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Abstract

In visual guessing games, a Guesser has to identify a target object in a scene by asking ques-

tions to an Oracle. An effective strategy for the players is to learn conceptual representations

of objects that are both discriminative and expressive enough to ask questions and guess cor-

rectly. However, as shown by Suglia et al. (2020), existing models fail to learn truly multi-modal

representations, relying instead on gold category labels for objects in the scene both at train-

ing and inference time. This provides an unnatural performance advantage when categories at

inference time match those at training time, and it causes models to fail in more realistic “zero-

shot” scenarios where out-of-domain object categories are involved. To overcome this issue,

we introduce a novel “imagination” module based on Regularized Auto-Encoders, that learns

context-aware and category-aware latent embeddings without relying on category labels at infer-

ence time. Our imagination module outperforms state-of-the-art competitors by 8.26% gameplay

accuracy in the CompGuessWhat?! zero-shot scenario (Suglia et al., 2020), and it improves the

Oracle and Guesser accuracy by 2.08% and 12.86% in the GuessWhat?! benchmark, when no

gold categories are available at inference time. The imagination module also boosts reasoning

about object properties and attributes.

1 Introduction

Humans do not learn conceptual representations from language alone, but from a wide range of situa-

tional information (Beinborn et al., 2018; Bisk et al., 2020) as highlighted also by property-listing exper-

iments (McRae et al., 2005). When humans experience the concept of “boat”, they simulate a new rep-

resentation by reactivating and aggregating multi-modal representations that reside in their memory and

are associated with the concept of “boat” (e.g., what a boat looks like, the action of sailing, etc) (Barsa-

lou, 2008). This simulation process is called perceptual simulation. Therefore, it is no wonder that

recent trends in learning conceptual representations adopt multi-modal and holistic approaches (Bruni et

al., 2014) wherein abstract distributional lexical representations (Landauer and Dumais, 1997; Laurence

and Margolis, 1999) learned from text corpora are augmented or refined with perceptual information for

concrete and context-aware representations built from visual (Kiela et al., 2018; Lazaridou et al., 2015),

olfactory (Kiela et al., 2015), or auditory (Kiela and Clark, 2015) modalities.

Language games between AI agents, inspired by Wittgenstein’s Language Games among hu-

mans (Wittgenstein et al., 1953), are an excellent test bed for such approaches since concepts are ex-

pected to emerge when agents are required to communicate to solve specific tasks in specific environ-

ments. GuessWhat?! (De Vries et al., 2017) is a prototypical language game of this kind: a Guesser has to

identify a target object in a scene represented as an image by asking questions to an Oracle. Learning to

ground pixels of the scene into object representations that are relevant for the object category they belong

to (category-aware), but are also particularized for the specific scene (context-aware), is fundamental for

the Guesser to effectively converse with the Oracle and vice-versa.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/.
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Figure 1: Common approaches to visual grounding such as De Vries et al. (2017) and Zhuang et al.

(2018) rely on gold category labels at test time, thereby failing to ground novel objects from categories

not seen during training (e.g., a “pasticciotto”, top right) or to properly encode known categories but with

unseen visual features (like a “frosted donut”, bottom right) since they employ category embeddings c

from a predefined set that are fixed for each object. Instead, embeddings z learned by our imagination

module can be flexibly category-aware allowing them to generalize to unseen categories.

We consider a model truly multi-modal if it always uses all the modalities to make decisions. However,

existing approaches (De Vries et al., 2017; Shekhar et al., 2019) rely instead on gold category labels that

are assumed to be available also at inference time, thus making these models depend on this modality

and discarding the others. This not only poses an unnatural performance advantage for players in con-

trolled benchmark scenarios like the GuessWhat?! game when categories at inference time match those

at training time, but causes them to fail in more realistic zero-shot scenarios (Suglia et al., 2020) where

players are required to generalize to out-of-domain object categories. For example, consider an agent

that during training has only seen glazed donuts, associated with the fixed “donut” category embedding

(cf. Figure 1). At inference time, the model cannot ground visual representations for objects belonging to

the “pasticciotto” (an Italian pastry) category, since such a category was not in its repertoire. Similarly, it

will likely represent frosted donuts with a generic “donut” embedding, despite the perceptual differences

among different types of donut.

In this paper, we tackle the above limitations by introducing a novel imagination module based on

Regularized Auto-encoders (Ghosh et al., 2019), which are able to derive imagination embeddings di-

rectly from perceptual information in the form of the object crop. Our formulation of the reconstruction

loss allows the model to learn context-aware and category-aware imagination embeddings. Thus, remov-

ing the need for gold category labels at inference time and greatly improving zero-shot generalization.

Section 4.2 integrates our imagination component into the Oracle model of De Vries et al. (2017) and the

Guesser model of Shekhar et al. (2019). We show that the new imagination models are state-of-the-art in

the recently introduced CompGuessWhat?! benchmark (Suglia et al., 2020) outperforming current mod-

els by 8.26%. It also improves the Oracle’s and Guesser’s accuracy (by 2.08% and 12.86%, respectively)

in the standard GuessWhat?! when no gold category labels are available. Lastly, we show that imagining

latent object representations greatly helps to reason about object visual properties (i.e., color, shape, etc.),

qualifying our module as a generic perceptual simulation component alà Barsalou (2008).

