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Abstract

In this paper, we develop a method for ground-
ing medical text into a physically meaning-
ful and interpretable space corresponding to
a human atlas. We build on text embedding
architectures such as BERT and introduce a
loss function that allows us to reason about
the semantic and spatial relatedness of medi-
cal texts by learning a projection of the em-
bedding into a 3D space representing the hu-
man body. We quantitatively and qualitatively
demonstrate that our proposed method learns a
context sensitive and spatially aware mapping,
in both the inter-organ and intra-organ sense,
using a large scale medical text dataset from
the “Large-scale online biomedical semantic
indexing” track of the 2020 BioASQ challenge.
We extend our approach to a self-supervised
setting, and find it to be competitive with a
classification based method, and a fully super-
vised variant of approach.

1 Introduction

The quantity of available medical literature in-
creases daily (Wang et al.; Tsatsaronis et al., 2015),
however, it is often provided in a non-systematized,
free form. The development of BERT (Devlin
et al., 2018), and the increased popularity of trans-
fer learning in natural language processing (NLP),
prompted notable works that aim to leverage pub-
licly available medical and scientific articles to de-
velop domain specific pre-trained language models
(Lee et al., 2019; Alsentzer et al., 2019; Beltagy
et al., 2019; Jin et al., 2019). High quality sentence
representations that capture the semantics and struc-
ture of the text can be obtained by training models
to solve the Natural Language Inference (NLI) task
on open-domain datasets (Bowman et al., 2015;
Williams et al., 2017) and predict whether two
pieces of text entail, contradict or are neutral to
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Figure 1: Given the
text with implicit refer-
ence to lungs: “Divided
into two lobes, an up-
per and a lower lobe,
by the oblique fissure,
which extends from the
costal to the mediastinal
surface” (Drake et al.,
2009), our model learns
the grounding indicated
by the star.

each other (Conneau et al., 2017). The aforemen-
tioned BERT-based models can serve as the en-
coder backbone for such approaches (Reimers and
Gurevych, 2019), and the setup can be trivially ex-
tended to enable searching through and retrieving
relevant documents from large datasets. Despite
proving useful in a variety of settings, these works
suffer from the following limitations:

(i) The documents are embedded in a non-
interpretable space. (ii) There is no clear visually
intuitive indication of how similar two retrieved
documents are, i.e., black box retrieval. (iii) Vi-
sualizing the embeddings requires dimensionality
reduction techniques (Hotelling, 1933; Maaten and
Hinton, 2008).

By contrast, we propose a method that embeds
medical text into a universal, small dimensional
space corresponding to the human body that is easy
to navigate and interpret (Figure 1). The propen-
sity of functionally similar organs towards being
physically close represents an inductive bias that
can be leveraged for computing compact, 3D text
representations that are competitive with standard
higher dimensional text embeddings. Additionally,
our approach allows to search through and retrieve
documents grounded within the physical space of
the human body. To that end, our contributions are:
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(i) We propose the task of the grounding medical
text in the physical space of the human body, where
anatomically related substructures tend to be close
to one another. (ii) We develop a loss function that
allows us to reason about the semantic relatedness
of medical texts. (iii) We develop a concrete use-
case for medical text retrieval where we outperform
several competitive baselines.

We perform extensive evaluation to measure
the performance of our method in two scenarios,
namely, grounding in the human atlas (relevant for
visualization and navigation), and medical text-to-
text retrieval (directly assessing the performance
of our model in an information retrieval setting).
Furthermore, we set up an experimental setting
explicitly tailored to measure the spatial reason-
ing ability of our model within an organ, a setting
never directly imposed during training. We empir-
ically demonstrate that our method is highly suc-
cessful in all aforementioned experimental settings,
effectively addressing the previously stated limi-
tations. The codebase and the trained models are
released at: www.github.com/gorjanradevski/

text2atlas

2 Related work

(Medical) text embeddings. Before the develop-
ment of BERT, a common approach to embedding
text was leveraging a pre-trained recurrent neural
network (RNN) language model (LM) (Peters et al.,
2018; Kiros et al., 2015). An extension of such LM
for the biomedical domain is BioELMO (Jin et al.,
2019). Despite being successful in a transfer learn-
ing setting, the usefulness of the generated embed-
dings for medical text navigation and retrieval is ar-
guably limited. Furthermore, BERT-based medical
language representation models such as BIOBERT

(Lee et al., 2019) and CLINICALBERT (Alsentzer
et al., 2019), despite outperforming RNN based
LMs on a variety of downstream tasks, also make
embedded text navigation impractical. We, on the
other hand, directly focus on learning embeddings
that are rich with visual information, i.e., are by de-
fault represented in a physically meaningful space
of the human body.

