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Abstract

The CoNLL-2003 corpus for English-
language named entity recognition (NER) is
one of the most influential corpora for NER
model research. A large number of publica-
tions, including many landmark works, have
used this corpus as a source of ground truth
for NER tasks. In this paper, we examine this
corpus and identify over 1300 incorrect labels
(out of 35089 in the corpus). In particular, the
number of incorrect labels in the test fold
is comparable to the number of errors that
state-of-the-art models make when running
inference over this corpus.

We describe the process by which we identi-
fied these incorrect labels, using novel variants
of techniques from semi-supervised learning.
We also summarize the types of errors that we
found, and we revisit several recent results in
NER in light of the corrected data. Finally, we
show experimentally that our corrections to the
corpus have a positive impact on three state-of-
the-art models.

1 Introduction

The English-language portion of the CoNLL-2003
shared task (Tjong Kim Sang and De Meulder,
2003) (henceforth CoNLL-2003) is one of the most
widely-used benchmarks for named entity recog-
nition (NER) models. It consists of news articles
from the Reuters RCV1 corpus (Lewis et al., 2004).

Since its debut, CoNLL-2003 has played a cen-
tral role in NLP research. Over 2300 research
papers have cited the original CoNLL-2003 pa-
per1. Among these works, many are landmark
results that have revolutionized the field of nat-
ural language processing, including Glove embed-
dings (Pennington et al., 2014), BERT embed-
dings (Devlin et al., 2019), conditional random

∗The last four authors have contributed equally.
1https://scholar.google.com/scholar?

cites=17103810098319730115

fields (Sutton and McCallum, 2012), and bidirec-
tional LSTM models (Lample et al., 2016).

The CoNLL-2003 corpus continues to be used in
NER research. The Papers with Code website (Pa-
per with Code, 2020), which tracks state-of-the-art
F1 scores2 for this corpus, currently (as of July
2020) shows 43 results from 2016 through 2019
that improved this metric.

While researchers have relied heavily on the
CoNLL-2003 corpus as a source of ground truth,
few have paid attention to the corpus itself. Er-
rors in the corpus could potentially mislead and
even divert the course of future research. Recent
work has pointed out that improper benchmarking
can have significant impact on evaluating machine
learning algorithms (Smith-Miles et al., 2014). The
fact that Stanislawek et al. (2019) and Wang et al.
(2019) found many errors while examining parts
of the corpus is even more alarming. A detailed
examination of the corpus has become imperative.

In this paper, we present our work on correcting
labeling errors in the CoNLL-2003 corpus. Sec-
tion 2 gives an overview of the corpus itself, the
high-level process we followed, and related work.
Section 3 describes how we used a novel form of
semi-supervised labeling to identify potentially-
incorrect labels. Sections 4 and 5 describe how we
examined and categorized the flagged labels. And
Sections 6 and 7 describe how we created a cor-
rected version of the corpus and reevaluated past
results.

2 Overview

The CoNLL-2003 corpus contains news articles
from a subset of the Reuters RCV1 corpus (Lewis
et al., 2004). Entities are tagged using an extended
version of the tagging policy from the Message
Understanding Conference (Tjong Kim Sang and

2“F1 score” here means “harmonic mean of precision and
recall over the test fold for models trained on the train
fold”.

https://scholar.google.com/scholar?cites=17103810098319730115
https://scholar.google.com/scholar?cites=17103810098319730115
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De Meulder, 2003) (MUC), with the addition of a
new tag MISC to cover entities not mentioned in
MUC’s labeling rules. The data consists of text files
in which each line holds information about one to-
ken. Associated with each token are tags in inside-
outside-begin (IOB) format (Ramshaw and Mar-
cus, 1995). The files, eng.train, eng.testa,
and eng.testb, contain the train , dev , and
test folds of the corpus, respectively.

2.1 Our Work

In this paper, we identify and correct labeling er-
rors in the CoNLL-2003 corpus. We used a semi-
supervised approach to flag potentially-incorrect
labels in the corpus, then manually reviewed the
labels thus flagged.

Our approach builds on previous work in semi-
supervised labeling, with some key differences. Be-
cause we were looking for incorrect labels in a
corpus that already had many high-quality labels,
we needed a sieve with especially high sensitivity.
We used ensembles of NER models trained on the
corpus, and we focused on cases where the models
agreed strongly on a particular label, but that label
does not appear in the corpus. One of these ensem-
bles was the outputs of the original 16 entries in
the 2003 competition. We also trained two other
17-model ensembles ourselves by applying Gaus-
sian random projections to the BERT embeddings
space.