2 Background: Guessing Games and Concept Representations

GuessWhat?! is an instance of a multi-word guessing game (Steels, 2015). Every game involves two

players: an Oracle and a Guesser conversing about a scene S (a natural image). A scene S can be
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abstracted into a collection of objects O, each of which is associated with a category ci ∈ C, i =
{1, . . . ,K}. The aim of the Guesser is to identify a target object o∗ ∈ O by asking questions about

S to the Oracle. The gameplay of GuessWhat?! thus comprises three tasks: i) question generation where

the Guesser inquires about an object in the scene S given the dialogue generated so far; ii) answer

prediction, where the Oracle answers a ∈ A = {Yes,No,N/A} given the scene S , question and the

target object o∗; and iii) target prediction where the Guesser selects a candidate object with the highest

relevance score r(oi).

Several architectural variants have been proposed to tackle GuessWhat?! (cf. Section 5 for some

related works). In this work we adopt the recent GDSE model (Shekhar et al., 2019), which learns a

visually grounded dialogue state used to learn both question generation and target object prediction. As

shown below, GDSE does not deliver the desired multi-modality needed, therefore we extend it with our

Imagination component to obtain more effective multi-modal object representations.

For successful gameplay, both the Guesser and Oracle must build representations of the scene that

contain specific perceptual information of objects (object-aware), are relevant for the object category

they belong to (category-aware), and are specialized to the scene in which the game is played (context-

aware). As the scene S is an image, it is natural to associate each object oi ∈ O with a perceptual

embedding, i.e., a vector vi ∈ R
dO extracted from the penultimate layer of a pretrained vision model

(e.g. ResNet-152 (Shekhar et al., 2019)) based on their bounding box.1

However, these representations are not sufficient as they are neither context-aware nor category-aware,

i.e., they ignore other objects in the scene and do not leverage their category information. GDSE and

other recent approaches (De Vries et al., 2017; Shekhar et al., 2019; Zhuang et al., 2018; Shukla et al.,

2019) coped with the second issue by introducing category embeddings as dC-dimensional continuous

representations ck ∈ R
dC for k = 1, . . . ,K. Once learned, a category embedding c is then concatenated

to an 8-dimensional feature vector si derived from the object bounding box (cf. De Vries et al. (2017)).

While these embeddings partially solve category-awareness, they are not object-aware. For instance,

the embedding for the object category “apple” will be the same regardless of a particular object to be

a red or green apple, i.e., most likely a centroid representation of the objects seen only during training.

Moreover, if during training we only see red apples, at inference time, we will likely fail to detect

green apples as belonging to the same category (Figure 2(a)). These issues have gone unnoticed since

category embeddings usually boost performances on the original GuessWhat?! task, given that gold

category labels are also available at inference time. However, this boost is illusory: models relying on

this symbolic information to be always available are not learning to exploit all modalities. In fact, a 20%
drop in the Guesser accuracy if gold category labels are not provided has been reported in Zhuang et al.

(2018) for GuessWhat?! and analogous poor results in more realistic benchmarks measuring zero-shot

generalization such as CompGuessWhat?! (Suglia et al., 2020).

3 Imagination Module: Learning Context- and Category-aware Object Representations

To overcome the limitations of GDSE and competitors and realize a form of perceptual simulation in

a learning system, we introduce a generic component—named the imagination module—which learns

latent concept representations that are both context- and category-aware, without relying on category

labels at inference time. Our imagination model can be understood in the context of representation

learning via deep generative models (Bengio et al., 2013) which has been popularized by variational

autoencoders (VAEs) (Kingma and Welling, 2013; Kingma et al., 2014), and GANs (Goodfellow et al.,

2014). Specifically, we substantially extend the recently introduced regularized autoencoders (RAEs)

framework (Ghosh et al., 2019). RAEs are simplified VAEs where stochasticity in the encoder and de-

coder is dropped in favor of more stable training and more informative embedding learning. In fact,

RAEs do not suffer from several issues known to affect VAEs, such as poor convergence and the pos-

sibility of learning embeddings that are independent of the input images (cf. Ghosh et al. (2019) for a

detailed discussion). More crucially for our purposes, RAEs do not have to compromise the informa-

tiveness of the learned embeddings with a fixed a-priori structure in the latent space that enables simple

1Bounding boxes are assumed to be given, e.g. by using object recognition as a pre-processing step (Anderson et al., 2018).
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Figure 2: Imagination-based Representation Learning: Given the perceptual information vi of object

oi, we learn an imagination embedding zi generated by Encoder Eφ. The latent code is optimized to

reconstruct the original visual representation vi (the “donut” ResNet encoding) via the reconstruction

loss LIMG

REC
using the Decoder Dθ. Figures 2(b) and 2(c) show how the imagination embedding z replaces

the category embedding c in the Oracle model from De Vries et al. (2017) and Guesser model from

Shekhar et al. (2019) respectively, and is concatenated to the spatial information si.

sampling (e.g., an isotropic Gaussian prior). VAEs which need to have such a fixed prior, instead, are

deemed to learn embeddings that are less informative w.r.t. objects, categories, and context information.

