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Abstract

Many tasks are considered to be ‘solved’ in
the computational linguistics literature, but
the corresponding algorithms operate in ways
which are radically different from human cog-
nition. [ illustrate this by coming back to
the notion of semantic competence, which
includes basic linguistic skills encompassing
both referential phenomena and generic knowl-
edge, in particular a) the ability to denote, b)
the mastery of the lexicon, or c¢) the ability
to model one’s language use on others. Even
though each of those faculties has been exten-
sively tested individually, there is still no com-
putational model that would account for their
joint acquisition under the conditions experi-
enced by a human. In this paper, I focus on one
particular aspect of this problem: the amount
of linguistic data available to the child or ma-
chine. I show that given the first competence
mentioned above (a denotation function), the
other two can in fact be learned from very lim-
ited data (2.8M token), reaching state-of-the-
art performance. I argue that both the nature
of the data and the way it is presented to the
system matter to acquisition.

1 Introduction

Many tasks and datasets are considered solved
problems in the computational linguistics literature.
However, the data, training regimes and system ar-
chitectures required to obtain top performance are
unrealistic from the point of view of human cogni-
tion. Thus, state-of-the-art data-driven frameworks
can be considered excellent engineering solutions
to particular linguistic tasks, but they are not us-
able as ‘models’ of language acquisition, and thus
of limited applicability to test hypotheses about
human language.

This paper argues that core problems in compu-
tational linguistics should be ‘re-solved’ — solved
again — not as tasks, but as phenomena to simulate.
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This would involve a more careful attention to i) the
type of data fed to the system,; ii) the knowledge
already in-built in its architecture; iii) the mode
of learning implied by the training regime; iv) the
specific features exploited by the learning process;
and of course, v) the theoretical proposals explain-
ing the phenomenon. Some of these desiderata
have started being explored in the literature: the
BlackBox NLP events, for instance, are currently
fostering important discussions on the interpretabil-
ity of artificial neural systems (Linzen et al., 2018,
2019). Still, the field remains far from satisfying
all of them.

The work described in the following pages is
a step towards the simulation of a particular phe-
nomenon: the acquisition of core semantic com-
petences. Its specific focus is on data: more par-
ticularly, the type and size of the corpus a system
is exposed to. As we will see, talking about in-
put data (desideratum i. above) naturally brings
in questions about learning mechanisms (ii. and
iii.), and about representation (iv.) Let us first note
that an NLP system is typically exposed to at least
hundreds of millions of words, if not billions. In
contrast, a 3-year-old US child has only observed
25M words; a Mayan child of the same age will
hear as little as SM words (Cristia et al., 2017). In
spite of the limited data they are exposed to, a child
will reliably learn their language — this is referred
to as the ‘poverty of stimulus’ in Chomsky’s work.

If the stimulus is poor, we have to posit the exis-
tence of extra cognitive mechanisms to compensate
for the lack of explicit linguistic evidence. For
human syntax, Chomsky famously advocated the
existence of an innate Universal Grammar. I ar-
gue that there is an equivalent question to be asked
in machine learning: indeed, the architecture (ii.)
and hyperparameters (iii.) of a system, as well as
the specific representation of the input data (iv.),
are ‘innate’ features which are important to make
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explicit when describing a ‘data-driven’ system.
In what follows, I investigate a particular config-
uration of a semantic acquisition model. Specifi-
cally, I ask whether a particular type of input, based
on individual grounded entities, can make up for
data sparsity. Following this hypothesis, I propose
a model nicknamed EVA (Entity Vector Aggrega-
tor)! and compare it to the behaviour of a character-
based language model with no access to referential
information. I perform a battery of tests including
similarity, compatibility and acceptability judge-
ments, as well as lexical relation categorisation,
and demonstrate that when fed with the right data
and the right representation, the model learns core
semantic competences from as little as 2.8M words.

2 Semantic competence in the linguistic
literature

The notion of linguistic competence was intro-
duced by Chomsky Aspects of the theory of syntax
(Chomsky, 1965): competence is ‘knowing one’s
language’, and it must be distinguished from per-
formance, ‘using one’s language’. According to
Chomsky, the study of linguistics is the study of
competence. The linguist should try and elucidate
the underlying structure of the mental phenomenon
that leads to observable performance.