(Medical) text grounding. There has been a
variety of approaches (Krishnamurthy and Kollar,
2013; Kong et al., 2014; Rohrbach et al., 2016;
Hu et al., 2016; Wang et al., 2018) and datasets,
such as ReferIt (Kazemzadeh et al., 2014) and Re-
fCOCO (Yu et al., 2016), focusing on the visual

grounding of natural language in the general do-
main. However, the application of text ground-
ing in the medical domain has been limited, and
to the best of our knowledge, there are no works
that ground medical text in the human body. The
main differences between these works and ours
are: (i) we perform a grounding which is univer-
sal, and not specific to a single environment (e.g.
the image), (ii) their models are trained with ex-
pensive bounding box annotations for the desired
grounding location, (iii) the methods rely on ex-
plicit annotations of every concept referred in the
text, i.e., these models can not reason about the
particular referred region unless explicitly trained
to do so. Furthermore, our method is designed to
reduce the labeling costs, as it relies on high level
annotations of the referred organs in a paragraph,
which, in a self-supervised setting, can be inferred
from the text itself.

(Medical) Document retrieval. Retrieving a
set of relevant documents given a query requires
that both the query and the documents are embed-
ded in a joint latent space. A straight-forward ap-
proach to obtaining a single text representation is
to use the [CLS] token representation concate-
nated with the mean-pooled and max-pooled rep-
resentations of the remaining tokens from a pre-
trained BERT model. However, it is shown that
this often leads to a worse representation than
averaging GloVe embeddings (Pennington et al.,
2014; Reimers and Gurevych, 2019). Recently,
such embeddings are obtained using a pre-trained
BERT subsequently fine-tuned as a Siamese model
(Reimers and Gurevych, 2019) on the NLI task us-
ing general domain datasets (Bowman et al., 2015;
Williams et al., 2017). The proxy-task is proven
to be effective as models trained this way generate
embeddings in which documents that share similar
semantics map nearby. Despite this useful feature,
without inspecting the documents’ content, it is
not immediately obvious why a set of documents
is clustered together in the latent space, and why
they are considered to be semantically similar. We
address this issue by embedding documents in the
physical space of the human body, where the doc-
ument similarity is expressed in terms of physical
proximities in 3D. This leads to an intuitive inter-
pretation of why a set of documents are considered
to be similar.
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3 Data collection

3.1 Human body atlas

We leverage the Segmented Inner Organs (SIO)
(Pommert et al., 2001) (see Appendix, Figure A.1),
though the approach is readily extended to other
models of the human anatomy. We refer to this
3D model as the atlas. We base the 3D atlas on
the segmentation labels of the tissues in the human
body provided in SIO, which come in the form
of image slices that form a 3D voxel model of the
male torso when stacked on top of one another. The
stacked images from the torso represent a volume
of 573× 330× 774 voxels, with 1-millimeter res-
olution along each axis. The value of each voxel
represents the segmentation label of its correspond-
ing organ or tissue. An organ can be represented as
the set of indices of voxels in the aforementioned
volume which contain the value corresponding to
the organ’s segmentation label.1

3.2 Dataset

The dataset used in this work is built upon the train-
ing set of the Task 8a: “Large-scale online biomed-
ical semantic indexing” of the 2020 BioASQ chal-
lenge (Tsatsaronis et al., 2015). Originally, it con-
sists of 14,913,939 samples, where each sample
pertains to one medical article, and contains the
abstract text and the Medical Subject Headings
(MeSH) (Lipscomb, 2000) vocabulary terms of the
organs. We consider the grounding of article ab-
stracts to the locations in the atlas that correspond
to the article MeSH terms. Therefore, we use the
articles that contain one or more MeSH terms that
match the names or the alias terms of the organs in
the atlas glossary. To accommodate the maximal
sequence length of BERTBASE, we keep the articles
whose abstracts have fewer than 512 WordPiece
(Wu et al., 2016) tokens. For each organ in the
atlas glossary, we take 500 articles that mention
it individually, and another 500 articles that men-
tion it in addition to another organ(s). Subsequent
removal of duplicates resulted in the final dataset
of 25,552 abstracts annotated with organ MeSH
terms, of which 70% are used for training, 15% for
validation and 15% for testing.2

1Details about the creation of the 3D human atlas can be
found in the Appendix Section A.

