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Abstract

A problem in automatically generated stories
for image sequences is that they use overly
generic vocabulary and phrase structure and
fail to match the distributional characteristics
of human-generated text. We address this
problem by introducing explicit representa-
tions for objects and their relations by extract-
ing scene graphs from the images. Utiliz-
ing an embedding of this scene graph enables
our model to more explicitly reason over ob-
jects and their relations during story genera-
tion, compared to the global features from an
object classifier used in previous work. We
apply metrics that account for the diversity of
words and phrases of generated stories as well
as for reference to narratively-salient image
features and show that our approach outper-
forms previous systems. Our experiments also
indicate that our models obtain competitive re-
sults on reference-based metrics.

1 Introduction

Visual storytelling is the generation of a coherent
narrative from a series of images (Huang et al.,
2016). In this paper, we address a particular chal-
lenge in visual storytelling: reflecting human pref-
erences in narrative structure, especially the choice
of content words and phrases that comprise a read-
able story. Humans prefer to use diverse words and
phrases to construct the storyline to avoid repeti-
tions within or across sentences. For example, in
the human-written story in Fig. 1, very few con-
tent words are repeated. However, Modi and Parde
(2019) have found that recent work often gener-
ate repetitive words and phrases which leads to
repetitions across sentences and makes stories less
diverse. For example, in the first story of Fig. 1, the
model generates a verb phrase had a great time and
then repeats it in the fifth sentence. These words

1Typo generated by human: ”have” instead of ”gave”.
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Human: Governor Brandon had an event scheduled. When he arrived at his 
event he was escorted in by military men. He went to the serving line and ordered 
some food. He even gave the server a tip. The Governor have a speech about 
healthcare. After speech he stayed and talked to local people about their 
concerns. As few of the residents presented him with a jacket to show their 
appreciation. 

Baseline: everyone was excited for the ceremony to begin . everyone was 
excited to be there . he was very happy to be there . we had a great time . they all 
had a great time . 

Ours: i went to the party last week . the chef was preparing the food . he was 
very happy to see him . they had a great time . after the ceremony was over , 
everyone gathered together to talk about their plans .
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Figure 1: Example of extracting scene graphs from im-
ages and their relationship to content words and phrases
in the stories. The first story (Baseline) is generated by
AREL (Wang et al., 2018b). The second story (Ours)
is generated by our proposed model. The Human story
comes from the VIST dataset (Huang et al., 2016)1.

and phrases are usually overly generic. We argue
that this is because relations between objects in the
last image are not well-represented in the image
embedding, forcing the model to produce generic
alternatives.

We address this problem by employing a more
explicit and structured representation of objects and
their relations in form of scene graphs (Johnson
et al., 2015). Scene graphs encode both spatial and
predicate relations between objects in the images as
well as semantic event relations (actions and their
participants). Relations like (man, near, food) in
the scene graph in Fig. 1 are essential to generate
more specific noun phrases (e.g., the chef ) instead
of generic ones (e.g., everyone).

In our approach, we extract scene graphs from
the images and then learn scene graph embeddings
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using graph neural networks (Marcheggiani and
Perez-Beltrachini, 2018) for each image, which
combine the visual features and the discrete seman-
tic information from the scene graphs. A combi-
nation of story-wide and individual-image scene
graph features is then decoded in the form of a
story; parameter-sharing in the decoder encourages
narrative coherence.

One difficulty in learning scene graph embed-
dings together with an end-to-end visual story-
telling model is that they introduce a large num-
ber of parameters, increasing both computational
and learning complexity and making them more
difficult to integrate into larger, computationally-
expensive learning approaches. We therefore break
down the problem into a pipeline with three steps
designed to be parameter-efficient and trained inde-
pendently (Fig. 2): (1) the extraction and augmen-
tation of scene graphs with an existing automatic
tool; (2) the training of a graph encoder to obtain
scene graph embeddings; and (3) the application
of an attention-based visual storytelling model to
these embeddings to generate stories. The first
two steps establish that we can achieve competitive
results without an end-to-end model that requires
both story and image to be paired at all steps of
training. The third step uses an attention mecha-
nism to supplant a complex graph encoder in the
second step, reducing the number of parameters in
the story generation model.