Module architecture. Figure 2(a) summarizes our imagination module. Its aim is to distill a context

and category-aware embedding zi ∈ R
dZ per object oi in scene S . To this end, we adopt an encoder Eφ

parameterized by φ that maps a perceptual embedding vi of object oi to its imagined counterpart zi, i.e.,

Eφ(vi) = zi. A decoder Dθ realizes the inverse mapping ṽi = Dθ(zi), with ṽi ∈ R
dO being also called

the reconstruction of the input vi. As in RAEs, our per-object loss LIMG comprises a reconstruction loss

(LREC), weighting how good the reconstructions of Dθ are w.r.t. the encoded representations by Eφ, and

a regularization term (LREG) enhancing generalization by smoothing the decoder Dθ. This leads to the

following composite loss:

LIMG = LREC + αLREG, (1)

where α is an hyperparameter controlling regularization.2 As in L2-RAE (Ghosh et al., 2019), the reg-

ularization component is defined as LREG := ||zi|| + ||θ||2: the first term bounds the latent embedding

space learned by Eφ easing optimization; the second enforces smoothing over Dθ improving generaliza-

tion over regions of the latent space that are unseen during training.

Differently from RAEs, we devise a specific reconstruction loss tailored to learn contextual and

category-aware representations. In conventional RAEs, in fact, the reconstruction loss is defined as

the Mean Squared Error (MSE) representing the distance between vi and its reconstruction ṽi, so that

LRAE

REC
:= MSE(vi, ṽi). This loss is purely unsupervised and as such agnostic to object categories or to

the scene context. To our aims, we define a custom imagination reconstruction loss LIMG

REC
as an instance

of a max-margin triplet-loss (Wang et al., 2014; Schroff et al., 2015), as follows. Let ci be the category

2Ghosh et al. (2019) use two different hyperparameters for the two terms in LREG Optimizing them independently had no
evident benefit in our experiments, hence we simply treat them as a single regularizer together.
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of object oi with perceptual embedding vi in scene S and let O¬ci = {oj | oj ∈ O ∧ cj 6= ci} be the set

of all objects in S belonging to a different category than ci. Our per-object LIMG

REC
term is defined as:

LIMG

REC := max(0, η −MSE(vi, Dθ(zi)) +MSE(vj , Dθ(zi))), (2)

where η is the minimum margin between two components: i) the distance between the perceptual em-

bedding vi and its reconstruction Dθ(zi), and ii) the distance between the perceptual embedding vj of

a randomly sampled object oj ∈ O¬ci and the reconstruction Dθ(zi). By doing so, we enforce each

object representation to be representative of its category given a specific context by locally contrasting

it to another object of a different category in the same scene. Note that this is strikingly different from

previous approaches employing a max-margin loss (Elliott and Kádár, 2017; Kiros et al., 2018) where

“negative” objects are arbitrarily sampled from other scenes in the same batch.

Imagining at inference time. Differently from the category embeddings c employed by all previous

work, our imagination embeddings z do not depend on gold category labels at inference time, while still

being context-aware and category-aware. In fact, once parameters φ have been learned, the encoder Eφ

contains all the information needed to distill embeddings z independently of LIMG, which is necessary

only at training time. We consider imagination the ability of the model of generating latent representa-

tions on-the-fly. Therefore, for both Guesser and Oracle models we consider an object representation for

object oi that replaces ci with zi and concatenates it with its spatial information si (see Figures 2(b) and

2(c) and Appendix A.1 for details). By doing so, we consider every gameplay situated in a reference

scene as an experience where our imagination module is able to derive a latent conceptual representation

simply by “looking” at objects, realizing a perceptual simulator (Barsalou, 2008). We plan to investigate

how to combine label-dependent category embeddings c with our imagination embeddings z, similarly

to how some VAE variants tackle semi-supervised classification scenarios (Kingma et al., 2014).

4 Experimental Investigation

To assess the impact of using the imagination embeddings against the category embeddings, we use

two evaluation benchmarks: GuessWhat?! and CompGuessWhat?!. More information about the training

procedure can be found in Appendix A.2.

4.1 GuessWhat?! Evaluation

In this experiment, we evaluate the accuracy of the Oracle in answering questions and the accuracy of

the Guesser in selecting the target object. We consider as both training and evaluation data all the gold

dialogues (and questions) that have been labeled as successful in the dataset (De Vries et al., 2017). We

want to highlight that in this evaluation phase, the models using label-aware object encodings have gold

information both at training and test time. This is true both for the Oracle and Guesser models. However,

this does not hold for all other models using the imagination component.

4.1.1 Experimental Setup

Oracle task. We evaluate the imagination-based Oracle and compare it to several combinations of the

following baselines with and without category embeddings from De Vries et al. (2017): 1) MAJORITY:

majority classifier; 2) QUESTION: uses only the question; 3) IMAGE: uses only the image representation;

4) CROP: uses only the crop representation of the target object.

