
Proceedings of the 6th International Workshop on Computational Terminology (COMPUTERM 2020), pages 101–105
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

101

TermEval 2020: RACAI’s automatic term extraction system

Vasile Păiș, Radu Ion
Research Institute for Artificial Intelligence “Mihai Drăgănescu”, Romanian Academy

CASA ACADEMIEI, 13 “Calea 13 Septembrie”, Bucharest 050711, ROMANIA

{vasile, radu}@racai.ro

Abstract
This paper describes RACAI’s automatic term extraction system, which participated in the TermEval 2020 shared task on English
monolingual term extraction. We discuss the system architecture, some of the challenges that we faced as well as present our results in
the English competition.

Keywords: automatic term extraction, ATE, natural language processing

1. Introduction

Automatic term extraction, also known as ATE, is a well-
known task within the domain of natural language
processing. Given a text (this can be either a fragment or
an entire corpus), an automatic term extractor system will
produce a list of terms (single or multiword expressions)
characteristic for the domain of text.

Felber, in the “Terminology Manual” (Felber, 1984),
defines a term as “any conventional symbol representing a
concept defined in a subject field”. Nevertheless,
considering current practice in natural language
processing tasks, it is not always possible to give a general
definition applicable for the workings of a term extractor.
One question is whether or not to include named entities
as part of the identified terms. This problem is also raised
by the organizers of the TermEval 2020 shared task, each
system being evaluated twice, once including and once
excluding named entities1. Furthermore, since named
entity recognizers can be trained on many classes (such as
diseases or chemicals for example), another potential
question is what kinds of entities (if any) can be included
as part of the identified terms. However, an agreement
must be made that all identified terms must be specific to
the domain of the analyzed text, regardless of inclusion or
not of named entities. For example, in the shared task’s
provided training dataset, the named entity “United States
Dressage Federation” is included as a term in the
“equestrian” section.

The present paper presents our attempt at constructing an
automatic term extraction system in the context of the
TermEval 2020 shared task on monolingual term
extraction (Rigouts Terryn et al., 2020). We start by
presenting related research, then continue with the
description of our system and finally present concluding
remarks.

2. Related work

The usefulness of the term identification process is both in
its own use, such as creation of document indices, and as a
pre-processing step in other more advanced processes,
such as machine translation. Furthermore, the output
produced by an automatic system can be manually
validated by a human user in order to remove irrelevant
terms.

1 https://termeval.ugent.be/task-evaluation/

Traditional approaches for ATE (Kageura, 1998) make
use of statistical features such as word frequency or
“termhood” (degree of relatedness of a proposed term to
the domain) metrics. Additionally, information such as
part of speech can be used to further filter candidate
terms. Term formalization attempts can be identified in
the literature as early as e.g. 1996, when Frantzi and
Ananiadou (1996) defined C-value as a basic measure of
termhood, a principle we have also used in one of our
algorithms. In this section, we will briefly mention the
inner workings of some existing term extraction
algorithms that we used in our term extraction system. For
a detailed coverage of this rather vast sub-domain of NLP,
the reader is referred to e.g. Pazienza et al. (2005) or the
more recent Firoozeh et al. (2019).

TextRank (Mihalcea and Tarau, 2004) is a term extraction
algorithm using a graph representation of the text in which
each word is a node and an edge is created between words
collocated within a certain window of words. Based on
the number of links to each node a score is computed
similar to the PageRank algorithm (Brin and Page, 1998).
Further filtering is performed based on the part of speech
of the words. The graph is created based on single words.
However, as the last step of the algorithm a reconstruction
of multi-word terms is performed if multiple single word
terms are collocated in the sentence.

RAKE, an acronym for Rapid Automatic Keyword
Extraction (Rose et al., 2010), combines graph measures
such as the degree (number of connected edges) with
statistical measures such as word frequency. Furthermore,
RAKE uses a strategy similar to TextRank for combining
single words that occur together at least twice into a
multi-word term. An interesting idea deriving from the
RAKE paper is the importance of the stop words list used.
In this context, it is mentioned that FOX (Fox, 1989) stop
list produces an increase in the F1 score for the RAKE
algorithm. An improvement over the initial RAKE
algorithm is described in Gupta et al. (2016).