We deliberately used models with F1 scores sig-
nificantly below the state of the art. To find incor-
rect labels, we needed models that disagree with
the original CoNLL-2003 corpus. Our initial exper-
iments with the CoNLL-2003 competition entries
showed that this ensemble, with F1 scores between
0.6 and 0.88, was particularly effective for find-
ing incorrect labels. We tuned the models that we
trained ourselves to have F1 scores in this range.

Our technique flagged 3182 out of a total of
35089 entity labels. Manual inspection determined
that 850 of these labels — 27% — were incorrect.
We also found 470 additional incorrect labels in
close proximity to the labels that our techniques
flagged, for a total of 1320 incorrect labels across
the corpus.

Of a particular note, our analysis found 421 in-
correct labels in the test fold. The test fold
for this corpus contains 5648 labels. An F1 score
of 0.93, as current state-of-the-art models produce,
corresponds to approximately 400 errors on this
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Figure 1: F1 scores on the test fold for 18 differ-
ent NER models before and after correcting labeling er-
rors in the test fold. Correcting these errors widened
the spread in F1 scores between the more sophisticated
models at the right and the less sophisticated models at
the left.

fold. The change in F1 score over the past 17 years
(0.934 - 0.888 = 0.046) corresponds to eliminating
approximately 300 errors. The error rate of state-
of-the-art models is comparable to the error rate of
the corpus itself.

We used the results of our hand labeling to build
a corrected version of the corpus. Then we re-
evaluated the original entries in the competition,
plus selected NER models from recent work, over
the corrected corpus.

Figure 1 shows how the reported accuracy of
these models changed. Surprisingly, we did not ob-
serve any change in the relative ranking of the mod-
els. Even though we corrected almost 8% of the la-
bels in the test fold, no model’s F1 score changed
by more than 0.01. Without retraining, the changes
in F1 score were all in the downward direction,
but the F1 scores of the more sophisticated mod-
els dropped by less. The highest F1 score dropped
from 0.932 to 0.927, while the lowest dropped from
0.601 to 0.589. When we retrained the three state-
of-the-art models on the corrected data, their F1
scores became higher than their original scores.

2.1.1 Reproducibility
We have shared the full data set for this
paper at https://github.com/CODAIT/

Identifying-Incorrect-Labels-In-CoNLL-2003.
This data set includes a complete list of the errors
that we found in the corpus, with notes from

https://github.com/CODAIT/Identifying-Incorrect-Labels-In-CoNLL-2003
https://github.com/CODAIT/Identifying-Incorrect-Labels-In-CoNLL-2003
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the labelers about the nature of each error. We
also include scripts for generating a corrected
version of the full CoNLL-2003 corpus in its
original format. We have also released the code
for our experiments as part of our open source Text
Extensions for Pandas project3.

2.2 Related Work

Most of the previous work we have mentioned so
far has treated the CoNLL-2003 corpus as ground
truth. Two recent exceptions to this trend are Stanis-
lawek et al. (2019) and Wang et al. (2019).

Stanislawek et al. (2019) identified some of the
same incorrect labels that we found. This paper
categorized the errors that modern NER models
make on the test fold of the corpus. As a side-
effect of the error analysis, the authors of this paper
flagged cases where the output of a model had been
considered “wrong” because a label in the corpus
was incorrect. The authors identified 99 such errors
in the test fold of this corpus.

There are several important differences between
this paper and our work. Stanislawek et al. (2019)
flagged errors as a side-effect of another task, while
our primary focus was on identifying as many er-
rors as possible. Due to our broader focus, we
identified 421 errors in the test fold, compared
to the 99 errors they found. We also examined the
other two folds of the corpus, while the previous
paper focused only on the test fold. The pre-
vious paper used models with high precision and
recall; and they examined all the incorrect outputs
of these models. We deliberately used less accurate
models so as to widen the scope of potential er-
rors flagged, and we focused on cases where there
was strong agreement between these models plus
disagreement with the ground truth data.

Wang et al. (2019) hired human labelers to la-
bel all sentences in the test fold of the corpus
and found that 5.38% of sentences in this fold con-
tained errors. This number is a lower error rate
than we report, mostly due to the fact that the la-
belers did not look for errors in tokenization or
sentence identification. Excluding those types of
errors, our work flagged 348 out of 5648 entities
in the test fold, for an error rate of 6.16%. We
attribute the remaining 0.78 percent increase in er-
ror rate to the fact that our labelers examined entire
documents and looked for consistency across doc-

3https://github.com/CODAIT/
text-extensions-for-pandas

uments, while Wang et al. (2019)’s labelers only
viewed individual sentences in isolation.