Guesser task. Similarly, we compare the GDSE model using imagination embeddings

(GDSE+IMAGINATION) with the following label-aware baselines: 1) text-only baselines using

LSTM encoder (LSTM) and Hierarchical Recurrent Encoder-Decoder architecture (Serban et al., 2017)

(HRED) as well as their corresponding multi-modal models LSTM+IMAGE and HRED+IMAGE; 2)

PARALLELATTENTION (Zhuang et al., 2018) and GDSE (Shekhar et al., 2019). We also compare with

variants of the above that do not use any category embeddings or gold category labels (*-NOCAT), as

well as models with predicted category labels (*-PREDCAT).3

3We train an object classifier using as input the ResNet-101 features generated for the object crop. It achieves 65% accuracy
evaluated on all objects in the GuessWhat?! test set.
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PERCEPTUAL INFORMATION CATEGORICAL INFORMATION

MODEL (DV-QUES+SPATIAL) LOCATION SHAPE COLOR TEXTURE SIZE
SUPER

OBJECT
CATEGORY

+ CROP 66.86% 69.08% 67.25% 68.30% 65.09% 88.94% 80.48%
+ CATEGORY 67.48% 68.42% 61.83% 70.08% 60.14% 97.09% 88.82%
+ CATEGORY + CROP 65.27% 60.34% 59.14% 65.76% 59.08% 96.19% 86.32%
+ IMAGINATION 68.62% 69.08% 67.64% 69.86% 62.65% 90.05% 82.32%

Table 2: Oracle accuracy grouped by question type for the best Oracle model with category information

(DV-QUES+SPATIAL) and for multi-modal variants using either perceptual or categorical information.

4.1.2 Results

MODEL VAL TEST

B
A

S
E

MAJORITY 53.80% 49.10%
QUES 58.30% 58.80%
IMG 53.30% 53.30%
CROP 57.30% 57.00%

W
/

C
A

T

DV-QUES+CAT 74.20% 74.30%
DV-QUES+CROP+CAT 75.60% 75.30%
DV-QUES+SPATIAL+CAT 78.90% 78.50%
DV-QUES+SPATIAL+CROP+CAT 78.30% 77.90%
DV-QUES+SPATIAL+IMG+CAT 76.80% 76.50%

M
M

DV-QUES+CROP 70.90% 70.80%
DV-QUES+IMG 59.80% 60.20%
DV-QUES+SPATIAL 68.80% 68.70%
DV-QUES+SPATIAL+CROP 74.00% 73.80%
DV-QUES+SPATIAL+CROP+IMG 72.30% 72.10%
IMAGINATION 75.78% 75.88%

Table 1: Oracle results on gold questions: we com-

pare the IMAGINATION Oracle model to models

from De Vries et al. (2017) (DV-*). We group

them into models relying on gold category labels

(W/ CAT) and models that only use multi-modal

perceptual information (MM).

Oracle task. In Table 1, we divide config-

urations into category-aware (De Vries et al.,

2017) and multi-modal. The model refer-

ence for several other publications on Guess-

What?! is a category-aware model QUES-

TION+SPATIAL+CATEGORY. However, by re-

lying on symbolic information in the form of

category labels, it is inevitably not truly multi-

modal anymore because the heavy-lifting is

done by these embeddings. As shown in the re-

sults, other multi-modal models such as QUES-

TION+SPATIAL+CROP and QUESTION+CROP,

are not able to learn effective representations

to bridge the gap between category-aware and

category-free models. On the other hand, the

proposed imagination model is able to reduce

this gap without relying on gold information as

input. Indeed, we are able to learn category-

aware and context-aware latent codes by using

category information only in our loss function.

We investigate this argument further by using

a rule-based question classifier (Shekhar et al., 2019) to partition the test questions according to their

type. Table 2 summarizes this analysis; we include models considered truly multi-modal and the best

Oracle model QUESTION+SPATIAL+CATEGORY. The latter can answer with high accuracy questions

about specific object instances (e.g., “is it the dog?”) or super-categories (e.g., “is it an animal?”) since it

is using category embeddings as input. However, when it comes to answering questions about perceptual

properties of the target object, it loses some accuracy points because the perceptual information is missing

from the category embedding representing a centroid of typical instances seen at training time only. On

the other hand, the IMAGINATION model is able to bring improvements of 1.34%, 5.81%, and 2.52% for

location, color, and shape questions, respectively. On questions related to perceptual information, models

using crop information seem to be on par with the IMAGINATION model. However, our model is able

to obtain an improvement over +CROP of 1.84% in object questions and of 1.11% on super category

questions solely by relying on the imagination embeddings.