2Additional details about the dataset found in the Appendix
Section B.

4 Proposed task and methods

4.1 Text-to-atlas grounding objective
Our goal is to ground medical texts into the 3D
space of the human body. To achieve this, we
project the representations of text referring to one
or more atlas organs into the 3D volume in the at-
las that corresponds to the mentioned organs. The
volume of each organ is characterized by a set of
voxels in the atlas, which capture its position, size
and shape. The voxels of one organ can, in turn, be
represented by a point cloud in 3D space, where
each point represents the coordinate indices of one
voxel3. The most straightforward way to associate
texts with predefined regions of a physical space,
is to have a model trained to simply minimize the
cross-entropy between the predicted probability
distribution over the set of all organs (e.g., each
indexing their predefined location), and the target
vector with 1’s at the indices corresponding to the
target organs and 0’s elsewhere. This approach is
expected to yield a high accuracy of selecting the
right organ, however, has a critical downside of not
providing any meaningful within organ reasoning,
i.e., during inference, it grounds all articles pertain-
ing to a single organ to either a random location
within the organ, or a single predefined one. On
the other hand, framing the task as minimization of
the mean squared error between the predicted 3D
location and an average of the ground truth organ
positions would result in a grounding to some mid-
way location, potentially belonging to some other,
unrelated organ. To overcome both of these issues,
and retain as much of the predictive power as pos-
sible, we frame the task as predicting a set of 3D
coordinates within the human body, while forcing
the prediction to snap to the most nearby ground
truth organ. Namely, we design a loss function –
Soft Organ Distance loss, henceforth abbreviated as
SOD (Section 4.3), which gives the model freedom
to choose the most relevant organ in case there are
multiple organ annotations for a particular sample.

4.2 Model
We use BERT (Devlin et al., 2018) as our model
backbone due to its applicability in a wide range of
domains. As per Devlin et al. (2018), we tokenize
the input text using WordPiece (Wu et al., 2016),
and take the representation of the [CLS] token as
the sequence representation. Finally, to obtain the

3For brevity, we will also use the term voxel or organ point
for a vector of indices of the actual voxel in the 3D volume.
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3D atlas grounding for a piece of medical text, we
project BERT’s output with a linear layer, mapping
from BERT’s hidden space to the 3D space:

ŷ = Linear(BERT(x)), (1)

where x is a vector of tokens representing the med-
ical text and ŷ is the 3D grounding in the human
body. During training, we normalize ŷ by apply-
ing tanh, which is subsequently rescaled to the
dimensions of the atlas during inference.

4.3 Soft Organ Distance loss
The proposed loss function – SOD, allows us to
sacrifice the least amount of predictive power and
in turn, achieve within organ contextual reason-
ing, i.e., not only grounding the medical article to
the right organ but also to the appropriate location
within the organ without any explicit annotations
at that level of granularity. Furthermore, a med-
ical text may simultaneously refer to a single or
multiple organs in the human body. In the former
setting, we would like to have an approach based
on mean squared error minimization, while in the
latter, we would like to relax the target and pull
the model’s prediction to the location of the closest
ground truth organ. Finally, the organs themselves
are distributed in nature, and their volumes are char-
acterized by a set of points in 3D space, rather than
just one.

Figure 2: Loss isocurves around “liver” and “kidney”
point clouds projected into 2D with PCA (Hotelling,
1933).

In Figure 2, we observe our desired scenario
when there are two ground truth organs – “liver”
and “kidney”. As the grounding approaches the
“liver”, we observe that the loss contribution from
the “kidney” organ voxels diminishes, and vice
versa. This effect extends to the loss contributions
of individual voxel points. Namely, as the ground-
ing approaches a particular region in the organ, the

loss contribution from the other voxel points dimin-
ishes – thus allowing the model to ground the input
text within the most appropriate organ substructure.