Our results show that not only is this approach
competitive with other recent work in terms of stan-
dard reference-based measures (e.g., BLEU), it has
an addtional advantage: the distributional prop-
erties of the generated text are closer to human-
generated stories than the output of competing sys-
tems. The improved quality of the stories and the
finer control over the bias of the captioning model
afforded by our approach is thus reflected in the
outcome of our implementation and experiments.

The main contributions of this paper are:

(a) we introduce a pipeline method for visual
storytelling that uses a graph-to-sequence model
to learn embeddings for augmented scene graphs
and an attention mechanism to combine the scene
graph embeddings; (b) we perform the first fine-
grained analysis of the diversity of visual stories by
inspecting word and phrase distributions and show
that machine generated stories from previous mod-
els are far less diverse than human-written stories;
and (c) we show that the generated stories from our

pipeline are not only more diverse than previous
work but also more relevant to the images.

2 Related Work

Visual storytelling. Extracting a good representa-
tion of the information in the visual input is a key
part of the visual storytelling task. Prior work in
visual storytelling has typically opted for global
features extracted from a pre-trained convolutional
neural network (Liu et al., 2017; Yu et al., 2017;
Wang et al., 2018a,b; Huang et al., 2019) and has fo-
cused on improving the language generation model.
Wang et al. (2017) show that introducing regional
features and implicit coreference relations of enti-
ties leads to more human-realistic word usage in
generated stories. Only few prior works employ
an intermediate structured representation on story
telling task. Yang et al. (2019a) use an external
database of knowledge graphs to enchance the vi-
sual representation and improve story telling perfor-
mance. We use scene graphs extracted from images,
which does not require an external knowledgebase.
Wang et al. (2020) extract scene graphs from im-
ages and train an end-to-end model with a graph
convolutional encoder directly on visual stories.
We propose a pipeline method which first obtains
scene graph embeddings from images then applies
them to visual storytelling in order to reduce the
difficulty of learning both the scene graph embed-
dings and the story generation model together. Our
attention-based story generation model has less pa-
rameters while obtaining competitive results.
Scene graph representation. A scene graph is
a symbolic representation of structural informa-
tion where entities are nodes and their relations
are edges (Johnson et al., 2015). The large scene-
graph annotated Visual Genome (Krishna et al.,
2017) dataset has enabled the development of mod-
els to extract scene graph representations from im-
ages (Zellers et al., 2018; Chen et al., 2019). These
scene graph represenations have proven effective
on various tasks like image retrieval (Johnson et al.,
2015) and image generation (Johnson et al., 2018).
Scene graph based image captioning. A sequen-
tial scene graph representation is used to encode
images in Gao et al. (2018) to improve image cap-
tioning. Yang et al. (2019b) propose auto-encoding
text-based scene graphs to learn a shared dictio-
nary between visual and text based graphs, achiev-
ing state-of-the-art image captioning performance.
Wang et al. (2019b) show that image scene graphs
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extracted using a trained model can match the cap-
tioning performance of an oracle with access to
ground-truth graphs. Aligning text- and image-
based scene graphs has also been used to gener-
ate image captions without paired data (Gu et al.,
2019).

3 Model Design

The task of visual storytelling can be decomposed
into two distinct parts: (1) extracting relevant in-
formation from input images I into compact fea-
tures and (2) generating stories using these visual
features. We improve the visual feature represen-
tation by switching from commonly-used global
feature vectors to a scene graph-based represen-
tation which explicitly encodes objects and their
relations. We also reduce the number of parame-
ters by taking a modular approach that separates
learning scene graph embeddings from images and
generating visual stories. This allows us to indepen-
dently train the scene graph embedding model and
to design a visual storytelling model with fewer
parameters yet competitive performance.