Guesser task. Table 3 compares several category-aware and multi-modal models; PARALLELATTEN-

TION and GDSE-SL are the two best performing configurations. However, when PARALLELATTEN-

TION does not have access to category information (PARALLELATTENTION-NOCAT) its performance

drops by 3.7% (also noted by Zhuang et al. (2018)). We confirmed the same behavior for GDSE-SL as

well (GDSE-SL-NOCAT), noticing a more significant drop in performance of 16.95% which is in line

with the simpler LSTM+IMAGE model. On the other hand, GDSE-SL with our imagination component

(GDSE-SL+IMAGINATION), performs comparably with the category-aware model and better then all
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Gameplay Attribute Prediction Zero-shot Gameplay
ACCURACY A-F1 S-F1 AS-F1 L-F1 ND-ACC OD-ACC GROLLA

RANDOM 15.81% 15.1 0.1 7.8 2.8 16.9% 18.6% 13.3

DEVRIES-SL 41.5% 46.8 39.1 48.5 42.7 31.3% 28.4% 38.5
DEVRIES-RL 53.5% 45.2 38.9 47.2 42.5 43.9% 38.7% 46.2

GDSE-SL 49.1% 59.9 47.6 60.1 48.3 29.8% 22.3% 43.0
GDSE-CL 59.8% 59.5 47.6 59.8 48.1 43.4% 29.8% 50.1

GDSE-SL+IMAGINATION 43.82% 56.23 47.37 57.2 51.73 39.19% 39.90% 45.50
GDSE-CL+IMAGINATION 51.98% 57.59 47.6 58.31 50.42 46.56% 46.96% 50.74

Table 4: Results for the CompGuessWhat?! benchmark (Suglia et al., 2020). We assess model quality in

terms of gameplay accuracy, attribute prediction quality, measured in terms of F1 for the abstract (A-F1),

situated (S-F1), abstract+situated (AS-F1) and location (L-F1) prediction scenario, as well as zero-shot

learning gameplay. GROLLA is a macro-average of the individual scores.

multi-modal models. Therefore we argue that it is possible to learn object representations that, given

a representation for the current dialogue state, allow for discriminating the target object among other

candidates without relying on symbolic information.

4.2 CompGuessWhat?! Evaluation MODEL VAL TEST

HUMAN 90.80% 90.80%
RANDOM 17.10% 17.10%

C
A

T
E

G
O

R
Y

LSTM 62.10% 61.30%
HRED 61.80% 61.00%
LSTM+IMAGE 61.50% 60.50%
HRED+IMAGE 61.60% 60.40%
PARALLELATTENTION 63.80% 63.40%
GDSE-SL 63.14% 62.96%
GDSE-SL-PREDCAT 52.08% 51.00%

M
M

LSTM+IMAGE-NOCAT 50.10% 48.60%
PARALLELATTENTION-NOCAT 55.70% 59.70%
GDSE-SL-NOCAT 46.11% 46.01%
GDSE-SL-IMAGINATION 59.54% 58.90%

Table 3: Guesser accuracy on successful gold di-

alogues: we compare GDSE-SL-IMAGINATION

with i) models that are truly multi-modal (MM) and

ii) use category information (CATEGORY).

CompGuessWhat?! is a benchmark proposed to

assess the quality of models’ representations and

out-of-domain generalization. It includes the

following tasks: a) in-domain gameplay accu-

racy, – selecting the target object with model

generated dialogues as input, b) attribute predic-

tion task – assessing the ability of the dialogue

representation to recover target object attributes,

and c) zero-shot gameplay accuracy – selecting

the target object among objects belonging to cat-

egories never seen by the model during training.

In contrast to GuessWhat?!, the attribute predic-

tion and zero-shot tasks give us more insights

about the quality of the learned representations

and the model’s generalization ability.

4.2.1 Experimental Setup

We compare imagination-based models with baselines used in Suglia et al. (2020): 1) RANDOM: ran-

domly selects an object; 2) DEVRIES-SL: presented in De Vries et al. (2017) trained using Supervised

Learning; 3) DEVRIES-RL: DEVRIES-SL with Questioner fine-tuned using Reinforcement Learning

(Strub et al., 2017); and where 4) GDSE-SL and 5) GDSE-CL are the same as used in Section 4.1.

4.2.2 Results

In-domain gameplay. Table 4 presents the results on the CompGuessWhat?! benchmark. Models are

tasked to play the game by generating up to 10 questions and corresponding answers. Firstly, we note that

the results for GDSE-CL+IMAGINATION—the collaborative version of the model with Imagination—

is still in the same ballpark of more complex models, such as DEVRIES-RL that is using category

embeddings as input. At the same time, we notice that overall both imagination models perform worse

than the GDSE-* models. We impute this drop to the introduction of additional loss terms that probably

have changed the training dynamic of a cumbersome modulo-n multi-task training (Shekhar et al., 2019).

This downside calls for a more principled way of handling tasks of different complexity (i.e., question

generation and target prediction) in a multi-task learning system; we leave this for future work.
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Attribute prediction. Table 4 reports the attribute prediction task results. In this scenario, we under-

line the fact that the dialogue state representation generated by the Guesser model is used to recover

several types of attributes associated with the target object. In this work, we use the same dialogue state

representation as used by Shekhar et al. (2019) and only focus on improving the object representations

using the imagination component. Indeed, the best imagination model GDSE-SL+IMAGINATION is in

line with GDSE-SL, currently the best model in terms of attribute prediction. In particular, even though

the dialogue state representation is only indirectly affected by the imagination embeddings (via a dot-

product operation to score the candidate objects), we can still see an improvement in terms of F1 for

Location attributes (L-F1) and similar performance for Situated attribute prediction (S-F1). Both can be

considered, to some extent, a result of better situated object representations.