Beyond the larger number of types of errors we
searched for, there are two other important differ-
ences between our work and that of Wang et al.
(2019). We developed a novel semi-supervised ap-
proach to identifying incorrect labels, and we used
this approach to examine the entire corpus instead
of just the test fold.

Our general approach of training an ensemble
of models, then focusing attention on areas where
most of the models disagree with the existing labels,
has parallels to other work on human-in-the-loop
methods for creating ground truth. Liang et al.
(2017) used confidence estimates from a model
trained on a data set to flag potential errors in the
same data set for further review. The specific NLP
task studied in that work was that of extracting a
list of patient problems from an electronic medical
record.

Fusing together the output of multiple models
and/or rules is a also common approach when us-
ing weak supervision to train models over unla-
beled NLP corpora. Lison et al. (2020) used hid-
den Markov models to generate labeled NER data
from the outputs of multiple labeling functions.
The Snorkel system (Ratner et al., 2020) provides a
general framework for using the outputs of labeling
functions to estimate both labels and the confidence
of those labels.

The data management and data mining commu-
nities have a long history of building systems and
algorithms to identify errors in ground truth data.
Abedjan et al. (2016) provide a through survey. Al-
though the primary focus of this previous work was
on structured data, subtasks like address normaliza-
tion have an NLP component.

3 Automated Labeling

We did not set out to relabel the CoNLL-2003 cor-
pus. When we started looking at this corpus, our
intent was to identify entity mentions that older
models are not able to extract, but that state-of-the-
art models are able to extract. We had hoped to use
this information to drive continued improvements
to these models.

3.1 Initial Results

The downloadable archive4 for the corpus includes
the outputs from the original entrants in the 2003

4https://www.clips.uantwerpen.be/conll2003/ner/

https://github.com/CODAIT/text-extensions-for-pandas
https://github.com/CODAIT/text-extensions-for-pandas
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(a) Original CoNLL-2003 entries.
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(b) BERT-based models.
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(c) BERT + cross-validation.

Figure 2: F1 scores of the models in our three ensembles. Each scatter point in these plots represents a trained
model. The x-axes of Figures 2b and 2c represent the number of dimensions of embeddings.

competition. These entrants used a variety of dif-
ferent models, drawing on the technology available
at the time.

We believed that these model outputs would pro-
vide an objective picture of what kinds of entities
were difficult to extract for state-of-the-art mod-
els circa 2003. We hypothesized that there would
be entity mentions that none of the models could
extract correctly, due to limitations of 2003-era
technology. We further believed that modern mod-
els would be able to tag some of these previously
impossible mentions. To test this hypothesis, we
aggregated together the outputs of the original en-
trants to find these “difficult” entities.

The corpus ships as a collection of tokens with
tags in IOB format. Using Text Extensions for
Pandas5, a library of extension types for pandas
DataFrames (Reback et al., 2020; McKinney et al.,
2010), we translated the labeled tokens of the cor-
pus into entity mentions — that is, spans of tokens
within the corpus’s document, plus the correspond-
ing entity type tag for each span.

We performed the same translation on each of
the entrants’ outputs. This process produced seven-
teen sets of entity mentions: One for the original
corpus and one for each of the sixteen entrants.
Next, we merged these sets together to find the
mentions that were present in the original corpus
but were not present in the competition entries.

Then we looked at some of these entity mentions
in the context of the original news articles, and our
original hypothesis fell apart. About one third the
examples we looked at turned out to be incorrect la-

5https://github.com/CODAIT/
text-extensions-for-pandas

bels. It would be hard to argue that these “incorrect”
answers were due to inadequacies of early-2000’s
technology, when it was in fact the corpus that was
incorrect.

Next, we took a slightly different view of the
aggregate data we had. Instead of looking for entity
mentions that were in the corpus but not in the
entrants’ outputs, we looked for entity mentions
that were in all the entrants’ outputs but were not in
the corpus. As before, a third of the examples that
we looked at involved incorrect or missing labels.
We decided at this point to focus on identifying and
correcting these incorrect labels.

3.2 Training Custom Models

The model outputs from the original CoNLL-2003
competition had proven useful for zeroing in on in-
correct labels, but this data had a significant short-
coming. The model outputs only cover the dev
and test folds of the corpus. No model outputs
on the train fold are available. To apply the tech-
nique we had used so far to the train fold, we
would need to train our own collection of models.

We used a BERT embeddings layer from the
transformers open source library (Wolf et al.,
2019), tuned on the CoNLL-2003 corpus, to pro-
duce BERT embeddings over sliding windows of
text from the train fold. Then we applied 16
different Gaussian random projections to these
768-dimensional embeddings to reduce them to
between 32 and 256 dimensions. We trained multi-
nomial logistic regression classifiers over these ran-
dom projections. We also trained an additional
classifier over the full embeddings, for a total of 17
different models.

https://github.com/CODAIT/text-extensions-for-pandas
https://github.com/CODAIT/text-extensions-for-pandas
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(b) Percentage of each error
type correctly flagged by the
method using custom models.