Our full pipeline is shown in Fig. 2. We first ap-
ply a scene graph generator to extract scene graphs
containing vertices for objects and edges for rela-
tions between two objects. We then augment the
scene graph for each image by adding regional fea-
tures (see section 3.1). A graph neural network em-
beds each graph node by aggregating information
from across the graph. We propose a pre-training
step to independently learn this graph embedding.
To do this, we obtain the confidence of the object
detector for each object in each image, termed as
visual saliency, and construct a sequence of object
labels ordered by their visual saliency for each im-
age. Then we train a graph-to-sequence model to
predict this object sequence given the scene graph
embedding of the corresponding image (see section
3.2). To generate stories, we extract both global and
regional features from the scene graph embedding
for each image and feed them to an attention-based
story generation model (see section 3.3).

3.1 Scene Graph Augmentation

Scene graphs can be extracted with the Knowledge-
embedded Routing Network (KERN), a state-of-
the-art scene graph generator (Chen et al., 2019)
built on top of a Faster R-CNN object detector
(Ren et al., 2015). KERN generates scene graphs
G = (G1, G2, ..., GN ) for all images, where each

scene graph G′j = {Vj , Ej} contains a set of nodes
Vj representing recognised entities with node la-
bels v1, v2, ..., vM and a set of edges Ej with edge
labels representing relations between entities.

An issue here is that scene graphs are not always
connected, but graph neural encoders require con-
nected graphs as input (see the first scene graph
in Fig. 2). To obtain a single connected graph
for each image, we augment the scene graphs by
introducing a global node in each graph G′j , and
connect it to all other nodes in the graph.

At this stage, the augmented scene graph con-
tains discrete categorical triplets like (man, near,
table) (see Fig. 2 for examples). It does not contain
detailed visual appearance or shape information:
e.g., the color of the man’s suit. We address this
by augmenting each node in the graph with a cor-
responding visual feature vector. This is done by
extracting Regions of Interest (RoIs) of each object
from the backbone Faster R-CNN model of KERN.
Then we apply the RoI align algorithm (He et al.,
2017) to extract visual features corresponding to
each node. The global node is assigned the mean
features of all the nodes in the graph.

3.2 Scene Graph Embedding

We employ graph convolution networks (GCN;
Kipf and Welling, 2017) to encode our augmented
scene graph, since they have been effective in learn-
ing representations with graph-like structures like
parse trees (Du and Black, 2019) and knowledge
graphs (Song et al., 2020).

When it comes to the learning of the scene graph
encoders, we are inspired by human behaviours in
image description task. Objects that appear ear-
lier in image captions usually attract more human
attention and are more visually salient to humans
(Griffin and Bock, 2000; He et al., 2019). There is
a large agreement between human attended regions
and activation maps of the last convolutional layer
of a VGG-16 network, even though the VGG-16
network is not fine-tuned for captioning (He et al.,
2019). If a region of the feature maps is highly
activated, it is very likely to be classified as an
object with higher confidence. Therefore, we con-
clude that objects that appear earlier in captions
should have a higher confidence when they are
passed through a VGG-16 network. We make an
assumption that it is the same in visual storytelling
and leave the proof for future work due to space
limitations.
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Figure 2: Our pipeline for visual storytelling.

To simulate this phenomenon, we order the ob-
ject labels in the scene graph of each image with
their confidence and design a graph-to-sequence
model to predict this sequence. The model con-
tains two major components, a GCN which en-
codes the augmented scene graph and a recurrent
neural network decoder which generates the se-
quence of object labels (v1, v2, ..., vM ) ordered by
their visual saliency, i.e. confidence from the object
detector. This allows us to train the GCN in in a
self-supervised manner without needing additional
labels and keeps objects that tend to be more salient
in similar sequence positions across images, giving
them an advantage in training.
Graph encoder. We use a multiplicative Rela-
tional Graph Convolutional Network (mRGCN;
Hong et al., 2019), a variant of GCN assigning
parameters not only for nodes but also for edges in
a graph, as the graph encoder to introduce explicit
representations for edge labels. Given the aug-
mented scene graph G, each node is represented
with an regional visual feature vector xv ∈ Rd

extracted from the object detector. For the first
layer of the encoder, the hidden representation of
the node h1

v = xv. Then the l-th mRGCN layer

computes the hidden representation for node v in
(l + 1)-th layer as follows:

hl+1
v = f(Whl

v +
∑

u∈N(v)