Zero-shot gameplay. As underlined in Section 3, the imagination module’s main strength is to be able

to distill imagination embeddings from perceptual information only, without relying on externally pro-

vided category labels. The zero-shot gameplay scenario from CompGuessWhat?! (Table 4) sheds some

light on the ability of the model to generalize to out-of-distribution examples. In the out-of-domain

gameplay scenario where candidate objects belonging to categories never seen before are present, both

imagination-based models GDSE-SL+IMAGINATION and GDSE-CL+IMAGINATION outperform the

previous best performing system DEVRIES-RL by 1.2% and 8.26%, respectively in terms of OD accu-

racy (OD-ACC). By analyzing their output, we notice that the best imagination model achieves higher

accuracy by learning a better gameplay strategy involving half the amount of location questions generated

by DEVRIES-RL (39.68% vs 75.84%; see Appendix A.3 for more details). A further improvement in the

near-domain scenario (ND-ACC) confirms the effectiveness of the imagination component to generate

category embeddings for objects on-the-fly using only perceptual information.

Out-of-domain error analysis. Lastly, we report an error analysis comprising 50 dialogues selected at

random from out-of-domain games (for more details refer to Appendix A.3). First, we manually anno-

tated the Oracle answers and partitioned them according to their type using the same question classifier

used for the Oracle Task (Section 4.1.2). 83% of super-category questions (from a total of 80) were

correctly answered by the model and 63.36% color related questions (from a total of 88) were correctly

answered. For instance, as shown in Figure 3, GDSE-CL is not able to answer correctly the question

“is it a person?” because it does not have category information for the label “girl” but only for the label

is it a person? yes

is it the kid on the bike? yes

is it the whole person? yes

is it wearing an helmet? yes

GDSE-CL+imagination

is it a person? no

is it a bike? no

is it the green bag? no

is the the bike? yes

is it the bike in the back? no

is the the bike wheel to 

the right?
no

is it the bike to the left of 

the bike?
yes

is it the whole bike? yes

GDSE-CL

is it an animal? yes

is it the one in the 

middle?
yes

is it the whole animal? yes

is it the one whose head 

is visible?
yes

is it the whole animal? yes

is it the entire animal? yes

is the head facing to the 

left side of the picture?
yes

is the head facing to the 

left?
yes

GDSE-CL+imagination

Is it a giraffe? no

Is it a car? no

Is it the wood plank in the 

background
no

is the animal the animal 

sitting on?
yes

is the object the animal on 

the brown animal?
no

is it the black jacket with 

the brown handle?
no

is the animal's head 

visible?
no

is the object brown? no

is the handle black? no

GDSE-CL

is it a vase? yes

is it the one on the left? yes

is the whole thing? yes

is it on the left? yes

is the tallest bottle? no

is it between the two 

bottles and the pot?
yes

is it between the two 

bottles and the pot in the 

middle?

no

is it next to the blue cup? yes

GDSE-CL+imagination

is it a cup? no

is it a bottle? no

is it a knife? no

is the object is in the 
background?

no

is the handle holding the 
item?

no

is the the glass thing near 
the corner of the photo?

no

is the the back part of it 
visible?

no

is it the furthest back? no

is it the furthest right? no

is it the left most corner? no

GDSE-CL

status: failed status: failed

status: success

status: failed status: success status: failed

Figure 3: Qualitative examples in the zero-shot gameplay scenario: the categories ’girl’ and ’antelope’

are not present in MSCOCO and therefore cannot be encoded by the GDSE-CL model. On the other

hand, the imagination model is able to distill imagination embeddings by using the crop features only

(for the sake of presentation quality we remove consecutive repeated questions).
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“person”. On the other hand, GDSE-CL+IMAGINATION is able to a) categorize the object as a member

of the super-category “person”, and b) correctly ground the expression “kid on the bike” to the target

object. The same behavior can be observed when the “antelope” is the target object. Antelopes are not

part of the MSCOCO classes, and therefore have not been seen by the model during training. First, the

model refers to it as “animal”, hence the Oracle is able to correctly answer the question even though

“antelope” was never involved in the training. Secondly, we found that the number of No answers for

GDSE-CL is considerably higher (88.06%) than GDSE-CL+IMAGINATION (51.02%), validating our

hypothesis that the Oracle does not know how to deal with unseen instances. Finally, in the imagination

dialogue of the first example, even though the generated question/answers were probably referring to the

correct object, the Guesser model is eventually unable to guess correctly. More work is required to better

fuse the language modality and the object representations to improve its performance.

5 Related Work

Concerning unsupervised learning of concept representations, Bruni et al. (2014) first learn modality-

specific representations and then fuse them into a unified representation for each concept. However, they

rely on hand-crafted bags of visual features, making the approach laborious to extend to new domains and

games. Kiela et al. (2018) cope with this issue by relying on CNN models to extract latent features from

images for instances of specific objects. Lazaridou et al. (2015) use a margin loss but in the context of

maximizing the similarity between the visual representation of a noun phrase and its corresponding text

representation. Similarly, Collell et al. (2017) learn a mapping between the ResNet features and the word

embeddings of a concept. As discussed in Section 2, unlike our imagination embeddings, these purely-

perceptual representations are neither category-aware nor context-aware. Silberer et al. (2016) present a

multi-modal model that uses a denoising auto-encoder framework. Unlike us, they do not use perceptual

information as input but rely on an attribute-based representation derived from an additional attribute

predictor. However, they do use a reconstruction loss (cross-entropy loss for attribute prediction) and an

auxiliary category loss during training. Their training scheme is more complex as they first separately

train the AE for each modality and then fuse them, which we avoid by adopting a single end-to-end

architecture. Ebert and Pavlick (2019) used VAEs to learn grounded representations for lexical concepts.