In syntax, competence is usually defined in terms
of grammaticality. The semantic equivalent is more
difficult to pinpoint, and various proposals have
been made. We will focus on three major positions
in this paper: semantic competence as mastery of
a) the lexicon; b) reference; ¢) language use.

1. Mastery of the lexicon: following Chom-
skian grammar, Katz and Fodor (1963) propose
that the goals of semantics can be obtained by “sub-
tracting grammar from the goals of a description
of a language” (p172). According to them, this
subtraction results in elements of lexical semantics,
including relations such as hyponymy or antonymy,
as well as word senses. Semantic competence is
then the ability to say that The paint is silent is not
felicitous, that The bill is large is ambiguous, or
again that There are two chairs in the room entails
There are at least two things in the room.

2. Ability to refer: coming from formal seman-
tics, Partee (1979) investigates the notion of a
‘godly’ speaker, who would have perfect ability

'The code for EVA is freely available at https://
github.com/minimalparts/EVA.
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to match words to extensions, and argues such a
speaker might embody (intensional) semantic com-
petence. She however also identifies logical issues
with that notion, in particular with respect to propo-
sitional attitudes. In Partee (2014), she offers a
compromise which recognises the important rela-
tion between linguistic constituents and external
reality, but also admits that language users can be
mistaken or simply ignorant when it comes to truth-
theoretic judgements.

3. Distributional consistency: Kripke (1972) ar-
gues for a ‘causal theory of reference’, which posits
that people use words in the way that they have
seen other people use it. Competent usage follows
from simple exposure to performance data, without
assuming fully competent extensional knowledge:
For instance, having heard Frege came to dinner
from some speaker, a competent listener might ask
Who is Frege?, having understood that Frege is a
person, but being unable to identify that person
in the world (see also Putnam, 1975 for a related
argument). Seen from a statistical perspective, this
position boils down to an idea of distributional con-
sistency, that is, the belief that speakers model their
language use on others. A notion of acceptability
derives from the theory (i.e. it would be incorrect
to ask What is Frege?), but in a way that is different
from the felicity conditions posited by Katz and
Fodor (1963): while Katz and Fodor assume that
felicity comes from the rules of the lexicon, the
Kripkian account implies that it emerges from the
language use following an initial reference act.

This paper starts from the assumption that all
three definitions should be satisfied to speak of se-
mantic competence. That is, I will posit that we
need meaning representations that allow us to de-
note (to satisfy 2), for which we have descriptions
or referring expressions by actual language users
(to satisfy 3), and over which we can learn lexical
relations (to satisfy 1). To achieve this, I will hy-
pothesise a semantics based on instances (which
can be aggregated into sets in a formal semantics
fashion), but represented in terms of the statisti-
cal properties of language use. I will propose a
representation which satisfies both requirements in
84.

3 (Small) data

The input data we will work with is a set of
grounded ‘utterances’ extracted from annotations
in the Visual Genome (VG) dataset (Krishna et al.,
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2017). This annotated set displays several impor-
tant properties. First, it is small (around 2.8M to-
kens), so compatible in scale with the limited data
a learner is exposed to. Second, while it does not
quite correspond to the type of sentences a child
might be exposed to, it has some similarities with
a realistic ‘early’ linguistic diet: the simple image
annotations can be regarded as utterances of the
type Look! The dog is playing with the ball. Third,
it encodes the particular representational aspects
we want to investigate: it is anchored in a clear no-
tion of grounded instances (the individual objects
in an image) and corresponding language use (the
human-generated captions/annotations associated
with each bounding box).

The VG itself consists of a set of 108,077 im-
ages annotated with 5.4M region descriptions as
well as 3.8M object referents,” 2.8M attributes and
2.3M relationships. All objects are associated with
a unique identifier, meaning that we can use such
identifiers as a set of object variables for the partic-
ular universe defined by the VG.

I follow the methodology introduced by Kuz-
menko and Herbelot (2019), who extract informa-
tion about VG instances and use it to create a ‘set-
theoretic’ vector space. The example below shows
a subset of the annotation for image ID 1, after
some initial pre-processing of the data. I assume
that each image corresponds to some ‘situation’,
in the spirit of Young et al. (2014). So situation 1
contains a tall brick building, identified by variable
1058508, on which we find a black sign, identified
by variable 1058507. Object types are recognis-
able through their suffix (e.g. butlding.n, sign.n),
attributes consist of all other one-place predicates
(e.g. tall, made|of|bricks); and relationships con-
sist of all two-place predicates (e.g. on).