Wdir(e)h
l
u ◦ re) (1)

where W ∈ Rd×h is a trainable parameter. N(v)
is the set of all neighbours of node v. f is the
ReLU non-linearity. “◦” is the Hadamard product,
Wdir(e) ∈ Rd×h, dir(e) ∈ {in, out} is the direc-
tion of the edge eu,v connecting u and v. re ∈ Rh

is an embedding of the label of the edge eu,v. Each
layer aggregates the direct neighbours of each node.
We stack L GCN layers to encode the full graph.
Object label generator. We use a two-layer
LSTM (Hochreiter and Schmidhuber, 1997) to
merge the node representations and generate the
sequence of object labels. We apply global atten-
tion (Luong et al., 2015) to re-weight the hidden
representations from the first layer and merge them
into a global hidden vector h′G. The we feed the
global hidden vector into two-layer feed-forward
networks to get the global encoder output hG. The
probability of node label yt conditioned on input
G and previous node label y1:t−1 is obtained by
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applying a softmax layer on the decoder output as
P (yt|y1:t−1, G) = softmax(g(hG,hC)), where
g is a perceptron.
Pre-training. The graph-to-sequence model is
trained to maximize the likelihood function ll =∏t=1
|Y | P (yt|y1:t−1, G). We use extracted visual fea-

tures as node embeddings and randomly initialise
edge embeddings in the encoder. We tune three
hyper-parameters on a validation set to minimise
the loss, namely the number of hidden units in
mRGCN encoder, the number of hidden units in
LSTM, and the number of GCN layers. Then we
extract augmented scene graph embeddings for the
target dataset. After the pre-training of the graph
embeddings, each node representation should con-
tain not only node-specific information but also the
information from neighbours up to a distance of L.

3.3 Attention-Based Story Generation
The pre-trained graph embeddings serve as input
to the story generation model. Instead of using a
full graph encoder as Wang et al. (2020), we use
the global representations of each image and the
local representations of each entity extracted from
the pre-trained mRGCN scene graph encoder. This
allows us to encode both object-specific informa-
tion and the relations between each object and the
whole image.

We use a dot product attention mechanism to
merge all the entities into one hidden vector for
each image as follows:

a =
exp(Kq)∑M

j=1 exp(Kjq)
(2)

h = VTa (3)

where we use the global image representations as
the query q ∈ Rd and local object representations
as the keys K ∈ RM×d and values V ∈ RM×d.

We follow Wang et al. (2018b) in using a GRU to
encode the hidden vectors of all images in a sequen-
tial manner and to generate the story. The model
is optimised using maximum likelihood estimation
with backpropagation.

4 Experiment and Evaluation

Now we show that using pre-trained scene graph
embeddings yields competitive results as compared
to state-of-the-art approaches on reference-based
metrics while using fewer parameters in the image
encoder. We also perform an ablation study to show

that all proposed components contribute to the per-
formance of the full model and that scene graph
embeddings are effective across different attention
mechanisms. While the reference-based metrics
are useful, they do not always correlate with bet-
ter story quality as perceived by humans (Wang
et al., 2018b). Hence, we also evaluate our model
in terms of diversity of word and phrase structure
and propose metrics to explicity measure the cor-
rectness of object references in section 5. Results
show that our scene graph-based model uses more
diverse/relevant words and phrases compared to
prior work.