Campos et al. (2020) present YAKE, which makes use of
statistical features. According to their analysis2 it is
comparable or even better in some cases to previous state-
of-the-art methods. In the HAMLET system (Rigouts
Terryn et al., 2019) a number of 152 features are
computed on each candidate term and a binary decision
tree classifier is trained. Candidates are determined based
on their part of speech, but the patterns of occurrence are
determined automatically based on training data.

2 https://github.com/LIAAD/yake

102

3. Dataset and basic processing

The dataset proposed for the TermEval task is described
in detail in the task paper (Rigouts Terryn et al., 2020).
However, several aspects must be mentioned. It is
comprised of 4 domains: wind energy (‘wind’), corruption
(‘corp’), horse dressage (‘equi’) and heart failure (‘hf’).
The first 3 domains were provided with annotations for
training purposes, while the heart failure domain was used
for testing. All the domains were made available in
English, French and Dutch.

For the purposes of our experiments, we focused on the
English version of the corpus. However, we tried to keep
our algorithms independent of the actual language being
used. Towards this end, we used only resources normally
available for many languages, such as annotations and
stop words, and did not create any rules or patterns
specific to the English language.

One of the primary processing operations was to annotate
the corpus with part-of-speech and lemma information.
For this purpose, we used Stanford CoreNLP (Manning et
al., 2014). Furthermore, we precomputed statistical
indicators based on the corpus, such as n-gram frequency,
document frequency and letters used (in some cases terms
contained non-English letters). Statistics were computed
for both the corpus and the provided training annotations.

Unfortunately, the corpus is not balanced with respect to
the different domains. Therefore, some statistical
indicators may be less meaningful. For example, the
corruption part of the corpus contains 12 annotated texts
with an additional 12 texts provided without annotations.
However, the equestrianism part contains 34 annotated
text files and 55 unannotated documents. Furthermore, the
evaluation section on heart failure contains 190 files. This
seems to suggest that indicators like document frequency
(the number of documents containing a certain
word/expression) may be more meaningful for certain
sections and less meaningful for others.

More statistics regarding the English domains of the
corpus are presented in Table 1.

 equi corp wind hf

Annotated files 34 12 5 190

Unannotated files 55 12 33 -

Unique lowercase

tokens

6854 7958 21591 6092

Terms (without NE) 1155 927 1091 2361

Terms (with NE) 1575 1174 1534 2585

Table 1: Statistics regarding the English sections of the
corpus

One of the characteristics specific only to the wind energy
section of the corpus is the presence of mathematical
formulas in some of the files. We could not identify an
easy way to automatically remove them and did not want
to manually perform this action. For example, “CP” is
considered a term and it also appears in some formulas.
Furthermore, there are lines of text presumably between
formulas which look similar to a formula, like “CP ,max
CT CTr” or full lines of text containing embedded
formulas. Even more, the term “PCO2”, indicated in the
gold annotations, seems to only appear inside a formula
(“PCO2 = TCO2 – HCO2 PCO2”). Therefore, in order to

avoid removal of potentially useful portions of text, the
files were used as they were provided.

Given these discrepancies between the different domain
sub-corpora, it was our assumption, from the beginning,
that different algorithms will obtain different results on
each of the domains. Therefore, we started first by
analyzing the results provided by known algorithms on
the training parts of the corpus. These results are
presented in Tables 2, 3, 4 and are compared against the
provided annotations with named entities included. In
these tables, the algorithm with the best F1 score in each
section is marked in bold. The “1W” specification besides
an algorithm denotes the score for single word terms.

In accordance with our previous observation, because of
the imbalances between the different sections of the
corpus, from Table 2 it can easily be seen that most of the
algorithms perform better on the “equi” section and worse
on the other sections. In some cases, there are even
extreme differences. For example, the YAKE
implementation gives on multi-word expressions an F1
score of 22.3 on the “equi” section and only 5.94 on the
“wind” section. This is improved for single word
expressions with 12% on the “equi” section and less then
3% for the other sections.