<situation id=1>

<entity id=1058508>
building.n(1058508)
tall(1058508)
brick (1058508)
made |of |bricks (1058508)
on (1058507,1058508)
</entity>
<entity id=1058507>
sign.n(1058507)
black (1058507)
on (1058507,1058508)
</entity>

</situation>

’In the VG, object referents are associated with WordNet
synsets. For simplicity, I collapse all WordNet senses together,
but this has hardly any effect on the size of the object referents’
set which, including sense annotations, would amount to 1203
unique types vs 1188 when ignoring sense.
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We can straightforwardly obtain shallow logical
forms associated with each situation, e.g.:

building.n’ (1058508), tall’ (1058508), brick’ (1058508),
sign.n’(1058507), black’ (1058507),
on (1058507, 1058508)

For simplicity (and because each entity
only occurs once in VG), I transform two-
place predicates into two one-place predi-
cates: e.g.  on(1058507,1058508) becomes
on(1058507, building.n’), on(sign.n’, 1058508),
respectively denoting the set of things that are on
buildings, and the set of things that signs are on.

The provided annotations together with the asso-
ciated objects, attributes and relations can be taken
to be a partial description of some subset of the
real world (i.e. the subset encapsulated by the im-
ages). This can be illustrated by considering the
following two instances of bear (objects referents
158539 and 1617277), together will all their anno-
tated relations:

158539 bear.n has(-,eye.n) has(-,claw.n) has(-,paw.n)
has(-,mark.n) beside(grass.n,-)has(-,ear.n)
on(-,land.n) has(-,leg.n) has(-,nose.n)

1617277  bear.n has(-,fur.n) has(-,nose.n)

We see that two instances can be annotated with
different degrees of granularity in the VG. The
first instance above includes many more details
about the physical appearance of the bear, although
the second includes the relation ‘has fur’, which
is missed by the first one. That is, we have two
different ‘experiences’ of bears, associated with ut-
terances which, in a realistic situation, could have
come from the learner’s carer (‘Look at the bear
next to the grass, look at its claws!’) This is a
typical example of the ‘poverty of the stimulus’ ef-
fect: the performance data associated with those
instances of bear is both incomplete (the linguistic
data only describes part of the bears) and inconsis-
tent (the two descriptions are very dissimilar).

In order to fully exploit the information in the
VG, the annotated attributes and relationships are
supplemented with a third type of linguistic in-
formation: simple extensional co-occurrences are
computed, thus modelling an implicit logical and
(the comma in the shallow logical form). Le., if
a bear occurs in an image under a cloudy sky, the
model registers the co-occurrence of a bear entity
with a sky entity. In what follows, I refer to such
implicit relations under the general term of situa-
tional co-occurrences, to express the fact that the



extensional co-occurrence takes place within a sin-
gle situation.

4 Models

In the field of computational linguistics, we often
take models to be ‘algorithms’, independently of
the data they are trained on, and often, indepen-
dently from the assumptions that the algorithm is
built upon. But as pointed out in the introduction
to this paper, what is in the data, what is inbuilt
in the algorithm, and how the data is presented to
the learning process determines the extent to which
one can speak of a scientific model of such or such
phenomenon. Therefore, I will talk of a ‘model” as
a combination of a particular system / algorithm
(with its specific assumptions) and a particular type
of data.

In what follows, in the spirit of fixing the learn-
ing mechanism as much as possible, I present three
models based on very similar algorithms (variants
of skip-gram language models). I however vary
the data input into the system, both in size and
representation.

Pretrained FastText (FT): The first model un-
der consideration is a pre-trained, state-of-the-art
set of vectors, generated with FastText (Bojanowski
et al., 2017). The system is a character-based lan-
guage model and thus unsuitable for encoding ex-
tensions (that is, it will not satisfy the ability to refer
in our set of semantic competences). However, it
provides a helpful upper-bound for the tasks that
language models excel at. The FastText vectors’
were obtained from training over 16B tokens from
a Wikipedia snapshot, the UMBC webbase cor-
pus (Han et al., 2013) and statmt.org news dataset
(Mikolov et al., 2018).