4.1 Experiment Design

We train and evaluate our storytelling model on
the VIST dataset (Huang et al., 2016), containing
50K visual stories of 10K Flickr albums with 210K
images. Each story is based on a 5-image sequence.
We follow Wang et al. (2018b) and split the data
into 40K training, 10K validation, and 10K test
set. We extract scene graphs (including node and
edge labels) with the state-of-the-art scene graph
generator, KERN, mentioned above.

For neural architecture like GCN in scene graph
embeddings, we need to select one important hy-
perparameter, the number of layers in the GCN
encoder. We therefore perform a grid seach from
1 to the maximal diameter in all augmented scene
graph. The number of GCN layers is also bounded
by the memory size of our GPU cards. So we
choose a maximum of 6. We train the scene graph
embedding on the VIST dataset and select the opti-
mal setting by validation loss.

We compare our models with previous baselines:
Contextual Attention (CA; Wang et al., 2017)
uses local features from an object detector and a
contexual attention layer to intergrate features from
different images.
Hierarchically Structured Reinforcement
Learning (HSRL; Huang et al., 2019) proposed
a hierarchical RNN trained to generate stories by
reinforcement learning, with two critics including
a multi-modal and a language-style discriminator.
Adversarial Reward Learning (AREL; Wang
et al., 2018b) is an Adversarial REward Learn-
ing framework to learn an implicit reward func-
tion from human demonstrations and then optimize
policy search with the learned reward.
Hierarchical Photo-Scene Encoder (HPSR;
Wang et al., 2019a) applied hierarchically struc-
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Models # para B-1 B-2 B-3 B-4 M R-L C
CA (Wang et al., 2017) 3.36 M - - - - 31.73 - -
HSRL (Huang et al., 2019) 1.05 M - - - 12.3 35.2 30.8 10.7
AREL (Wang et al., 2018b) 1.05 M 63.7 39 23.1 14 35 29.6 9.5
HPSR (Wang et al., 2019a) 1.05 M 61.9 37.8 21.5 12.2 34.4 31.2 8
KS (Yang et al., 2019a) 1.05 M 66.4 39.2 23.1 12.8 35.2 29.9 12.1
SGVST (Wang et al., 2020) 3.41 M 65.1 40.1 23.8 14.7 35.8 29.9 9.8
Ours: SGEmb, attn 2.10 M 62.2 38.7 23.5 14.8 35.6 30.2 8.6

Table 1: Results of proposed model on test set compared to previous work using reference-based metrics including
BLEU (B), METEOR (M), ROUGE-L (R-L), and CIDEr-D (C). # para is the number of parameters in the image
encoder to obtain one vector representation for each image. Parameters in pre-trained components are not counted.

Model variations B-4 M R-L
Visual features
VGG global 13 34.4 29.7
ResNet global 13.6 34.9 29.5
SGEmb global 12 33.8 28.8
VGG, attn 13.5 35.5 30.1
Attention types
VGG, add attn 12.6 34.2 29.5
VGG, location attn 13.8 35.1 29.8
VGG, simple attn 13.9 35.1 29.7
SGEmb, add attn 13.6 35.5 30.1
SGEmb, location attn 14.1 35.5 30.1
SGEmb, simple attn 14 35.5 30.2
Our full model
SGEmb, attn 14.8 35.6 30.2

Table 2: Ablation study of our full model versus dif-
ferent variants using reference-based metrics including
BLEU-4 (B-4), METEOR (M), and ROUGE-L (R-L).

tured reinforcement learning to generate topically
coherent multi-sentence stories.
Knowledgeable Storyteller (KS; Yang et al.,
2019a) extract objects with an object detector, infer
relations between objects with an external knowl-
edge base, and train a knowledge-augmented story
generation model.
SGVST (Wang et al., 2020) extract scene graphs
from the image sequence and use GCN with tempo-
ral convolutionals to merge features across images.