 P% R% F1%

TFIDF 1W 27.80 26.70 27.24

TFIDF 10.63 19.30 13.71

RAKE 1W 20.43 69.23 31.55

RAKE 15.39 65.97 24.95

YAKE 1W 39.31 31.00 34.66

YAKE 18.39 28.32 22.30

TRANK 1W 29.21 42.76 34.71

TRANK 26.86 25.27 26.04

Table 2: Precision, Recall, F1 measures for tested
algorithms on the “equi” section

 P% R% F1%

TFIDF 1W 16.02 27.29 20.19

TFIDF 7.81 18.65 11.01

RAKE 1W 16.80 75.30 27.47

RAKE 12.95 65.08 21.60

YAKE 1W 30.94 8.57 13.42

YAKE 11.81 9.88 10.76

TRANK 1W 17.67 39.24 24.37

TRANK 17.05 18.40 17.70

Table 3: Precision, Recall, F1 measures for tested
algorithms on the “corp” section

 P% R% F1%

TFIDF 1W 17.30 19.96 18.54

TFIDF 13.18 11.60 12.34

RAKE 1W 13.62 58.13 22.07

RAKE 13.90 63.17 22.79

YAKE 1W 64.29 3.18 6.06

YAKE 12.37 3.91 5.94

TRANK 1W 14.57 34.81 20.54

TRANK 14.11 13.62 13.86

Table 4: Precision, Recall, F1 measures for tested
algorithms on the “wind” section

103

4. System Architecture

Looking at the above tables, two observations can be
made: a) no single system performs best on all three
sections; b) systems tend to balance precision and recall,
but in extreme cases they prefer either precision (for
example the YAKE method in “corp” and “wind”
sections) or recall (for example the RAKE method).

A first idea that we explored was to implement a voting
mechanism between the systems. However, the results
presented only slight improvements. Without a complete
and in-depth analysis, we concluded that each system was
good at identifying certain terms (based on their pattern of
occurrence) but performing badly for other terms.
Therefore, we decided to extend the basic system and
implement additional algorithms that would try to
complement and extend the previous ones, by using new
methods and finally use the same voting mechanism.

The first algorithm, PLEARN (from “pattern learn”) is
trying to identify patterns based on statistics computed on
the train set annotations and their appearance in context.
We used the following features: letters accepted in
annotations (for example there is no term using “,”), stop
words accepted at start or end of a term (for example there
is no term starting or ending with “and”), stop words
accepted inside multi word terms, stop words accepted
before or after a term (for example “and” usually is not
contained within a term but rather it separates two distinct
terms, thus appearing before or after a term), suffixes of
words other than stop words present in terms (usually we
tend to find nouns as terms, but we tried not to impose this
condition, thus we only checked the suffixes of words).

For the purpose of the algorithm, all information was
extracted automatically from the training set and no
manual conditions or word lists were created. One
immediate problem with the algorithm is that the training
set did not provide the actual position of the term.
Therefore, if the same word or multi-word expression was
used both as term and as a non-term then the feature
extraction part was not able to identify this case.
Nevertheless, the algorithm was able to produce the good
recall that we were expecting, presented in Table 5.

 P% R% F1%

Equi 1W 21.28 87.56 34.24

Equi 7.96 86.22 14.57

Corp 1W 15.61 91.43 26.66

Corp 4.85 89.86 9.19

Wind 1W 13.37 89.93 23.28

Wind 5.53 88.33 10.41

Table 5: Precision, Recall, F1 measures for the PLEARN
algorithm on the training parts of the corpus

A second algorithm used a clustering approach, thus we’ll
refer to it as “CLUS” for the purposes of this paper. In this
case we worked under the assumption that terms
belonging to a particular domain will tend to cluster
together because they will be related in meaning. In order
to model this relation, we represented the words using
word embeddings and used the cosine distance. For the
clustering algorithm, we implemented a DBSCAN
algorithm (Ester et al., 1996).