However, as discussed in Section 3, VAEs are not as well suited as RAEs to representation learning for

our imagination module. In the context of guessing games, all the previous approaches rely on categories

embeddings (De Vries et al., 2017; Shekhar et al., 2019; Strub et al., 2017; Zhuang et al., 2018; Shukla

et al., 2019) (see Section 2). Our imagination component can be flexibly integrated in any of them by

replacing the category embeddings with imagination embeddings.

6 Conclusions

We argued that existing models for learning grounded conceptual representations fail to learn compo-

sitional and generalizable multi-modal representations, relying instead on the use of category labels

for every object in the scene both at training and inference time (De Vries et al., 2017). To address

this, we introduced a novel “imagination” module based on Regularized Auto-Encoders, that learns

a context-aware and category-aware latent embedding for every object directly from its image crop,

without using category labels. We showed state-of-the-art performance in the CompGuessWhat?! zero-

shot scenario (Suglia et al., 2020), outperforming current models by 8.26% in gameplay accuracy while

performing comparably on the other tasks to models which use category labels at training time. The

imagination-based model also shows improvements of 2.08% and 12.86% in Oracle and Guesser accu-

racy. Finally, we conducted an extensive error analysis and showed that imagination embeddings help

to reason about object visual properties and attributes. For future work, we plan to 1) integrate category

labels at training time in a more principled way following advances in semi-supervised learning (Kingma

et al., 2014); 2) improve the multi-task learning procedure presented in (Shekhar et al., 2019) to optimize

at the same time multiple tasks of different complexities.
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Desmond Elliott and Ákos Kádár. 2017. Imagination improves multimodal translation. In Proceedings of the
Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 130–
141.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. 2019. From varia-
tional to deterministic autoencoders. arXiv preprint arXiv:1903.12436.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680.

Douwe Kiela and Stephen Clark. 2015. Multi-and cross-modal semantics beyond vision: Grounding in auditory
perception. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 2461–2470.

Douwe Kiela, Luana Bulat, and Stephen Clark. 2015. Grounding semantics in olfactory perception. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 231–236.

Douwe Kiela, Alexis Conneau, Allan Jabri, and Maximilian Nickel. 2018. Learning visually grounded sentence
representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 408–418.

Gary King and Langche Zeng. 2001. Logistic regression in rare events data. Political analysis, 9(2):137–163.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. 2014. Semi-supervised learning
with deep generative models. In Advances in neural information processing systems, pages 3581–3589.



1100

Jamie Kiros, William Chan, and Geoffrey Hinton. 2018. Illustrative language understanding: Large-scale visual
grounding with image search. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 922–933.

Thomas K Landauer and Susan T Dumais. 1997. A solution to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of knowledge. Psychological review, 104(2):211.

Stephen Laurence and Eric Margolis. 1999. Concepts and cognitive science. Concepts: core readings, 3:81.

Angeliki Lazaridou, Marco Baroni, et al. 2015. Combining language and vision with a multimodal skip-gram
model. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 153–163.

Ken McRae, George S Cree, Mark S Seidenberg, and Chris McNorgan. 2005. Semantic feature production norms
for a large set of living and nonliving things. Behavior research methods, 37(4):547–559.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A unified embedding for face recogni-
tion and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
815–823.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle Pineau, Aaron Courville, and Yoshua
Bengio. 2017. A hierarchical latent variable encoder-decoder model for generating dialogues. In Thirty-First
AAAI Conference on Artificial Intelligence.
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A Appendix

A.1 Model details

As described in Section 3 of the main paper, we extend both the Oracle and Guesser model with an imag-

ination component. For both roles, we keep the same model structure for the imagination component.

In this paper we implement Eφ as a 2-layer feed-forward neural network with ReLU (Dahl et al., 2013)

activation function. We acknowledge that many other implementations are possible in this case and we

leave more complex designs for future work. Given the latent code zi generated by the function Eφ, we

use a decoder Dθ to generate the reconstructed perceptual input (imagined) of the object oi, Dθ(zi) = ṽi.

As common practice, we define the decoder Dθ as symmetric to the architecture of the encoder Eφ. For

the category embeddings size dc, as in (Shekhar et al., 2019), we use 256 and 512 for the Oracle and

Guesser respectively. For the imagination component, we run a grid search involving several parameters

for the latent code z such as (16, 32, 64, 128, 256, 512). For both roles, we choose 512 because it was the

value that lead to the highest accuracy on the validation set. We also experimented with several values

for the coefficient α of the regularization term LREG: (1e-3, 1e-5, 1e-6, 1e-7). For the Oracle the best

value resulted to be 1e − 7, while 1e − 5 for the Guesser. When training the imagination component

with the object category loss, due to the class imbalance, we apply loss weighting. We compute the class

weights using the method reported in (King and Zeng, 2001). For the margin value η we opted for 1.0
after experimenting with a less effective dynamic margin that would change depending on the distance

between the concepts in the WordNet hierarchy.