The ablation study we performed over our full
model is intended to demonstrate whether the scene
graph embedding and the attention mechanism
contribute to the final results. We compare the
full model with the following simplified models:
VGG global is an seq2seq model using VGG16
(Simonyan and Zisserman, 2015) global features.
ResNet global is a seq2seq model using ResNet-

152 (He et al., 2016) global features.
SGEmb global is a seq2seq model which uses only
global features from the scene graph embedding.
VGG, attn is an attention-based model which uses
regional features directly from the object detector
instead of the scene graph embedding.
SGEmb, attn is our full model with scene graph
embedding and attention mechanism.

4.2 Reference-Based Evaluation
We first evaluate our model and ablations using
automatic reference-based metrics on the test set
to quantify the similarity between the generated
stories w.r.t. human-written ones. We use metrics
including unigram (B-1), bigram (B-2), trigram (B-
3), and 4-gram (B-4) BLEU scores (Papineni et al.,
2002), METEOR (M; Banerjee and Lavie, 2005),
ROUGE-L (R; Lin, 2004), and CIDEr (C; Vedan-
tam et al., 2015), based on Wang et al. (2018b)’s
evaluation code.
Comparison with baselines. We compare our
model with baselines on reference-based metrics
in table 1. Our model outperforms all previous
methods which do not utilize scene graphs (except
SGVST) on BLEU-4 and METEOR. Compared to
the recent work using scene graphs, SGVST, we
obtain a better score on BLEU-4 and competitive
results on BLEU-3, METEOR, and ROUGE-L, al-
though we perform with lower scores on BLEU-1,
BLEU-2, and CIDEr. This indicates that the rela-
tions between objects in scene graph embeddings
empower our model to generate long phrases that
are more similar to human text. However, the simi-
larity of shorter grammatical units is sacrificed.
Ablation study. We also report the results of our
ablated models to show the importance of the scene
graph embedding and the attention mechanism in
table 1. Removing the scene graph embedding
from our final model and using VGG features in-
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Human: It's great being the bookstore cat, I feel so literate! Oh 
yeah? It's way better being the liquor store cat! I feel sooo meow 
lol fft Who do you think you are? I'm Catman, who the hell are 
you? Would you two shut up and help me knit a sweater?

AREL: i went to the store last week . the cat was so excited to 
see him . i bought a lot of books . i bought a lot of stuff . the cat 
was very happy to see the cat .  

Ours: i went to the store to buy some books . the cat was very 
excited to see the dog . i had a lot of food . i had a great time at 
the restaurant . the cat was on the bed . 

Human: There was a good variety of costumes at this Halloween 
party. There was a pirate. There was a balloon man. There was 
even a Shrinner. The diversity of the outfits added color to this 
Halloween party. It also reminded us how different each of us are 
as individuals.  

AREL: the party was a lot of fun . we had a lot of fun at the 
party . we all had a lot of fun . we had a lot of fun playing games . 
at the end of the day , they all had a great time . 

Ours: it was time for the halloween party . there were a lot of 
people there . the man was dressed up as a man . the men are 
having a great time at the party . the whole family was there to 
celebrate the occasion .

Human: My family was taking a trip in another country. We 
decided to try the local river cruise to see the sites. It dropped us 
off deep in the jungle Me and dad were able to get alot of good 
photos. We ended up back in town at the end of the day.  

AREL: a group of friends went on a trip to the lake . we had a lot 
of fun . they were able to take a swim in the water . we had a 
great time . the river was very beautiful and beautiful . 

Ours: the family went on a trip to the lake . we went to the park 
to take a boat ride . the kids enjoyed the water and the water . 
we had a great time at the beach . it was a beautiful day .

Human: James would be retiring this year and everyone decided 
to get him a cake at work. The cake was the most delicious part 
of the lunch!  Everyone was really excited to wish him luck and 
get in line for some cake. It was great because everyone got to 
talk and remember the great times with their co-worker. James 
decides to wave goodbye for the final picture. Everyone will miss 
him. 

AREL: today , we had a cake . he was very excited . everyone 
was having a great time . all of my friends were there to celebrate 
. he was very happy to be there . 