FastText trained on VG (FTVG): Being based
on simple character ngrams, FastText is well suited
to learning from smaller data (Mikolov et al., 2018).
A FastText model is trained with default settings
on a portion of the Visual Genome’s 5.4M region
descriptions. Such descriptions are short phrases or
sentences of the type man wearing red and black
surf apparel or Red bus has advertisements that
says 123 Current Account Santander. From those
descriptions, 2.8M tokens are used to match the
size of the next system’s background data (see
‘EVA’ below). FTVG differs from FT not only

*Freely available at https://fasttext.cc/docs/
en/english-vectors.html.

with respect to the size but also the presentation of
its data: while FTVG is exposed to raw utterances
like FT, those utterances are broken down by in-
stance (the data contains one description per line,
so a target word is only ever found in contexts that
pertain to the same instance).

EVA: Finally, a third model is proposed. Nick-
named EVA (Entity Vector Aggregator), it is gener-
ated straight from the extensional information con-
tained in the VG annotations (the attributes, rela-
tionships and situational co-occurrences described
in §3). Before being fed to the skip-gram, the data
is converted into a form akin to a set-theoretic vec-
tor space, using the procedure below.

First, let Pr, be the predicates in some logic and
U the entities in some universe. Let us define a
vector space model by using some interpretation
function ||.|| to return the denotations of Py,:

LI+ (PLUU)* = (P xU) = {0,1})

An example of such a vector space is shown
on the left of Fig 1. I will refer to it as an entity
matrix: each predicate is associated with a point
expressed in terms of a vector basis U (so each
dimension corresponds to an entity). The point is
a straightforward representation of the extension
of the predicate, and shows the entities that the
predicate is true of. For instance, following the first
row of the matrix, we find that the set of bears in
our toy space is {1, z2}.

We can then define an aggregation function Ap
which groups context elements by predicate (e.g.
all objects that are bears are aggregated into a single
bear’ vector by pointwise addition):

AD : ((PL XU) — {0, 1}) — ((PLXPL> — NO)

This operation results in a vector space such as
the one shown on the right of Fig 1. I will refer
to it as a predicate matrix, since the basis is now
made of the predicates in Pr,.

An entity and predicate matrix are built for the
VG, using the following restrictions. We ignore ob-
jects which are not annotated with any attribute or
relation and would result in 0 vectors, thus obtain-
ing around 2M entities. Further, the entity matrix is
constructed for predicates with frequency over 100.
The result of this pre-processing is a 2M x 8284
matrix, where the predicates include 1188 object
types, 798 attributes and 6283 relationships.
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‘ x1 ‘ x2 ‘ x3 ‘ x4 ‘ x5 ‘ x6 ‘
bear’ 1 1 0 0 0 0
white’ 1 0 0 0 0 0
black’ 0 1 0 0 0 0
tree’ 0 0 1 1 1 1
old’ 0 0 1 1 0 0
young’ 1 1 0 0 1 1

‘ bear’ ‘ white’ ‘ black’ ‘ tree’ ‘ old’ ‘ young ‘
bear’ 2 1 1 0 0 2
white’ 1 1 0 0 0 1
black’ 1 0 1 0 0 1
tree’ 0 0 0 4 2 2
old’ 0 0 0 2 2 0
young’ 2 1 1 2 0 2

Figure 1: Left: an entity matrix, showing the entities that a predicate is true of. Right: the corresponding predicate
matrix, after aggregation with function Ap. The first row is simply the pointwise addition of the first two columns

in the entity matrix (the two bear entities).

We can compare the figures above to the size of
the large FT pretrained model by counting the num-
ber of unique tokens in the Visual Genome data,
where ‘unique’ means that the token — whether
object type, attribute or relationship — appears
with a specific entity. Since two-place predi-
cates are transformed into two one-place predi-
cates, the token is incremented for each argument
separately (e.g. tree(3787077) is one token but
parked-on(1058515,1058539) gives two tokens).
This comes to 1,590,861 tokens for one-place pred-
icates (object type and attributes) and 1,224,582 to-
kens for two-place predicates (relationships), thus
around 2.8M tokens in total.* So EVA is exposed
to around 5700 less data than FT. It however has
the advantage of being grounded in a clear notion
of entity, thus matching the type of situated speech
that forms most of a child’s diet (Clark, 2009). Fur-
ther, the corpus size is in line with the number of
tokens that a child might get directed at them in
around a year of early life.