Sentence
17.8%

Wrong

13.8%
Token

2.8%

Tag
44.7%

Span
6.5% Both

1.6%
Missing

12.8%

(c) Percentage of each er-
ror type correctly flagged
by the method using cross-
validation.
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Figure 3: Distribution of error types found by each of the four methods.

Our goal in building these models was not to
attain the highest possible precision and recall. In
fact, high levels of accuracy could be detrimental
to our task, as high levels of accuracy imply a high
congruence with the ground-truth labels we were
trying to correct. Instead, we wanted a collection
of models that would produce diverse results and
F1 scores in line with the accuracy of the original
CoNLL-2003 entrants.

With one exception, the CoNLL-2003 competi-
tion produced F1 scores between 77% and 89% on
the test fold. We tuned our models’ training and
inference until they produced results approximately
within this range. Figure 2 shows the resulting F1
scores on the test fold. Figure 2a shows the orig-
inal CoNLL-2003 competition entries’ F1 scores,
while Figure 2b shows the F1 scores of the models
we trained, plotted against the dimensionality of
their Gaussian random projection stages.

Based on published results on BERT embed-
dings for NER, we expect that additional tuning
would have raised the F1 scores of our models by
about 0.02. We judged that the lower F1 scores in
Figure 2 are better for this application.

As with our previous analysis of the original
competition results, we aggregated together the
outputs of these 17 models on the test fold of
the corpus, then aligned these results with the cor-
pus labels. A manual spot-check of these aligned
results verified that these aggregated results also
functioned as an effective sieve for identifying in-
correct labels. Roughly half of the entity mentions
that were found by all 17 models but were not in
the corpus were due to incorrect or missing labels
in the corpus. We found similar results on the dev
fold.

3.3 Cross-Validation

Next, we applied our ensemble of models to the
train fold of the corpus and compared the ag-
gregated results against the corpus’s labels. As
with the test fold, we were able to use the ag-
gregate model outputs to identify a list of entity
mentions with a high fraction of incorrect corpus
labels. However, this list was significantly shorter
than the lists we were able to produce on the test
and dev folds. Because the models were them-
selves trained on the train fold, there were fewer
discrepancies between the model outputs and the
corpus labels.

To produce a larger list of potentially incorrect
labels, we divided the entire corpus randomly into
ten folds and performed a ten-fold cross-validation.
For each of the ten folds, we retrained our ensem-
ble of models on the other 9 folds and ran model
inference on the current fold. This process involved
training 170 different models, but because we only
needed to generate the BERT embeddings once, we
were able to perform all training in a few hours on
a 4-year-old MacBook.

Interestingly, this cross-validation approach pro-
duced models with significantly higher F1 scores
on the random holdout sets, compared with our
earlier approach of training on the train fold and
testing on the test fold. As Figure 2c shows, F1
scores for the holdout sets for each of the models
— which together encompass the entire corpus —
ranged from 0.89 to 0.94, an increase of roughly
5%.

We attribute this improvement to the non-
random split of the original corpus. The contest
judges used article publication date to split the cor-
pus into folds. The train and dev folds used
articles from August of 1996, while the test fold
was from December of that year (Tjong Kim Sang
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and De Meulder, 2003).
This non-random split matches common indus-

try practices6. However, dividing the the corpus
by time means that any systematic changes in the
target domain over time are not visible to the opti-
mizer during training. Models trained on a random
sample of the corpus are able to achieve a higher F1
score because they have better information about
the types of articles that were published in Decem-
ber 1996.

In both ensembles that we trained, our model
outputs aligned well with the labels on the train
fold. Consequently, our sieve identified fewer po-
tentially incorrect labels in the train fold of the
corpus, which in turn would lead to our identify-
ing fewer incorrect labels during manual relabeling.
Better accuracy led to worse results.

4 Hand Labeling

Each of our three ensembles produced two lists
of labels: one list of labels that were in the cor-
pus but not in the model outputs; and a second
list of labels that were in the model outputs but
not in the corpus. Overall, we produced six lists
of potentially-incorrect labels. Four of these lists
spanned the entire corpus, while the remaining two
(from the original contest entries) only spanned the
test and dev folds.