In order to account for the distributed nature
of the organs and take a step towards the desired
within organ semantic reasoning, for each sam-
ple during training, we randomly sample a set of
N points from the point cloud of each of its or-
gans. Then, we calculate (1) the Euclidean dis-
tances between the prediction and each sampled
organ point, and (2) the soft-min4 across these dis-
tances as weights for the contributions of individual
points. The loss contribution Lp of an organ point
y is the product of its distance from the predicted
point ŷ and its corresponding weight produced by
the soft-min:

Lp = �ŷ − y�2
exp(−�ŷ − y�2/γp)�N
i=1 exp(−�ŷ − yi�2/γp)

, (2)

where N is the number of points sampled from
the organ point cloud and γp is a temperature term.
We calculate the loss for one organ Lo as the sum
of contributions of its points: Lo =

�N
i=1 Li

p.
We calculate the loss for each individual target

organ in the way described above. Then, we com-
pute the soft-min over the set of such loss terms as
contribution weights for each organ. The total loss
is the sum of soft-min-weighted losses over each
organ:

Lt =

M�

i=1

Li
o

exp(−Li
o/γo)�M

j=1 exp(−Lj
o/γo)

, (3)

where M is the total number of target organs, Li
o

is the organ loss for the i-th organ, and γo is a
temperature term.

5 Experimental setup

We use BERTBASE (Devlin et al., 2018) as the
backbone of the trained models. We use AdamW
(Loshchilov and Hutter, 2017) with a learning rate
of 10−5 as per Devlin et al. (2018), weight decay
of 10−2 and clip the gradients when the global
norm exceeds 2.0. We perform early stopping by
saving the model with the best performance on
the validation set. We only tune the hyperparame-
ters related to the SOD loss function, and we keep
everything else fixed as per the standard practice

4Soft-max on the inputs reversed in sign, used to empha-
size smaller quantities - in this case, shortest distances.
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(Devlin et al., 2018). Our implementation utilizes
PyTorch (Paszke et al., 2019) and the HuggingFace
Transformers library (Wolf et al., 2019).

6 Evaluation

We quantitatively evaluate our trained models in
two scenarios: (1) Grounding to the human at-
las – measuring to what extent our trained model
can ground medical articles to the correct location.
(2) Medical information retrieval – to directly as-
sess the quality of the document embeddings, i.e.,
evaluate to what extent medical articles character-
ized by a certain set of MeSH terms are grouped
together in the physical space of the human body.

6.1 Grounding to the human atlas
To evaluate the quality of the grounding, we mea-
sure each of the models performance on three eval-
uation metrics (more details in Appendix C):

(1) Rate at which the texts are grounded within,
or sufficiently close5, to the volume of the correct
organ, or the hit rate, which we denote as Inside Or-
gan Ratio – IOR, expressed as percentage. (2) Dis-
tance to the nearest voxel of the nearest correct
organ, denoted as Nearest Voxel Distance – NVD,
expressed in centimeters. (3) Distance to the near-
est voxel of the nearest correct organ, calculated
only on samples for which the projection is outside
the organ volume, denoted as Nearest Voxel Dis-
tance Outside – NVD-O, expressed in centimeters.

We compute the aforementioned metrics in four
distinct inference scenarios specifically tailored to
measure the grounding ability of our models. In
the following experiments we show that our ap-
proach has an advantage over multiple baselines
and demonstrate its ability to reason within the
substructures of the organ and generalize to out-
of-atlas organs, in addition to its other desirable
properties that we demonstrate qualitatively.

6.1.1 General setting
We generate a 3D grounding for each of the articles
in the test set and measure our model’s performance
against the following baselines:

(i) Random – We predict a randomly sampled
point within a randomly chosen organ for each sam-
ple. (ii) Center – We use the center of the 3D atlas
as the prediction. (iii) Frequency (Freq.) – We
measure the frequency of the organ terms in the

5As some organs are hollow (small intestine, colon, etc.),
we record a “hit”, when the grounding is less than 1cm away
from the most nearby voxel.

training set, and always predict the point within the
most frequent organ. (iv) MSE – We frame the task
as regression, and minimize the mean squared error
(MSE) between the prediction and the average of a
set of randomly sampled points from all the target
organs. (v) CLS – We frame the task as classifi-
cation and train a model to predict an organ index.
The model is trained to minimize the cross-entropy
between the output probability distribution and the
target vector with 1’s at the positions correspond-
ing to the indices of organs present in the text and
0’s elsewhere. During evaluation, the prediction is
considered to be correct when it corresponds to any
one of the target MeSH terms. When measuring
NVD and NVD-O, we randomly sample a voxel
point from the predicted organ as a 3D grounding.6

Method IOR NVD NVD-O

Random 8.9 ± 0.5 17.9 ± 0.3 19.0 ± 0.3
Center 6.7 ± 0.4 13.3 ± 0.2 13.3 ± 0.2
Freq. 10.9 ± 0.5 13.9 ± 0.2 15.4 ± 0.2
MSE 9,9 ± 0.5 6.8 ± 0.1 7.0 ± 0.1
CLS 90.8 ± 0.5 0.9 ± 0.1 8.2 ± 0.5

SOD 89.4 ± 0.5 0.8 ± 0.1 2.5 ± 0.1

Table 1: Mean IOR, NVD and NVD-O measured on
the test set. The error bars represent the standard error.