The challenge for both FTVG and EVA is to
deal with the poverty of the stimulus. It is worth
recalling that Landauer and Dumais (1997) sug-
gested a solution to the problem which involved
the use of Principal Component Analysis (PCA)
as a dimensionality reduction method over a dis-
tributional matrix. The use of PCA was meant to
capture the main axes of variance over the limited
data given to the model, allowing for fast generali-
sation. Later models of distributional semantics, in
particular neural architectures (e.g. the skip-gram
of Mikolov et al., 2013), do not explicitly mention
dimensionality reduction as a way to successfully
generalise over insufficient data, but the intuition
remains implicit in the choice of dimensionality
of the embedding layers. FTVG can rely on this
mechanism, as well as its character-ngram model.
EVA needs its own way to surmount the issue, and

“*Note that in the original VG annotation, region descrip-
tions are not fully aligned with object / attribute / relation
annotations and typically contain more information. So the
data given to FTVG and EVA may present slight variations.

because it encodes extensional information, it has
to deal with the poverty of the stimulus not only
at the level of the linguistic input, but also at the
denotation level. (As we have seen before, the VG
is in no way an exhaustive and accurate representa-
tion of the world.) In other words, we want EVA
to learn word embeddings at reduced dimension-
ality like its competitors, but from co-occurring
extensions.

The implementation of EVA’s embedding func-
tion is extremely simple and does away with some
of the hyperparameters used by the original skip-
gram model. It takes a predicate matrix of size
m X m, as would be produced by the aggregation
function Ap, subsamples the counts in that ma-
trix (lowering very frequent counts), and performs
a prediction task. That task consists in predict-
ing whether a ‘target’ predicate (from the rows
of the matrix) and a ‘context’ predicate (from the
columns of the matrix) have been seen together
in the description of a unique, grounded entity. A
‘positive’ example for the target bear’ might be the
predicate brown’ (some bear entity has been seen
to be brown). A ‘negative’ sample for the same tar-
get bear’ might be transparent’. Positive samples
are taken in shuffled order from the subsampled
matrix, while negative samples are randomly cho-
sen amongst the zero values of the matrix. As
in the original skip-gram with negative sampling,
embeddings for each predicate are first randomly
initialised and fine-tuned in the process of doing
the prediction task. A dimensionality of 300 gives
optimal results in preliminary experiments over our
development set. Therefore, results shown in the
next sections are for this dimensionality only.

We use two main approaches for testing repre-
sentations: a) for the similarity task, as is standard
in the literature, we directly compute the relative
position of embeddings in the space using the co-
sine metric; b) for other tasks, we use the vectors as
input to a very simple feedforward neural net archi-
tectures, learning dedicated weights for each task
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Figure 2: A simple neural architecture.

over frozen background representations. The archi-
tecture used across tasks is shown in Fig. 2. It con-
sists of an input taking two word vectors, mapped
to a hidden layer with reduced dimensionality. All
hidden layer representations are then concatenated
and passed through a second hidden layer which
is then fed to the output layer. The output layer
may consist of a single node or several, depending
on whether the task requires regression or classi-
fication. A RELu non-linearity is applied to the
input layer and first (concatenated) hidden layer. A
softmax is used on the last layer for classification
tasks.

The training regime for all three models is as
follows. A single grid search is performed over
the hyperparameter space, using 200 iterations of
Bayesian optimisation® with early stopping. For
EVA, I follow results by Kuzmenko and Herbe-
lot (2019) showing that linguistic phenomena are
not all modelled by the same feature types in the
VG. The validation data is used to select the best
combination of feature types for a task (attributes,
relations, situational co-occurrences), running the
hyperparameter optimisation over all possible com-
binations. For all models, the five best hyperparam-
eter sets are then selected according to validation
results, and their stability is checked by perform-
ing 10 extra validation runs on each set, yielding
10 models per combination. The 10 models corre-

This step uses the package available at https://
github.com/fmfn/BayesianOptimization. Hy-
perparameters are optimised in the following ranges: learning
rate and regularisation, [0.001 — 0.01]; epochs, [100 — 500];
minibatch size, [16 — 1024]; size of hidden layer, from 100
to initial vector size for FastText, and EVA; and in the range
50 — 100 for FTVG.

sponding to the best average score are then applied
to the test set and an average score is reported over
the test data, together with standard deviation.

5 Evaluation procedure

The entity matrix is evaluated in terms of the three
aspects of competence we discussed in §2: knowl-
edge of core lexical relations (Katz and Fodor,
1963), knowledge of ‘acceptable’ use of a term
(again, Katz and Fodor, 1963, but also Putnam,
1975; Kripke, 1972), and of course, ability to re-
trieve the extension of a term (Partee, 1979).