We proceeded to examine these lists by hand,
looking at each flagged label in the context of the
target document. We focused on the labels where
there was a strong agreement between the models
in each ensemble. We started out by examining
the labels where all models agreed, then moved
onto the labels where all models but one agreed,
and so on. As we progressed to labels with less
agreement among models, the fraction of flagged
labels that was actually incorrect decreased. When
this fraction dropped below 20 percent, we stopped
going through the ordered list of flagged labels.

For each list of potentially-incorrect labels, one
member of our team examined the labels, and a
second member of our team audited the decisions
that the first member had made. In total, we made
12 passes (3 ensembles × 2 sets of labels × 2 hu-
man reviewers) of manual review over the train
and test folds of the corpus and 8 passes over the
test fold.

6In our experience, most organizations that use machine
learning do not have the ability to travel backwards in time.
Hence, they train models on data from the past and apply those
models to data from the future.

When we found that a label was incorrect, we
coded the type of error and the required correction
so that the error could be corrected automatically
later on. We divided errors into several categories:

• Tag: The corpus correctly identifies the span
of an entity mention, but the span is associated
with the wrong entity type.

• Span: The corpus correctly identifies the type
of an entity mention, but the boundaries of
the span of tokens containing the mention are
incorrect.

• Both: The corpus correctly identifies an en-
tity mention, but both the tag and the span
boundaries are incorrect.

• Wrong: The corpus incorrectly identifies an
entity mention.

• Sentence: The corpus contains an incorrect
sentence boundary, and as a result the span
and/or tag of one or more entity mentions are
incorrect. This type of error especially prob-
lematic because incorrect labels on both sides
of the sentence boundary count as two mis-
takes when computing precision and recall.

• Token: The corpus contains an incorrect to-
ken boundary, and as a result the span and/or
tag of one or more entity mentions are incor-
rect.

Appendix 9.1 shows examples of each error type.
The data set that we have published as a companion
to this paper (See Section 2.1.1) includes complete
lists of the errors that we found, both before and
after manual review.

4.1 Inter-Annotator Agreement
Each manual pass over the corpus involved vali-
dating a set of suggested changes, not reannotating
the corpus in its entirety. As a result, conventional
metrics of inter-annotator agreement between our
human evaluators do not apply. Instead, we re-
port the similarity between the outputs of the three
ensembles.

Table 1 summarizes the Jaccard similarity be-
tween the three ensembles’ outputs before and af-
ter manual review. Figure 4 shows a Venn diagram
view of the relationship between the sets of flagged
labels after manual review. The raw outputs of the
two BERT-based ensembles showed a high degree
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Ensemble 1 Ensemble 2 Fold(s) Before Review After First Review After Second Review
Original models Custom models dev / test 0.5153 0.2500 0.2533
Original models Custom + Cross-val. dev / test 0.5179 0.2072 0.2052
Custom models Custom + Cross-val. dev / test 0.8220 0.5167 0.5532
Custom models Custom + Cross-val. train 0.8707 0.6677 0.6592

Table 1: Jaccard similarity between the flagged labels from different pairs of ensembles before and after human
review. The original models flagged a substantially different set of labels from our BERT-based custom models,
and this divergence increased after manual review.

Original models
Custom models

Custom models with 
cross-validation

dev + test folds train fold

88

90

149 127

22

130

19
74 109203

Figure 4: Number of errors flagged by different combi-
nations of ensembles after filtering by human labelers.

of overlap, but this overlap reduced substantially
after manual review. The original models flagged
a very different set of labels from the BERT based
models, especially after manual review.

5 Incorrect Labels Identified

In total, we examined 3182 labels our ensembles
had flagged in the three folds of the corpus. We
considered any label where fewer than 7 models
agreed with the corpus label to be “flagged”. Of
these labels, 1274 came from the test fold, 854
came from the dev fold, and 1054 came from the
train fold; accounting for 22.6%, 14.3%, and
4.5% of their folds, respectively.

As we noted in Section 3.3, our models had sig-
nificantly higher F1 scores on the train fold, both
with and without cross-validation. Because model
outputs were closer to the corpus labels, the ensem-
bles flagged fewer labels on this fold. However, the
fraction of these labels that were actually incorrect
was higher than that on the other folds: 34% versus
23%.

Of the errors correctly flagged, 184 were found
by the ensemble composed of the original entrants’
results; 641 were flagged by our custom models;
and 275 errors were found by custom models with
cross-validation. 372 of these errors were correctly
flagged by two or more approaches. While ex-

amining the affected documents, we found 470
additional errors in the vicinity of flagged errors.

Figure 3 shows the distribution of errors broken
down by error type and source. The most frequent
error type we found in the corpus was a Tag type
error, accounting for 48% of errors in total. Both
type errors were least frequent.