A.2 Training details

For both roles, we train the models using the Adam optimizer (Kingma and Ba, 2014). For the Oracle

and Guesser training we use 0.0001 as learning rate. In both cases, we use the original GuessWhat?!

validation set to select the best model that is used in the evaluation on the test set. As described in

(Shekhar et al., 2019), we use a modulo-n training procedure to jointly optimize both the Guesser and

Questioner. In our experimental evaluation we run a grid search of several values of n such as 3, 5, 7.

We selected 5 as the best performing value on the validation set. For a fair comparison with all the

GDSE model variants trained with Supervised Learning and Collaborative Learning, we made the same

architectural choices and hyperparameters values. Please refer to the original codebase implementation

available on GitHub 4. Another point of difference is in the Collaborative Learning fine-tuning phase for

the Guesser model. During this phase, only the Questioner and Guesser models are fine-tuned whereas

the Oracle model is fixed (Shekhar et al., 2019) therefore, we decided to use the best performing Oracle so

that the Guesser model is not negatively affected by a less performing Oracle and also to be comparable

with the original implementation.

A.3 Error analysis

In order to provide a more fine-grained evaluation of the generated dialogues, we adapt the quality

evaluation script presented by Suglia et al. (2020) and extend it with additional metrics. First of all, it

relies on a rule-based question classifier that classifies a given question in one of seven classes: 1) super-

category (e.g., “person”, “utensil”, etc.), 2) inanimate object (e.g., “car”, “oven”, etc.), 3) animate object

(e.g., “dog”, “cat”, etc.), 3) “color”, 4) “size”, 5) “texture”, 6) “shape” and “location”. The question

classifier is useful to evaluate the dialogue strategy learned by the models. In particular, we look at two

types of turn transitions: 1) super-category → object/attr, it measures how many times a question with an

affirmative answer from the Oracle related to a super-category is followed by either an object or attribute

question (where “attribute” represents the set {color, size, texture, shape and location}; 2) object → attr,

it measures how many times a question with an affirmative answer from the Oracle related to an object

is followed by either an object or attribute question. We compute the lexical diversity as the type/token

ratio among all games, question diversity and the percentage of games with repeated questions. We also

evaluate the percentage of dialogue turns involving location questions. Table 5 and 6 show the results of

these analysis for the models GDSE-CL and GDSE-CL+imagination analyzed in this paper.

4https://github.com/shekharRavi/Beyond-Task-Success-NAACL2019
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Using the above-mentioned question classifier, we completed an error analysis trying to understand

the quality of the generated gameplay in a zero-shot scenario from the point of view of the answers

prediction performance and the guesser accuracy. In particular, we randomly sampled a pool of 50

reference games from the out-of-domain zero-shot scenario and we manually annotated whether a given

answer generated by the Oracle model was correct or not. Table 7 shows the results of the manual

annotation step. The model confirms high performance in answering questions about super-category

information demonstrating that it is able to correctly categories objects in macro-categories even though

is has not seen them before.

A.3.1 Zero-shot gameplay quality

Model
Lexical

diversity

Question

diversity

% games

repeated

questions

Super-cat ->
obj/attr

Object ->
attribute

% turns

location

questions

Vocab. size Accuracy

DeVries-RL 0.13 1.77 99.48 97.39 98.70 78.07 702.00 43.92%

GDSE-CL 0.17 13.74 66.75 93.62 66.27 31.23 1260 43.42%

GDSE-CL + Imagination 0.10 8.56 91.80 93.15 60.72 39.90 808 46.70%

Table 5: Comparison between the quality of gameplay in the near-domain zero-shot scenario between

GDSE-CL and GDSE-CL with imagination. Number of total turns 10.

Model
Lexical

diversity

Question

diversity

% games

repeated

questions

Super-cat ->
obj/attr

Object ->
attribute

% turns

location

questions

Vocab. size Accuracy

DeVries-RL 0.24 2.96 98.49 91.26 98.57 75.84 1275 38.73%

GDSE-CL 0.14 7.86 66.32 91.67 72.33 26.03 1002 29.83%

GDSE-CL + Imagination 0.10 8.57 89.19 94.82 58.51 39.68 814 46.93%

Table 6: Comparison between the quality of gameplay in out-of-domain zero-shot scenario between

GDSE-CL and GDSE-CL with imagination. Number of total turns 10.

Question type Accuracy Count

Inanimate object 65.48% 168

Animate object 53.33% 15

Super category 83.33% 60

Location 78.86% 175

Size 100.00% 1

Color 58.33% 24

Parts 100.00% 2

Question type Accuracy Count

Inanimate object 81.71% 164

Animate object 70.00% 10

Super category 67.61% 71

Location 72.97% 148

Size 100% 1

Color 63.64% 88

Parts 71.43% 7

Table 7: Error analysis results completed on the Out-of-domain zero-shot scenario for the model

GDSE-CL+Imagination (on the left) and GDSE-CL (on the right).