Lexical relations: the models are evaluated on
three different datasets encoding different aspects
of lexical knowledge, namely the relation of simi-
larity, the ability of the model to classify specific
relations such as hyponymy or meronymy, and fi-
nally the relation of incompatibility. First, Simi-
larity is evaluated against SimLex-999 (Hill et al.,
2015), a set of 999 pairs meant to capture sim-
ilar rather than merely related items. The sec-
ond test is to evaluate the ability of the model
to distinguish between particular relations, as en-
coded in the BLESS dataset (Baroni and Lenci,
2011). BLESS contains 26554 pairs annotated
for hyponymy, meronymy, co-hyponymy, attribute
and event relations (an additional class is included
for the absence of relation and is marked as ‘ran-
dom’). Finally, the models are fed the incompat-
ibility dataset of Kruszewski and Baroni (2015).
This dataset contains 17973 word pairs associated
with a compatibility judgement elicited from hu-
man annotators, on a scale from 1 to 7. So for in-
stance, the pair airplane-baby has a mean score of
1 (fully incompatible), dessert-vegetable a score of
3 (somewhat compatible) and airplane-jet a score
of 6.6 (close to full compatibility). All datasets are
pre-processed to only keep the instances containing
words present in the VG corpus, thus reducing the
size of each available resource. The three models
are evaluated on the same data.

The overall number of tested instances is shown
for each dataset in Table 1, as well as the splits
between training, validation and test sets. Note that
SimLex-999 is evaluated in the standard fashion, by
computing cosine distance between vectors in the
space, with no further training involved. The data
is nevertheless split into validation and test sets to
allow for the selection of the best set of features
for EVA at validation stage (out of the attributes,
relationships and situational co-occurrences). To
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Dataset # Instances post-filtering | Train Val Test
SimLex-999* 169 - 100 69
BLESS 1764 1200 | 300 | 264
Compatibility 2074 1500 | 300 | 274
Acceptability 1030 700 200 130

Table 1: Number of instances left in datasets after filter-
ing against VG vocabulary. Splits into train, validation
and test sets are shown. Due to the small number of in-
stances in SimLex-999, systems are evaluated 10 times
on that dataset, using 10 random splits.

confirm robustness of the reported results, systems
are run over 10 random splits of the 169 instances in
the dataset, and average correlations are reported.

Acceptability: there are various datasets for ac-
ceptability / plausibility judgements (e.g. Vecchi
et al., 2017; Wang et al., 2018), but one is needed
which contains a fair number of concrete nouns,
to match the VG data. The compound dataset of
Graves et al. (2013) fulfils this requirement: it con-
sists of 2160 compound nouns annotated by hu-
mans on a scale of 0 to 4, made of 500 concrete
nouns. Half of the compounds are attested collo-
cations like television chef, while the others are
unattested, like bike barn or book puppy. Again,
the data is filtered to keep only the pairs containing
words included in the VG dataset.

Let us note here that the acceptability task is
interestingly different from learning the incompati-
bility relation, whilst sharing some aspects with it.
The nouns tested for incompatibility in the previous
section (e.g. zebra - woman) represent labels which
may or may not denote the same sets: the task is
extensional in nature. The acceptability task, on
the other hand, tests to what extent a speaker might
generate a plausible interpretation for a given com-
pound noun. This involves inferring a tacit relation
between the nouns. So for instance, lawn guy is
judged fairly acceptable by humans (average score
of 3.464 out of 4), presumably because a lawn guy
might be the guy who is standing on the lawn, or
the guy who normally mows the lawn, etc.

Extensions: reference is deterministically en-
coded in EVA. To make this clear, the next section
provides illustrative examples of composition over
VG categories. It also shows how referents are re-
trieved by the model and how dimensions can be
aggregated to quantify over instances of subkinds.

6 Results

This section contains results obtained on the vali-
dation and test portions of our datasets (see Table 1
for data splits).

Table 2 shows how EVA’s performance on the
validation sets depends on the combination of VG
feature types used in training. Various observa-
tions can be made with regard to the results, start-
ing with the most striking effect: SimLex-999 is
extremely sensitive to data type. The similarity
dataset shows correlations between 0.14 (when us-
ing situational co-occurrence only) and 0.39 (when
using attributes and relations). In general, it is clear
that using situational co-occurrences is detrimental
to the performance of the system. This is to be
expected, since the similarity evaluation is geared
towards identifying taxonomic siblings (e.g. cat,
dog: kinds that are structurally similar) rather than
related items (e.g. cat, meow: kinds or events that
might co-occur in the same situations).