Our BERT-based models found a higher frac-
tion of Sentence type errors, largely because
these models were able to express spans that cross
sentence boundaries. The entrants’ outputs in our
first ensemble, being constrained by the IOB file
format, were physically incapable of expressing a
span that crosses a sentence boundary. We also sus-
pect that many of these older models operated on
one sentence at a time, while the document context
feeding our BERT embeddings could span multiple
sentences.

Had we been aiming to maximize the F1 scores
of our BERT-based models, we would have post-
processed the outputs of these models to split spans
along sentence boundaries. This lack of post-
processing led to a decrease in F1 score, but it
enabled us to find more errors.

The distribution of error types remained rela-
tively constant across folds, with one exception:
Sentence errors accounted for a much larger
fraction in the train fold — 26% of errors, as
opposed to the 8% and 10% rates in the dev and
test folds, respectively.

6 Corrected CoNLL-2003 Corpus

After identifying incorrect tags, spans and sentence
boundaries, we created a corrected version of the
original CoNLL-2003 corpus, which we refer to as
the corrected CoNLL-2003 corpus.

We used the Text Extensions for Pandas library
to parse the original corpus and extract tokens and
spans for each entity. We created data files con-
taining all of the vetted corrections from our hand
labeling of ensemble outputs. We wrote a script
that applies all of these corrections to the CoNLL-
2003 corpus, producing a corrected version of the
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Entrant Original test Fold Corrected test Fold

Precision Recall F1 Score Precision Recall F1 Score

bender 0.8468 0.8318 0.8392 0.8412 0.8279 0.8347
carrerasa 0.8405 0.8596 0.8500 0.8325 0.8517 0.8420
carrerasb 0.8581 0.8284 0.8430 0.8466 0.8192 0.8327

chieu 0.8812 0.8851 0.8831 0.8733 0.8791 0.8762
curran 0.8429 0.8550 0.8489 0.8376 0.8501 0.8438

demeulder 0.7584 0.7813 0.7697 0.7468 0.7693 0.7579
florian 0.8899 0.8854 0.8876 0.8837 0.8800 0.8818

hammerton 0.6909 0.5326 0.6015 0.6749 0.5210 0.5881
hendrickx 0.7633 0.8017 0.7820 0.7548 0.7936 0.7737

klein 0.8612 0.8649 0.8631 0.8593 0.8634 0.8614
mayfield 0.8445 0.8490 0.8467 0.8354 0.8411 0.8382
mccallum 0.8452 0.8355 0.8404 0.8398 0.8315 0.8356

munro 0.8087 0.8421 0.8251 0.8003 0.8327 0.8162
whitelaw 0.8160 0.7805 0.7978 0.8045 0.7702 0.7870

wu 0.8202 0.8139 0.8170 0.8112 0.8075 0.8094
zhang 0.8613 0.8488 0.8550 0.8574 0.8459 0.8516

Table 2: Experimental results on the original CoNLL 2003 (English) competition.

corpus.
For information on how to obtain the code and

data necessary to recreate our corrected corpus, as
well as all the experiment code for this paper, see
Section 2.1.1.

7 Experimental Evaluation

In this section, we first re-evaluate the entries
from the original competition against the corrected
test fold of the corpus. We then re-evaluate the
metrics of three state-of-the-art NER models from
recent literature on the corrected corpus.

7.1 Re-evaluation of the Original
Competition Entries

We evaluated the original 16 CoNLL-2003 compe-
tition entries on the original and corrected CoNLL-
2003 test folds.

Before evaluating on the corrected data, we
needed to adjust sentence boundaries and tokeniza-
tion in the entrants’ output files to match that of
the corrected corpus. The evaluation metric for this
corpus relies on perfect alignment between tokens
and sentences of the files being compared. When
we split a token, we copied the token’s label to the
new, smaller tokens.

We recomputed precision, recall, and F1 scores.
Our results are shown in Table 2 and Figure 1.
All of the entries have lower precision, recall, and
F1 scores on the corrected CoNLL-2003 test
fold than on the original test fold. Although we
changed nearly 8% of the labels in the test fold,
all the models’ metrics decreased by 1% or less.

The more accurate entries saw their F1 scores
decline by less than the entries with lower F1
scores. For example, the top-scoring entry’s F1
score dropped by 0.0054, while the bottom-scoring
entry dropped by 0.0122 — more than twice as
much. As a result, the ranking of entries did not
change. It appears that the errors in the original cor-
pus penalize models that produce answers closer to
the actual ground truth.

Since we did not have access to the original mod-
els, we only performed inference and scoring on
the corrected CoNLL-2003 corpus. We expect that
the metrics would improve if the models are en-
tirely re-trained on the corrected corpus’ train
fold. This would constitute relevant future work
and point towards new reliable benchmarks.