In Table 1 we observe that SOD outperforms all
baselines, and achieves nearly the same IOR as
CLS. Furthermore, SOD significantly outperforms
CLS according to the NVD and NVD-O metrics,
which give a strong indication of the overall ground-
ing performance, as per the one-sided Wilcoxon
signed-rank test (Wilcoxon, 1945) (p ≈ 0). We
conclude that despite framing the task as soft re-
gression, we sacrificed the least amount of predic-
tive power (as per IOR), and exploited the atlas’s
inductive bias to achieve successful grounding (as
per NVD and NVD-O).

6.1.2 Within organ reasoning
We perform a simulation to demonstrate that the
grounding can infer anatomical substructures not
present at the granularity of labeling in a specific
atlas. Therefore, we perform experiments in which
we merge the voxels of two different organs – ef-
fectively treating them as a single organ, and keep
only instances from the training set that contain

6We do not use the organ voxels centroids as prediction, as
they can be outside of the organ volume for non-convex organs
and yield a non-zero distance even when the correct organ is
predicted, unfairly penalizing the classification baseline.
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these “super-organs”.7 Then, we train a new model
on each of these subsets and subsequently generate
3D groundings for each of the test set samples that
only contain the individual occurrences of the two
merged organs. The merged organ pairs are: (i) the
“lung” and the “stomach”, functionally different or-
gans that belong to different groups, respiratory and
digestive, respectively; and (ii) the “duodenum”8

and the “small intestine”, organs which are func-
tionally related and frequently jointly referred to as
“small intestine” in the literature.

Then, we train three different models for each
merger: (1) SMP – We train a classification base-
line on each of the subsets. During inference, we
substitute the organ index with a randomly sampled
voxel point within the predicted organ (2) SOD w/
– We train a model using SOD with (w/) individual
organs from the filtered training set. (3) SOD w/o
– We train a model with the two organs merged
into one “super-organ”, effectively training without
(w/o) the per-organ annotations.

With the functionally different “lung” and “stom-
ach” merged together, in Table 2 we observe that
SOD w/o significantly outperforms SMP, which
can predict the coarse label corresponding to the
super-organ, but is unable to reason about the or-
gan’s subregions. We also observe that SOD w/o
performance is relatively close to SOD w/, which
is trained with the separated organs. In Figure 3 we
observe the grounding of 136 articles related to the
“lung” and the “stomach” generated with SOD w/o.
A notably harder problem is the “small intestine”-
“duodenum” merger, which involves functionally
related organs. We again observe that SOD w/o
significantly outperforms SMP in both the micro-
averaged performance and the grounding within
the “duodenum”. SMP achieves higher IOR on
the articles that belong to the “small intestine,”
which is a result of the roughly 3 times larger num-
ber of “small intestine” voxels compared to the
“duodenum” making the SMP performance skewed.
We further examine the approximate locations of
anatomical structures that co-occur most frequently
with a given organ. For the organs co-occurring
with the “lung”, the frequency-weighed arithmetic
mean of their centroids lies roughly 13.8 centime-
ters above that of the organs that co-occur with the
“stomach”. Similarly, such mean location of organs
co-occurring with the “duodenum” lies 6.5 cen-

7It may occur individually or co-occur with other organs.
8The duodenum is the first section of the small intestine in

most higher vertebrates, including mammals.

timeters to the upper-left of the one of the “small
intestine”.

We conclude that despite the lack of explicit
within organ annotations, SOD w/o learns to spa-
tially reason about substructures within the organ
based on the target organs’ co-occurrences. In par-
ticular, the model learns to disambiguate between
the organ regions because terms associated with dif-
ferent sub-regions tend to co-occur with different
organs, typically the ones to which they are closer
to (See Appendix Section F). This is an important
observation from the following aspects: (i) Medical
articles would get mapped to the appropriate organ
regions they refer to, even though never explicitly
annotated as such during training. (ii) Given an
atlas with increased granularity, our method would,
to a degree, accommodate for the newly added sub-
regions without the need for re-training.

Figure 3: Groundings of articles referring exclusively
to either the “lung” or the “stomach”, obtained from a
model trained with the two organs fused into one.