Ours: it was a birthday cake for the party . i had a great time at 
the party . my friends and family were there to celebrate . i had a 
great time at the party . [male] was very happy to be there .

Figure 3: Qualitative results of our model versus AREL and human-written stories.

stead (VGG, attn) decreases BLEU-4 by 1.3 (-
8.8%). Using global features from the object detec-
tor (VGG global, ResNet global) or global scene
graph embeddings (SGEmb global) without the at-
tention mechanism harms performance across all
metrics significantly. We further compare models
using regional features from scene graph embed-
dings and from the VGG object detector across
different attention mechanisms, like additive atten-
tion (add attn; Bahdanau et al., 2014), location-
based attention (location attn; Luong et al., 2015),
simple attention (simple attn, computing coefficient
with keys only) and dot product attention (attn, i.e.,
the one we use in the full model). Results show
that scene graph embeddings boost performance of
models across all types of attention mechanisms on
all three metrics.

4.3 Qualitative Results

We perform a qualitative comparison to identify
what is different in generated stories when we in-
troduce scene graph embeddings and the attention
mechanism, as in Figure 1. AREL generates ev-
eryone, a very generic expression referring to all
man objects in the image. After introducing scene

graph embeddings, our model generates a more
specific term chef which can be inferred from the
sub-graph (man, near, food) of the second image.
More examples can be found in Figure 3.

5 Evaluating Diversity and Relevance

To get an in-depth understanding of the diversity
of different types of words or phrases in generated
stories, we perform the first fine-grained analysis
of the distributions of words by different Part-of-
Speech (POS) tags and phrases by different con-
stituent tags. We first process the generated stories
with a state-of-the-art POS tagger and constituency
parser (Joshi et al., 2018). Then we plot the fre-
quency vs. rank distributions following Zipf’s Law
for each POS tag and each constituent tag. We fol-
low Holtzman et al. (2019) to compute the Zipf’s
coefficient to check how similar the distributions
of generated stories are to human-written stories.
Using this metric, we compare the diversity of out-
put stories from our model to the baselines and to
the best-available prior work, AREL2.

2Despite our best efforts, we could not get access to the
code or stories generated by the SGVST model.
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Baselines Noun Verb Adj. Adv. Pronoun all
VGG global 1.141 1.592 1.67 2.06 2.186 1.195
ResNet global 1.107 1.428 1.461 1.843 1.545 1.172
AREL** 1.101 1.433 1.367 1.928 1.791 1.185
SGEmb global 1.14 1.505 1.645 2.127 1.859 1.185
VGG, attn 1.193 1.541 1.669 2.032 2.055 1.203
Ours: SGEmb, attn 1.092 1.439 1.495 1.995 1.617 1.165
Human 0.795 1.088 0.965 1.083 1.118 1.011

Table 3: Zipf’s coefficient of the word distribution on test set compared to baselines. The score of generated
stories should be as close to the human scores as possible, so the smaller numbers are better.

Baselines NP VP PP Adj. P Adv. P all
VGG global 1.191 1.208 1.148 1.023 3.043 1.067
ResNet global 1.128 1.054 1.087 1.215 2.424 1.013
AREL** 1.117 1.043 1.035 1.11 2.953 1
SGEmb global 1.164 1.137 1.119 1.309 3.456 1.046
VGG, attn 1.23 1.245 1.183 1.227 3.273 1.093
Ours: SGEmb, attn 1.101 1.037 1.007 1.057 1.959 0.987
Human 0.794 0.563 0.583 0.703 0.983 0.723

Table 4: Zipf’s coefficient of the phrase distribution on test set compared to baselines. The score of generated
stories should be as close to the human scores as possible, so the smaller numbers are better.