7.2 Experimental Results on Recent Models

We evaluated three state-of-the-art NER models.
We selected three models (Akbik et al., 2018, 2019;
Devlin et al., 2019) according to the ranking of
models on the CoNLL-2003 NER task compiled
on Papers with Code (Paper with Code, 2020)7.
Table 3 summarizes our experimental results. We
have the following observations.

7We initially planned to select all of the models that rank
top 10 from (Paper with Code, 2020). However, we were able
to reproduce only three of them. We were unable to apply the
rest of the models for the following technical reasons: two of
which we requested code from the authors never received any
responses; one of which we could find code but there is no
instruction on how to use the code; three of which we could
find code with instructions but we could not reproduce by
following the instructions; one of which uses a nonstandard
tagging scheme. We have contacted the authors of all of these
papers for help with their code.
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Model Original test Fold Corrected test Fold

Precision Recall F1 Score Precision Recall F1 Score

Trained on (Akbik et al., 2018) 0.9133 0.9207 0.9165 0.9108 0.9177 0.9142
Original (Akbik et al., 2019) 0.9290 0.9354 0.9322 0.9226 0.9286 0.9256
Corpus (Devlin et al., 2019) 0.9119 0.9229 0.9173 0.9110 0.9217 0.9163

Trained on (Akbik et al., 2018) 0.9073 0.9120 0.9096 0.9206 0.9248 0.9227
Corrected (Akbik et al., 2019) 0.9252 0.9260 0.9256 0.9400 0.9407 0.9404

Corpus (Devlin et al., 2019) 0.9228 0.9309 0.9268 0.9218 0.9295 0.9256

Table 3: Experimental results for recent models. We trained each of the three models (Akbik et al., 2018), (Akbik
et al., 2019), and (Devlin et al., 2019) on the original and corrected train folds, respectively. For each trained
model, we evaluated on the original and corrected test folds, respectively. For (Akbik et al., 2018) and (Akbik
et al., 2019), we trained on both train and dev folds. For (Devlin et al., 2019), we trained on the train fold.
For all models, we used the hyperparameter settings specified in their respective papers.

On the corrected test fold, all the listed metrics
(the F1 scores, precision, and recall) are higher for
the models trained on the corrected corpus than
those on the original corpus. This indicates that our
correction on the corpus has a positive impact on
the quality of training of the three models.

Comparing the metrics of models trained and
evaluated on the original corpus (the top-left sec-
tion of the table) and the metrics of models trained
and evaluated on the corrected corpus (the bottom-
right section of the table), we see that all metrics
have been improved on the corrected corpus. This
might indicate that these three models are actually
more effective (according to the evaluation on the
corrected corpus) than they were thought to be (ac-
cording to the evaluation on the original corpus).

However, on the original test fold, all the
listed metrics (the F1 scores, precision, and recall)
are not higher for the models trained on the origi-
nal corpus than those on the corrected corpus. This
might be explained by the fact that the errors in the
original test fold are not consistent with the orig-
inal train and dev folds, hence models trained
on the original corpus are not necessarily more
advantageous than those trained on the corrected
corpus when evaluated on the original test fold.

For models trained on the original corpus, all
the listed metrics (the F1 scores, precision, and
recall) on the corrected test fold are very close
to those on the original test fold (differences are
mostly within 0.002 and no larger than 0.01). Once
again, this might be explicable by the fact that the
errors the errors in the original test fold are not
consistent with the original train and dev folds.
Hence, models trained on the original corpus are
not necessarily more advantageous when evaluated
on the original test fold than on the corrected

test fold.

8 Conclusion and Future Work

The CoNLL-2003 corpus is highly influential in
named entity recognition (NER) research. It has
been used for benchmarking many landmark NER
models and has been continuing to play a critical
role in recent research. In this paper, we took a
closer look at the CoNLL-2003 corpus and identi-
fied a number of errors. We used a semi-supervised
method to identify these errors and then systemati-
cally corrected them.

The primary contribution of this paper is the cre-
ation of a more error-free version of the CoNLL-
2003 corpus, which can potentially be used to eval-
uate past NER models more accurately and make
future benchmarking more reliable. Indeed, as our
experiments on three recent state-of-the-art NER
models have shown, our corrections to the corpus
have a positive impact on these models: When eval-
uated on our corrected test fold, all three models
trained on our corrected corpus outperformed their
counterparts trained on the original corpus by a
non-negligible margin.