6.1.3 Generalization to unseen organs
To verify that our approach captures the locations
of organs which are absent in the atlas segmentation
labels, we evaluate the generalization ability of our
method to organs unseen during training. For every
organ, we remove its annotation from the training
set, train a separate model, perform inference on
the test set samples referring to it, and finally report
the metrics averaged over all held-out organs.9 In
addition to NVD, we measure the rate at which the
prediction is within the convex hull enveloping the
organs of the same functional group as the held
out organ, denoted as Inside Group Ratio – IGR.
We compare SOD’s performance against Random,
Center and CLS, defined in Section 1.

9Samples referring solely to the held-out organ are re-
moved, and the ones referring to it in addition to some other
organs retain only the annotations of the other organs.
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Method IOR NVD IOR NVD IOR NVD

Lung Stomach Total

SOD w/ 100.0 ± 0.0 0.0 ± 0.0 95.4 ± 2.6 0.2 ± 0.1 97.8 ± 1.3 0.1 ± 0.0

SMP 46.5 ± 6.0 2.5 ± 0.3 44.6 ± 6.2 4.2 ± 0.6 45.6 ± 4.3 3.3 ± 0.3
SOD w/o 94.4 ± 2.8 0.2 ± 0.1 81.5 ± 4.8 0.5 ± 0.1 88.2 ± 2.8 0.3 ± 0.1

Small intestine Duodenum Total

SOD w/ 97.4 ± 1.8 0.1 ± 0.0 90.9 ± 3.6 0.2 ± 0.1 94.4 ± 1.9 0.2 ± 0.0

SMP 71.1 ± 5.2 1.0 ± 0.2 33.3 ± 5.8 5.1 ± 0.6 53.5 ± 4.2 2.9 ± 0.3
SOD w/o 50.0 ± 5.8 1.1 ± 0.1 93.9 ± 3.0 0.2 ± 0.0 70.4 ± 3.8 0.7 ± 0.1

Table 2: Within organ reasoning evaluated on test set subsets obtained according choice of organs merged.

Method IGR NVD

Random 34.5 ± 4.0 21.1 ± 1.5
Center 37.0 ± 9.5 15.8 ± 2.0
CLS 72.1 ± 5.8 (84.21) 8.3 ± 1.0 (6.9)

SOD 76.5 ± 5.3 (86.15) 7.5 ± 1.0 (5.9)

Table 3: Results on test set samples referring to organs
held out during training. Median values are in paren-
theses.

In Table 3, we observe that SOD significantly
outperforms Random and Center. We also con-
firm a significant advantage of SOD over CLS
by performing a Wilcoxon signed-rank test (IGR:
p = 0.0063; NVD: p = 0.0014). Therefore, we
conclude that besides grounding texts regarding
organs present in the atlas, SOD reasons about
unannotated structures, i.e., it learns to leverage the
shared context between the held out organ and the
functionally similar organs nearby. Consequently,
we conclude that SOD learns to relate the articles’
context with the spatial domain of the human body,
and exploits this knowledge to improve generaliza-
tion in a zero-shot setting. This suggests that our
approach is robust to the granularity of the atlas
used in training.

6.1.4 Self-supervised extension
We additionally evaluate our method in a self-
supervised setting. Specifically, we ground medi-
cal abstracts in the atlas using only self-supervision
in the form of occurrences of organ related terms.
For that, we aggregate a list of all organ names
corresponding to the MeSH terms, together with
their UMLS synonyms (Bodenreider, 2004). Dur-
ing training, instead of providing the ground truth
MeSH term annotation as target organs, we provide
the target organs that correspond to the elements
of the aggregated list of organ terms that appear in

Method IOR NVD NVD-O

Occ 68.7 ± 0.7 3.2 ± 0.1 9.7 ± 0.3
CLS 74.1 ± 0.7 2.5 ± 0.1 8.4 ± 0.3

CLS + M 80.4 ± 0.6 1.7 ± 0.1 7.3 ± 0.3

SOD 79.7 ± 0.7 1.6 ± 0.1 5.1 ± 0.2
SOD + M 83.2 ± 0.6 1.2 ± 0.1 3.9 ± 0.2

Table 4: Results on the full test set when the models are
trained in a self-supervised fashion.

the abstract. We then train two different variants
of our method: (1) SOD – A model trained with
our regular SOD loss function. (2) SOD + M –
During training, we stochastically substitute the oc-
currences of organ names or their synonyms in the
text with a [MASK]10 token with 50% probability.