Other datasets are less affected by feature selec-
tion but still show a preference for certain inputs.
Notably, BLESS performs at its best when using
situation information. This is perhaps due to the
distinctions that the model has to perform between
classes such as taxonomic siblings, meronyms and
‘other’ relations. Meronymy, in particular, requires
to distinguish between items that simply co-occur
in a situation (cat and garden) and those that co-
occur but are also part of a relation (cat has-a paw).
Finally, relations seem crucial to get best perfor-
mance on the incompatibility dataset.

Moving to the test set, we only retain the mod-
els with highest performance on the validation data
(Att+Rel for SimLex-999, Sit for BLESS, Att for ac-
ceptability and A#f+Sit for incompatibility). Over-
all results are provided in Table 3 for all three mod-
els (FT, FTVG and EVA), and discussed below.

Lexical relations: On the similarity task
(SimLex-999), EVA outperforms FTVG by 10
points and lags behind the huge pre-trained FT
by only one point. The classification of lexical
relations (BLESS) is achieved by all systems with
high accuracy, without significant differences.
Finally, performance on incompatibility is slightly
over state-of-the-art level for both systems trained
on the VG. EVA gives the best overall score,
outperforming pretrained FT by two points. In
other words, the system built on denotations
is the overall winner when considering lexical
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Att Rel Sit Att+Rel Att+Sit Rel+Sit Att+Rel+Sit
SimLex (p) 0.33+£0.04 | 038+0.04 | 0.14 +=0.05 | 0.39+=0.04 | 0.16 =0.05 | 025+ 0.05 | 0.24 +0.04
BLESS (acc.) 0.89 £0.00 | 0.89 £0.00 | 092+0.01 | 091 £0.00 | 091 £0.00 | 091 £0.00 | 091 £ 0.00
Accept. (p) 0.50 £ 0.01 | 0.47£0.01 | 047 +0.01 | 048+0.02 | 048+0.01 | 0.49+0.02 | 0.46 £+ 0.01
Incompat. (p) | 0.42+0.02 | 0.45+0.03 | 043 £0.01 0.47 £ 0.04 | 0424+0.02 | 0.454+0.02 | 0.45+0.03

Table 2: EVA performance on validation set, for different combinations of feature types. The figures

averaged over 10 runs.

shown are

Corpus SimLex BLESS Incompatibility | Acceptability | Reference
size o acc. p P
FT 16B 0.39 £0.08 | 0.87 +0.01 0.43 +0.04 0.59 +0.02 X
FTVG | 2.8M | 0.28 £0.12 | 0.86 £+ 0.01 0.44 +0.06 0.58 £ 0.01 X
EVA 28M | 0.38 +0.10 | 0.87 £+ 0.01 0.45 +0.04 0.56 +0.02 v

Table 3: Test results on all datasets.

competence, despite being trained on very scarce
data.

Semantic acceptability: This time, we see that
FTVG slightly outperforms EVA (p = 0.58 vs
p = 0.56), possibly by virtue of being a language
model and thus more suited to encoding word us-
age, in the sense of ‘distributional consistency’ (see
§2). It is nevertheless striking that minimal training
over data which encodes no surface information
achieves very reasonable performance, in the range
of pretrained FT (p = 0.59). This can be taken
as confirmation that acceptability can be learned
successfully from an extensional representation.

Extensions: To complete the above results, let
us recall that EVA encodes reference by default,
since the raw entity matrix (before aggregation and
dimensionality reduction) captures how predicates
are associated with entities. Denotations are
therefore returned fully deterministically. To
illustrate this, I give here an example of basic
intersective composition in the VG model. Given
the entity matrix, set intersection is simply ex-
pressed as pointwise multiplication. For instance,
the denotation of the phrase brown bear can be
obtained by multiplication of the bear and brown
entity vectors. The operation returns brown bear
entities in the Visual Genome with their other
properties, as exemplified below:

5460844  bear.n.01, brown, large, adult, big,
with(-,bear.n.01)

5464728  bear.n.01, brown, furry, shaggy, fuzzy,
splashing, posing, big, in(-,water.n.01)