We firmly believe that benchmarking corpora
are the lighthouses for research, and improving the
quality of benchmarking corpora is of utmost im-
portance in guiding the research community. We
hope that others can replicate the process we ap-
plied to this corpus on other key corpora, and in do-
ing so, improve the utility of these vital resources.
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9 Appendix

9.1 Types of Errors

We classified the errors that we found into several
categories. In this section, we give concrete exam-
ples of each type.

9.1.1 Tag Errors
In some cases, the corpus had correctly identified
the span of the entity mention, but the tokens of
that span were labeled with an incorrect entity type.
For example, the 156th document in the test fold
contains the token/label sequence:

smuggled O
heroin O
from O
Turkey I-LOC
to O
Antwerp I-ORG

This sequence incorrectly tags a mention of the
city Antwerp as an ORG entity when it should be
tagged LOC.

We call errors of this type Tag errors.

9.1.2 Span Errors
In other cases, the corpus correctly identified the
entity type of an entity mention, but there was an
error in labeling the precise range of tokens contain-
ing that entity. For example, the 113th document of
the test fold contains the token/label sequence:

Ingeborg I-PER
Helen I-PER
Markein O

This sequence incorrectly marks the span ‘Inge-
borg Helen‘ as a ‘PER‘ entity, when the correct
span is ‘Ingeborg Helen Markein‘, the full name of
a Norwegian skier.

We call errors of this type Span errors.

9.1.3 Both Errors
At some locations in the corpus, an entity was sub-
ject to both a Span error and a Tag error at the
same time. For example, the headline for the 23rd
document of the test fold contains the token/label
sequence:

ARAB I-MISC
CONTRACTORS O
WIN O
AFRICAN I-MISC
CUP I-MISC

These labels miss an instance of the ORG entity
ARAB CONTRACTORS, a reference to The Arab
Contractors Sporting Club, an Egyptian soccer
team. In lieu of labeling ARAB CONTRACTORS,
the sequence labels ARAB as a single-token MISC
entity, which is not correct because that token is
part of the longer ORG entity.

We call errors of this type Both errors.

9.1.4 Wrong Errors
In some cases, the corpus marks tokens that do not
match any entity type at all. For example, the 153rd
document in the test fold contains the token/label
sequence:

next O
Wednesday I-ORG

This sequence of labels incorrectly marks
Wednesday as an ORG entity when that token
is in fact a reference to a day of the week.

We call errors of this type Wrong errors.

9.1.5 Sentence Errors
The creators of the corpus used automatic tools to
break each document into sentences. Some of these
sentence boundaries were incorrect, and some of
these incorrect sentence boundaries occurred in the
middle of an entity mention. For example, the 20th
document of the dev fold contains the token/label
sequence:

the O
Berlin I-MISC

Grand I-MISC
Prix I-MISC

(where the blank line encodes a sentence bound-
ary).

Because the labeling and scoring scheme for this
corpus does not permit entity mentions to span sen-
tence boundaries, this sequence marks Berlin
and Grand Prix as two separate ‘MISC‘ enti-
ties.

This type of error is especially problematic be-
cause incorrect labels on these tokens will count as
two mistakes when computing precision and recall.
In addition, many models process one sentence at a
time. When processing the above document, such
models will see a sentence that ends with the token
Berlin, followed by a sentence that starts with
Grand Prix.

In other cases, an incorrect sentence boundary
led the human labeler to conclude incorrectly that
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the period after an abbreviation is not part of the
abbreviation. For example, the 208th document of
the train fold contains the token/label sequence:

The I-ORG
Walt I-ORG
Disney I-ORG
Co I-ORG
. O

said O
Thursday O

(where the blank line encodes a sentence bound-
ary).

In this example, Co. should be labeled as an
ORG entity, but only Co (without the period) is
marked.

We call errors of both these types Sentence
errors.

9.1.6 “Token”-Type Errors
The authors of the original corpus used the MBT
tagger (Daelemans et al., 2002) to tokenize the
original news articles. Occasionally, the tokenizer
made a mistake; and occasionally, a tokenization
mistake happened to coincide with an entity men-
tion. For example, the 169th document of the
train fold contains the token/label sequence:

Nigerian I-MISC
terms O
jeopardize O
Commonwealth I-ORG
trip-Canada I-MISC
. O

Here, the tokenizer has incorrectly tokenized
“trip — Canada” as a single token, and the human
labeler has labeled this token as MISC, even though
Canada is a LOC entity. Correcting this kind of
problem involves splitting the incorrect token into
its corrected parts, then relabeling those parts as
needed. The above example turns into:

Nigerian I-MISC
terms O
jeopardize O
Commonwealth I-ORG
trip O
- O
Canada I-LOC
. O

We call errors of this type Token errors.