We evaluate the performance of our method
against the following baselines: (i) Occ – A naive
model that predicts one of the organ names that
appear in the text at random. When there is no ex-
plicit organ occurrence, it predicts the center of the
atlas. (ii) CLS – A classification baseline, trained
to predict one of the organ name occurrences from
the text. (iii) CLS + M – A classification base-
line boosted with the “masking” extension. Finally,
we perform inference on the annotated test set and
measure the IOR, NVD and NVD-O.

In Table 4 we observe that our method out-
performs all baselines when trained both without
(SOD), and with the masking extension (SOD +
M). Since masking the organ names and their syn-
onyms puts additional emphasis on their surround-
ing context, it allows the model to generalize better
to the semantically annotated test set, yielding a
considerable improvement for all metrics. It is
noteworthy that in spite of training the model using
organ names + synonym occurrences that appear

10The [MASK] token is included in BERT’s vocabulary.
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within the medical articles as ground truth targets,
we obtain performance competitive to the fully-
supervised training, included in Table 1. This data
efficiency feature of our method is especially impor-
tant since obtaining annotated data for medically
relevant NLP tasks requires the time and effort of
medical experts.

6.2 Medical information retrieval

We formulate a text-to-text retrieval setting where
each test set article serves as a query and the re-
maining articles as the database from which we
retrieve the relevant ones. We measure the retrieval
quality using the standard Recall@K metric, i.e.,
the fraction of queries for which the correct article
is retrieved among the top K articles. A retrieved
article is considered correct when it has an iden-
tical set of MeSH term annotations as the query
article. We fix K to 1, 5 or 10. We evaluate the
performance of our method against the following
supervised (w/) and pre-trained (w/o) baselines:

(i) 3D-Sms (w/) – We train a Siamese BERT to
group articles by optimizing the triplet loss, en-
forcing the embedding of articles with matching
sets of MeSH annotations to nearby locations, and
the non-matching ones to distant locations in the
embedding space. We set the embedding space
dimension to 3, and use the Euclidean distance
measure and online triplet mining to obtain the pos-
itives and negatives for each sample during train-
ing (Hermans et al., 2017). (ii) Large-Sms (w/) –
We follow the same procedure as 3D-Sms, how-
ever, we extend the embedding space dimension
to 76811. (iii) BaseBert (w/o) – We use a gen-
eral domain pre-trained BERT and concatenate the
mean-pooled, max-pooled and [CLS] representa-
tions into a 2304 dimensional vector for each of the
test articles. (iv) BioBert (w/o) – We use BERT pre-
trained on PubMed abstracts and follow the same
procedure as with BASEBERT. (v) SciBert-NLI –
We use the mean-pooled embeddings from SCIB-
ERT, fine-tuned for the NLI task on the datasets of
Bowman et al. (2015); Williams et al. (2017).

In all baselines, we perform retrieval by taking
the top K elements from the list of articles ranked
by the Euclidean distance between their representa-
tion vectors and that of the query. The distance is
computed in the representation space for the mod-
els trained on the retrieval task and the pre-trained
sentence representation models, while for the SOD

11The dimensionality of the BERT embedding.

models we consider the physical distance in the 3D
atlas.

Method Dims. R@1 R@5 R@10

Large-Sms (w/) 768 42.9 ± 0.8 68.7 ± 0.7 75.4 ± 0.7
3D-Sms (w/) 3 34.6 ± 0.8 61.4 ± 0.8 69.7 ± 0.7

SOD (w/) 3 37.4 ± 0.8 64.3 ± 0.8 71.3 ± 0.7

BaseBert (w/o) 2304 9.8 ± 0.5 26.1 ± 0.7 37.5 ± 0.8
BioBert (w/o) 2304 13.6 ± 0.6 35.2 ± 0.8 48.5 ± 0.8

SciBert-NLI (w/o) 768 16.9 ± 0.6 41.8 ± 0.8 55.4 ± 0.8

SOD+M (w/o) 3 26.7 ± 0.7 56.8 ± 0.8 65.9 ± 0.8

Table 5: Medical text retrieval. Top: Methods that use
MeSH term supervision (w/), and Bottom: Methods
that do not use MeSH annotation (w/o).

In Table 5 (upper), we compare our method
with supervised (w/) Siamese models trained to
group documents based on their MeSH term anno-
tations. An interesting observation is that despite
being trained to choose between the target organs
when there are multiple, SOD outperforms 3D-Sms,
which is explicitly trained to group articles in 3D
based on the whole set of MeSH annotations, with-
out being limited to organizing the article embed-
dings in the rather constrained 3D human atlas. It is
worth noting that SOD falls slightly short compared
to Large-Sms, most likely because Large-Sms is
trained to embed text in 768 dimensions, thus hav-
ing a higher representational power.