5.1 Word Diversity
In table 3, our model obtains the lowest Zipf’s co-
efficient, closest to the human score, which shows
that our model generates more diverse words than
the baselines. By POS tag, our model generates
the most diverse nouns. The ResNet global base-
line generate more diverse verbs, adverbs and pro-
nouns by using a stronger image feature extraction
backbone. Generating diverse adjectives requires
accurate visual features. The performance of our
model is bounded by the VGG object detector. Pro-
ducing pronouns requires cross-image coreference
resolutions for objects. Handling this implicitly
leads to sub-optimal results of our model diversity
in pronouns. However, our proposed architecture
is independent of the backbone network and can
be upgraded to the stronger ResNet backbone in
future work.

5.2 Phrase Diversity
From Table 4, we see that the phrase diversity
scores are similar to word diversity, with our model
achieving lowest Zipf’s coefficient overall and
across all tags except on adjective phrases. This
indicates that our stories are also more diverse on
the phrase level than the baselines. Suprisingly,
the VGG global obtains the lowest score on adjec-
tive phrases. We thus counted the unique adjective

phrases generated by VGG global (31) and by our
model (65). We can conclude that the VGG global
model generates less unique adjective phrases but
with a distribution closer to that of humans.

5.3 Relevance

Models match/story # matches
VGG global 1.62 1579
ResNet global 1.90 1859
AREL** 1.94 1896
SGEmb global 1.58 1542
VGG, attn 1.65 1613
Ours: SGEmb, attn 1.99 1946
Human 3.01 2939

Table 5: Relevance metric evaluation on the test set.

We show in previous sections that our model
generates more diverse nouns and noun phrases.
However, do these diverse nouns actually appear in
the corresponding images? To explicitly measure
this, we utilize the ground truth image captions
also available in VIST. Since human written cap-
tions refer to salient objects appearing the image,
we posit that a relevant story should also refer to
these objects as much as possible. Based on this we
can quantify the relevance of the generated stories.
First, we automatically match the noun phrases in
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the generated stories with the noun phrases in the
corresponding human image captions. The match-
ing is based on the head noun in the noun phrase.
We experimented with Lin’s similarity on Word-
Net synsets (Lin, 1998) and cosine similarity using
GloVe and BERT embeddings (Pennington et al.,
2014; Devlin et al., 2019). The threshold value
for counting a match was optimised to minimise
false positives on a set of human annotated matches
(number=194) from 10 stories in the validation set.
We obtained the highest precision using GloVe em-
beddings, with a threshold of 0.85 (precision=0.82,
recall=0.11). This metric is then computed on our
model as well as the baselines. The results in table
5 show that the stories generated by our model have
higher matches with entities in human-generated
captions. Our scene graph embedding model also
outperforms the model using the stronger ResNet
features, showing that explicitly representing ob-
jects and relations in the form of scene graphs helps
the model correctly refer to salient objects.

6 Conclusions

We show that introducing scene graph embeddings
into visual storytelling with a pipeline method can
obtain competitive results while reducing the num-
ber of parameters in the storytelling model. We
also perform the first fine-grained analysis on the
distributions of words and phrases in generated
stories which shows that scene graph embeddings
increase word and phrase diversities and bring the
distributions closer to that of humans. We finally
show that the diverse noun phrases we generate are
more relevant to the objects in the images.

Future work One benefit of this work is that it
provides a baseline for the pre-training of images
in visual storytelling, allowing for any images to
be used to augment the model without requiring
story text; in future work, we will show that this
mitigates the limitation of data size. We are cur-
rently working on how to merge regional represen-
tations for each graph effectively in pre-training
and storytelling. GCN is a powerful method for
pre-training, but the number of layers is strongly
related to the diameter of the graph which is highly
variable. A solution is to use Graph Transformer
(Cai and Lam, 2020) which learns global attentions
across the whole graph.

Moreover, we would like to explore how to ex-
tract features from images more accurately for sto-
rytelling. The edges of scene graphs in the Visual

Genome dataset only contain spatio-temporal rela-
tions and limited numbers of general actions like
‘holding’ as in Fig. 1. We need to extract more
common-sense directed events like ‘giving’ from
a sub-graph of the scene graph. This requires im-
plicit graph induction in the current model; we will
test an explicit component.
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