4868617  bear.n.01, brown, wearing(-,jean.n.01),

on(-,pillow.n.01), holding(baby.n.01,-)

Given the entity matrix, it is possible to multiply
any number of vectors to obtain denotations for,
say, ‘playing brown bears’, ‘playing white bears’,

or ‘cute teddy bears’, and inspect the corresponding
subspaces (that is, the basis made of the individuals
in the denotations). In those subspaces, only the
vectors corresponding to annotated properties for
the respective sets are non-zero. For instance, there
are five playing white bears in the VG, forming a
5-dimensional subspace with 38 non-zero property
vectors. Quantification can be defined for particu-
lar restrictors (subsets of playing white bears) and
scopes (the property vectors) by aggregating indi-
viduals into a 1-dimensional basis representing a
subkind and reading set overlap relations off the
normalised version of that basis.

To illustrate this, let us consider the three sub-
kinds ‘playing white bears’, ‘playing brown bears’
and ‘cute teddy bears’. For each subkind, having
applied intersective composition to the vectors in
the entity matrix by pointwise multiplication, we
obtain a denotation vector which can be aggregated
using Ap. The result of such operation is shown
in Fig 3, with some relevant property vectors. Fol-
lowing normalisation, the weight of a vector along
a dimension can be read as the probability of an
instance of the set represented by the dimension
to have the property of the vector. So for instance,
there is a 0.6 probability that a playing white bear
is in water, versus a 0.36 probability for playing
brown bears in the VG data. While being prelimi-
nary, such observations about the behaviour of the
EVA representations indicate that it could encode a
number of important set-theoretic properties, mak-
ing it properly compatible with formal semantics
approaches.

7 Conclusion

This paper made the case for solving existing tasks
with models more in line with cognitive reality, ar-
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Figure 3: Result of intersective composition over EVA vectors.

guing in particular for the use of smaller corpora.
Coming back to the points made in our introduc-
tion, I summarise the contributions of the model
with respect to desirable aspects of a language ac-
quisition ‘simulation’.

First, we have seen that systems trained on 2.8M
tokens of VG data are competitive with a large
language model pretrained on 5700 times more data
when tested on core lexical tasks. On the similarity
task, the reference-based system EVA considerably
outperforms a language model trained on the same
amount of data, emerging as the best ‘small data’
model.

Notably, EVA exploits a very specific presenta-
tion of the data, capitalising on its access to individ-
ual instances and its ability to choose the semantic
information relevant for solving a given task. Re-
cent work has argued that language modeling is not
enough for Natural Language Understanding, and
in particular that the relation between language and
world(s) matters to comprehension (Bender and
Koller, 2020). The results presented here support
this view: not only are instances the basic building
blocks of reference, but they might also be crucial
to support the acquisition of lexical competences.

With respect to the ‘innate’ mechanisms of the
new model presented here, several shortcomings
must be pointed out. First and foremost, EVA as-
sumes the availability of a denotation function —
some oracle able to map words to entities. This is
of course something that children actually have to
learn in the process of acquisition, and which prob-
ably proceeds in parallel with the training of other
semantic competences. Ideally, this assumption
should be relaxed in future versions of the model
to understand how much the system learns when
its reference module is imperfect (for instance, by
linking EVA to an object recognition system from
the Language and Vision literature).

Further, the learning mechanisms involved in
EVA may be too generic. We have used simple co-
occurrence prediction for the acquisition of word
semantics and non-linear regression/classification

for task-specific competences, which goes well
with claims that language can be acquired via
generic cognitive functions. But the actual training
regime used by those mechanisms may not be as
plausible as it could be. In particular, it is unclear
how much supervision is involved in the human
acquisition of skills such as lexical relation recog-
nition or acceptability judgements (see e.g. Saxton,
2000 on the amount of negative input received by
children from their carer). It is for instance dubious
to argue that meronymies should be learned in a su-
pervised fashion, with the learner being explicitly
told that an ear or a whisker is ‘part of” a cat. This
aspect will have to be investigated further before
claiming plausibility of the model.

Finally, the data used for our experiments is cur-
rently anchored in a visual dataset, and is therefore
focused on concrete entities. Linguistic compe-
tence involves mastery of abstract vocabulary, as
well as reference to “possible worlds’, which can
be different from the universe we perceive. It re-
mains to be seen how the competences acquired
over purely perceptual data can be usefully brought
into skills that involve abstraction and modality.
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