In Table 5 (lower), we evaluate the retrieval per-
formance of our self-supervised method SOD+M
(trained on occurrences of atlas glossary terms and
their synonyms, see Section 6.1.4) against the pre-
trained BERT baselines, in a setting that does not
rely on ground truth MeSH term annotations. We
observe that SOD+M significantly outperforms all
of them, including SciBert-NLI12.

We observe a performance gap between SOD+M
(w/o) and SOD (w/), as well as the methods that
are explicitly trained to optimize the retrieval per-
formance (3D-Sms, Large-Sms). However, in a
(realistic) scenario of having large quantities of
unannotated medical texts that require systematiza-
tion, such fully-supervised approaches would not
be feasible.

6.3 Qualitative evaluations and use-cases

We further demonstrate several desirable properties
of our approach in a qualitative fashion. Although
training was performed using a single male atlas, in
Figure 4a, we observe the grounding of a paragraph

12We report SciBert-NLI as it outperformed BioBert-NLI.
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(a) Ovaries (b) Colon segments

Figure 4: Left: Grounding of the paragraph about the
“ovaries” (Appendix Section D). The red structure is
the “urinary bladder”, which serves as a location refer-
ence. Right: Grounding of Wikipedia articles describ-
ing the “transverse colon” (upper) and “sigmoid colon”
(lower), which were contained within the common la-
bel “colon” during training.

describing the “ovaries” (See Appendix Section D)
to a reasonably close vicinity of their actual lo-
cation. We additionally qualitatively evaluate the
results of Section 6.1.2 by mapping Wikipedia ar-
ticles referring to the “transverse colon” and the
“sigmoid colon” to the 3D atlas. In Figure 4b, we
observe that the articles are mapped to the actual lo-
cations of the colon segments, despite that the terms
shared a common label (“colon”) during training.

The low dimensional text embeddings in the 3D
atlas space can be put to use in multiple real-world
applications. Integrated with a speech recogni-
tion system, they could be used to provide real
time localization of the steps taken during med-
ical procedures based on the narrative operative
reports. Additionally, the grounding to a 3D atlas
can be used as a way to systematize large corpora
of unannotated text while being able to observe
the relationship between embedded texts in an in-
tuitively meaningful setting. Another advantage of
text retrieval in the physical 3D space is the abil-
ity to retrieve information by directly specifying
an observable locations in the human atlas space,
as opposed to using textual queries. To demon-
strate this, we built a tool which accepts a query
in the form of 3D coordinates and matches arti-
cles related to Covid-19 based on the proximity
of their embeddings in 3D space (Grujicic et al.,
2020). The tool for visual-based retrieval of Covid-
19 related articles can be accessed at: www.github.
com/dusangrujicic/cord19-visualizer

7 Discussion and conclusions

One limitation of our method is that it does not
explicitly take into account spatial descriptions and
other modifier expressions. Rather, it uses abstract
level annotation to ground whole abstracts to the
most semantically relevant regions, and uses the
co-occurrences between terms (which also reflect
their spatial relationships to a significant degree)
to organize and distribute the grounding to within
the same organ or to out-of-atlas organs. A natural
extension of this work would be to move up from
the entity level, and explicitly address the spatial
language and descriptions of relationships between
anatomical structures.

In this paper, we formulated a novel task of med-
ical text grounding within an atlas of the human
body. We proposed a loss function, Soft Organ Dis-
tance, which enables us to reason about inter-organ
and intra-organ relatedness of medical text, without
explicit annotations for the latter. In particular, we
addressed the following limitations of prior work:
(i) The text is embedded within a non-interpretable
space – we embed, and systematically organize all
articles in the 3D model of the human body, thus in-
terpretability is intrinsic to our approach. (ii) There
is no immediate, visually intuitive indication of
the similarity between the retrieved articles – we
perform retrieval directly in the 3D atlas, where
the text embeddings and the relationships between
them are visually comprehensible. Namely, while
standard embedding and visualization techniques
uncover hidden data clusters, the underlying sim-
ilarity grouping the articles is not clear. On the
other hand, our approach provides semantically
and spatially meaningful grounding together with
off-the-shelf successful retrieval, which we believe
to be essential for many NLP applications involv-
ing medical information retrieval and visualization.
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