The input for the clustering algorithm was composed of
the terms identified by the PLEARN algorithm. From
these terms we kept only the single word terms.
Furthermore, we decided to use an approach similar to the
one used in TextRank to compose at the end multi-word
terms based on the colocation of single word terms. This
last operation was done in a post-processing step.

For the word embedding representation we considered
necessary to use a model trained on a large enough corpus
to allow for words to be used in different domains,
including those of interest for this work. Therefore, we
decided to use a word embeddings model trained on the
Open American National Corpus (Ide, 2008).
Furthermore, due to the relatively short time available for
the task participation, we decided to use a pre-trained
model3. Results are given in Table 6.

This algorithm already has a much better F1 score for
single word terms then all the other algorithms tested. In
the case of the “wind” section the F1 score is almost
double (45.02%) then the best previous result (22.79%).

 P% R% F1%

Equi 1W 42.37 48.98 45.44

Equi 32.58 33.97 33.26

Corp 1W 44.14 28.49 34.62

Corp 36.46 12.27 18.36

Wind 1W 40.71 50.35 45.02

Wind 36.45 21.58 27.11

Table 6: Precision, Recall, F1 measures for the CLUS
algorithm on the training parts of the corpus

Since the CLUS algorithm works on single word terms
and only in the post-processing step combines them to
create multi-word terms, we decided to work on a third
algorithm that would work directly with multi-word
expression candidates.

The third (and last) algorithm that we developed is called
WEMBF (word embeddings filtered) and, as its name
implies, uses the word embeddings vector representation
of words to measure the termhood of each word. The
algorithm executes the following steps:

1) Tokenizes and POS tags all text files of the specified
domain of the corpus, using the NLTK Python library
(Bird et al., 2009);

2) Extracts all NPs from the domain sub-corpus, using
simple prenominal-nominal patterns, including all
prepositional phrases headed by the preposition ‘of’,
which are almost always attached to the previous NP.
Furthermore, it deletes any determiners that start NPs and
removes URLs, emails, numbers and other entities
considered to be irrelevant for the term extraction task;

3) For each content word (i.e. nouns, adjectives, adverbs
and verbs) of each NP, computes a cosine distance
between two word embeddings vectors. The first vector is
obtained from training on a “general”-domain corpus
containing news, literature, sports, etc., being careful not
to include texts from the domain of interest. The second
vector is obtained from training only on the domain of
interest (e.g. ‘wind’);

3 https://data.world/jaredfern/oanc-word-embeddings

104

4) Score each NP by averaging the previously computed
cosine distance of its member content words.

Step 4 of the WEMBF algorithm gives us a preliminary
term list on the assumption that the larger the cosine
distance of the general and domain word embeddings
vectors is, the more likely is that the word is a term in the
domain of interest. However, the obtained list contains too
many NPs which makes it perform poorly in terms of
precision. Thus, we decided to remove some term NPs
from this initial list, using the following filters:

a) Only keep NPs which appear (are embedded) in other
NPs from the preliminary term list (Frantzi and
Ananiadou, 1996). The number of occurrences (in other
NPs) is kept for each surviving NP to be rescored later;

b) Remove all single-word terms that appear as head
nouns in other NPs on the assumption that if they can be
modified, they are too general to be kept as terms.

The termhood score of each NP in the final list is
modified by multiplying the following indicators: the
original score of the NP, the number of words in the NP,
the number of NPs in which this NP appeared.

Thus, if an NP has more words, it appeared in many other
NPs and its average cosine distance (between the general
domain and the domain of interest) of its member content
words is higher, the NP is more likely to be a term.

Results of the WEMBF term extraction algorithm are
given in Table 8.

 P% R% F1%

Equi 1W 30.48 41.06 34.99

Equi 32.83 31.49 32.15

Corp 1W 15.42 52.79 23.86

Corp 16.50 36.80 22.78

Wind 1W 7.72 52.65 13.47

Wind 8.97 38.72 14.56

Table 8. Precision, Recall, F1 measures for the WEMBF
algorithm on the training parts of the corpus

The WEMBF algorithm has a performance similar to the
PLEARN algorithm for single words, even though with a
more balanced precision and recall, but better
performance for multi-word terms.

