the Table 3, the
F1 values of the stand-alone BERT model applied
on the CoNLL 2003 dataset fairly correspond to
the ones reported in (Devlin et al., 2019) (the au-
thors report a F1 of 92.4% for bert-base-cased
and 92.8% for bert-large-cased). While the F1
value has a very small margin difference from
the (Devlin et al., 2019), the performance re-
sults for the BERT+n×Transf slightly increased
for both proposed models. We assume that one
reason would be that the capacity of represen-
tation of extra Transformer layers, even in a
context where no misspelling errors are present,
can contribute to a modest improvement. While
this improvement is more visible for the BERT
bert-base-cased+1×Transf (a difference of a
half of percentage point), and 0.3 percentage
points for bert-base-cased+2×Transf, for the
bert-large-cased BERT+n×Transf, the values
remain unchanged (with a difference of 0.2 per-
centage points from BERT).

6.1 Discussion

For more qualitative analysis, we examine the
number of unrecognized words by the pre-trained
BERT-based models that were added to the specific
tokenizers (WordPiece for BERT and Sentence-
Piece for CamemBERT). For NEWSEYE German,
8.84% of the total number of words in the vocabu-
lary needed to be fully trained, while only 0.14%
were unknown in the HIPE dataset. Following this
observation, we notice that there is a large F1 mar-
gin between BERT+CRF and BERT+n×Transf
(63.4% in comparison with 73.5% and 72.6%, re-
spectively), a fact that could be motivated by the
large percentage of unknown words.

Moreover, for German, even though the BERT
encoder was pre-trained on a digitized historical
dataset (bert-base-german-europeana), the pro-
posed model contributed greatly to the coverage of
the misspelled or abnormal words present in the
NEWSEYE. For French, the results vary of around
1−2 percentage F1 points between the stand-alone
BERT and the BERT+n×Transf models.

Between the two datasets, only HIPE was also
annotated with the Levenshtein Ratio between the
gold standard entities and the transcribed ones. In
Figure 3, we compare BERT and BERT+n×Transf
by analyzing the number of correct predicted enti-
ties with respect to the Levenshtein distance. For
the French predictions, for 56.25% of the different
values of the distance, the stacked models had rela-
tively more correct predictions. A French example
of a misspelled entity that is recognized by both
BERT+n×Transf but not by BERT is presented in
Figure 2, in the upper part. For German, only in
18.75% of the cases, the stacked models have more
correctly identified entities that are misrecognized.

We also presume that the introduction by the
stacked Transformers of additional hyperparame-
ters can increase the ability of the architecture to
better model long-range contexts. Thus, we ana-
lyzed the correctly predicted German and French
HIPE entities by their length. We noticed that
BERT+n×Transf is better than BERT at predict-
ing entities composed of multiple tokens (large enti-
ties). For example, for French HIPE, from 170 enti-
ties with a length equal or higher than five tokens15,
the stand-alone BERT managed to correctly detect
70% of them, while both BERT+n×Transf models

15The length of French HIPE entities ranges from one to 21
tokens.
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Figure 3: Correct predictions of misspelled entities based on the Levenshtein Ratio.

correctly identified 72.94% of them. German HIPE
has less entities longer than five tokens16, more ex-
actly 97, and while the stand-alone BERT detected
50.51% of them, the BERT+n×Transf models cor-
rectly detected and classified 55.67% for n = 1
and 54.63% for n = 2. In the following examples
from Table 4, our method correctly predicted the
full entity frequently while the stand-alone BERT
only predicted a part of it.

Analyzing the French predictions for BERT and
BERT+n×Transf, we observed that BERT detects
on average 75.04% of the entities of size 1 to 10,
with other models performing slightly better. How-
ever, for entities with more than 10 tokens, there
is clear a difference, since BERT detects 55.54%
of the entities, while BERT+1×Transf detects
57.13%, and BERT+2×Transf reaches 82.52%.
Examples are given in Table 4.

Gold standard Predicted by

BERT BERT+n×Transf

signéKocH, avo-
cat

, avocat signéKocH, avocat

district de
Gumbinnen

Gumbinnen district de Gumbin-
nen

Armel Guerne.
son adaptateur

Armel
Guerne

Armel Guerne.
son adaptateur

M. Javits, sénateur
de New York juif
et pro- israèlien

M. Javits,
sénateur de
New York

M. Javits,
sénateur de
New York juif et
pro- israèlien

Table 4: Examples of long entities predicted by all mod-
els (the entity parts detected by BERT alone are high-
lighted in bold font under BERT+n×Transf).

In the lower part of Figure 2, we present a Ger-
man example where BERT becomes confused and

16The length of German HIPE entities ranges from one to
16 tokens.

predicts multiple partial spurious entities in a sen-
tence. One can also observe that these entities are
of two of the most common types in the dataset,
persons (PERS) and locations (LOC). In this case,
there is an overprediction of these types, which
leads us to the interpretation that BERT is sensitive
to misspellings and might overfit on OCR-related
patterns. This observation proves that BERT has
unbalanced attention to misspelled or corrupted
words when the most informative words contain
such errors (Sun et al., 2020).
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Figure 4: Number of spurious entities with respect to
micro-fuzzy and macro-fuzzy F1 regarding the HIPE
corpus.

To assess these assumptions, in Figure 4, we
compare, per model and language, the values of
micro-fuzzy F1 and macro-fuzzy F1 in the HIPE
corpus. We include, as well, the number of spu-
rious cases, i.e. tokens that were considered as
an entity, despite not belonging to one, such as
’Zusammenziehung’ in Figure 2.17 Due to the dif-
ference between micro and macro metrics, we can

17We obtained the spurious cases by searching for predicted
named entities that did not correspond, partially or totally, to
one in the gold standard.
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ascertain that the three presented models focused
on predicting the most frequent entity types, i.e.
PERS and LOC. Moreover, we can see that BERT
achieved its result by creating more spurious cases
in comparison to BERT+n×Transf. This could
mean that BERT learned that overpredicting was
a straightforward solution to achieve better results.
In the case of BERT+n×Transf, we can see that
the Transformer layers made the models to be more
conservative and at the same time more accurate in
their predictions.

7 Conclusions and Future Work

We presented a deep learning architecture for NER
based on stacked Transformer layers that includes a
fine-tuned BERT encoder and several Transformer
blocks. Results on two historical datasets in French
and German showed the fitness of the proposed
model to process noisy digitized text corpora in
distinct languages. At the same time, the approach
did not degrade the performance over modern data.
Thus, this type of model appears to be adapted for
the NER of historical document collections.

While the improvements brought by the pro-
posed NER model are clear, our analysis of the
results highlighted several factors that could influ-
ence the results. Further analysis remains to be
done. Thus, hereafter, we will investigate detailed
variations of our architecture. In addition, we in-
tend to explore data augmentation techniques, sim-
ulating digitized data by adding noise to digitally-
born documents. This could be a solution to in-
crease the size and expand the diversity of training
datasets for performing NLP tasks over historical
documents.
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Mickaël Coustaty, and Antoine Doucet. 2019. An
analysis of the performance of named entity recog-
nition over ocred documents. In 2019 ACM/IEEE
Joint Conference on Digital Libraries (JCDL), pages
333–334. IEEE.

William L. Hamilton, Jure Leskovec, and Dan Jurafsky.
2016. Diachronic word embeddings reveal statisti-
cal laws of semantic change. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1489–1501, Berlin, Germany. Association for Com-
putational Linguistics.
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