The final step in our approach was to construct an
ensemble module that takes the annotations from different
algorithms and combines them together via a voting
scheme. This is presented schematically in Figure 1.

Figure 1. RACAI’s term extraction system architecture
that participated in TermEval 2020

Each algorithm is fed into the voting module, having one
vote for the final result. An exception is in the case of
PLEARN and CLUS algorithms which are linked together
and thus constitute a single vote.

5. System evaluation

Once the test set annotations were released, we were able
to evaluate our system, including all the other algorithms
on the final data. When comparing this information with
results based on the different training sections, we must
keep in mind the peculiarities of each section of the
corpus, as presented in Table 1 above. Evaluation results
on the “heart failure” section are presented in Table 9.

Our CLUS algorithm performed best on the single word
terms giving an F1 score of 53.48 with balanced precision
and recall. Furthermore, the PLEARN algorithm produced
the best recall, which was to be expected since it was
designed especially for this purpose. However, the final
algorithm with the combination of all of them did perform
better on the multi-word terms, this being reflected in the
final F1 score.

 P% R% F1%

TFIDF 1W 23.22 24.27 23.74

TFIDF 12.57 15.67 13.95

RAKE 1W 29.79 58.29 39.43

RAKE 19.48 58.88 29.27

YAKE 1W 28.93 62.22 39.50

YAKE 11.11 54.89 18.47

TRANK 1W 32.72 42.39 36.93

TRANK 28.93 22.28 25.17

PLEARN 1W 24.53 90.94 38.64

PLEARN 6.45 87.12 12.02

CLUS 1W 49.11 58.72 53.48

CLUS 41.17 35.82 38.31

WEMBF 1W 38.32 32.82 35.36

WEMBF 38.98 20.74 27.07

FINAL 1W 42.20 67.95 52.06

FINAL 42.40 40.27 41.31

Table 9. Precision, Recall, F1 measures of different
algorithms on the evaluation set (“heart failure”).

6. Conclusions and future work

This paper presented our system proposal4 for the
TermEval 2020 shared task. We started by investigating
the performance of existing algorithms. Then went on and
created three new algorithms: PLEARN, CLUS and
WEMBF as described in section 4. Finally, we
constructed an ensemble module, based on voting, which
combined the results of all the algorithms in order to
produce the final results. Evaluation on the “heart failure”
dataset is presented in Table 9 above.

The approach behind the ACTER dataset, of building a
term annotated corpus in multiple languages is very
interesting and it was extremely helpful for building our
automatic term extractor system. It is our hope that this or

4 https://github.com/racai-ai/TermEval2020

105

a similar approach could be used for Romanian language
as well. In this context, we envisage extending our term
extractor to support Romanian language and further
include it in the RELATE platform (Păiș et al., 2019)
dedicated to processing Romanian language.

We managed to successfully use pre-trained word
embeddings on a large corpus for our CLUS algorithm.
This proves that transfer learning is a possibility that
should be explored also in the field of term extraction.
Therefore, amongst our future work we’ll try to use the
same approach for the Romanian language, by using pre-
trained word embeddings (Păiș and Tufiș, 2018) on the
Reference Corpus of Contemporary Romanian Language
(CoRoLa) (Mititelu et al., 2018).

7. Acknowledgements

Part of this work was conducted in the context of the
ReTeRom project. Part of this work was conducted in the
context of the Marcell project.

8. Bibliographical References

Bird, S., Klein, E. and Loper, E. (2009). Natural Language
Processing with Python --- Analyzing Text with the
Natural Language Toolkit. O'Reilly Media; available
online at http://www.nltk.org/book_1ed/.

Brin, S. and Page, L. (1998). The anatomy of a large-scale
hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7).

Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A.,
Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE!
Keyword Extraction from Single Documents using
Multiple Local Features. In Information Sciences
Journal. Elsevier, Vol 509, pp 257-289.

Ester, M., Kriegel, H. P., Sander, J. and Xu, X. (1996). A
density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge
Discovery and Data Mining (KDD-96),pp 226-231.

Felber, H. (1984). Terminology Manual. Paris:
International Information Centre for Terminology.

Firoozeh, N., Nazarenko, A., Alizon, F. and Daille, B.
(2019). Keyword extraction: Issues and methods.
Natural Language Engineering, pages 1-33, Cambridge
University Press.

Fox, C. (1989). A stop list for general text. ACM SIGIR
Forum, vol. 24, pp. 19–21. ACM, New York, USA.

Frantzi, K. T. and Ananiadou, Sophia. (1996) Extracting
Nested Collocations. In Proceedings of the 16th
conference on Computational Linguistics - Volume 1,
pages 41—46. Association for Computational
Linguistics.

Gupta, S., Mittal, N., & Kumar, A. (2016). Rake-pmi
automated keyphrase extraction: An unsupervised
approach for automated extraction of keyphrases. In
Proceedings of the International Conference on
Informatics and Analytics, pp. 1-6.

Ide, N. (2008). The American National Corpus: Then,
Now, and Tomorrow. In Michael Haugh, Kate
Burridge, Jean Mulder and Pam Peters (eds.), Selected
Proceedings of the 2008 HCSNet Workshop on
Designing the Australian National Corpus: Mustering
Languages, Cascadilla Proceedings Project,
Sommerville, MA.

Kageura, K.; Umino, B. (1998). Methods of automatic
term recognition. Terminology. 3(2):259-289.

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S.J. and McClosky, D. (2014). The Stanford
CoreNLP Natural Language Processing Toolkit. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pp. 55-60.

Mihalcea, R., Tarau, P. (2004). TextRank: Bringing Order
into Text. In Proceedings of the 2004 Conference on
Empirical Methods in Natural Language Processing
EMNLP 2004, pp 404-411.

Mititelu, B.V., Tufiș, D. and Irimia, E. (2018). The
Reference Corpus of Contemporary Romanian
Language (CoRoLa). In Proceedings of the 11th
Language Resources and Evaluation Conference –
LREC’18, Miyazaki, Japan, European Language
Resources Association (ELRA).

Pazienza M.T., Pennacchiotti M. and Zanzotto F.M.
(2005). Terminology Extraction: An Analysis of
Linguistic and Statistical Approaches. In: Sirmakessis
S. (eds) Knowledge Mining. Studies in Fuzziness and
Soft Computing, vol 185. Springer, Berlin, Heidelberg

Păiș, V., Tufiș, D. (2018). Computing distributed
representations of words using the COROLA corpus. In
Proceedings of the Romanian Academy, Series A,
Volume 19, Number 2/2018, pp. 403–409.

Păiș, V., Tufiș, D. and Ion, R. (2019). Integration of
Romanian NLP tools into the RELATE platform. In
Proceedings of the International Conference on
Linguistic Resources and Tools for Processing
Romanian Language – CONSILR 2019, pages 181-192.

Rigouts Terryn, A., Drouin, P., Hoste, V., & Lefever, E.
(2020). TermEval 2020: Shared Task on Automatic
Term Extraction Using the Annotated Corpora for Term
Extraction Research (ACTER) Dataset. In Proceedings
of CompuTerm 2020.

Rigouts Terryn, A., Drouin, P., Hoste, V., & Lefever, E.
(2019). Analysing the Impact of Supervised Machine
Learning on Automatic Term Extraction: HAMLET vs
TermoStat. In Proceedings of Recent Advances in
Natural Language Processing – RANLP 2019, pages
1012–1021, Varna, Bulgaria, Sep 2–4, 2019.

Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).
Automatic keyword extraction from individual
documents. Text mining: applications and theory, 1, 1-
20.

Sparck Jones, K. (1972). A statistical interpretation of
term specificity and its application in retrieval. Journal
of Documentation, 28:11-21.

