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Abstract

Gesture typing is a method of typing words on a touch-based keyboard by creating a continuous
trace passing through the relevant keys. This work is aimed at developing a keyboard that
supports gesture typing in Indic languages. We begin by noting that when dealing with Indic
languages, one needs to cater to two different sets of users: (i) users who prefer to type in the
native Indic script (Devanagari, Bengali, etc.) and (ii) users who prefer to type in the English
script but want the transliterated output in the native script. In both cases, we need a model
that takes a trace as input and maps it to the intended word. To enable the development of these
models, we create and release two datasets. First, we create a dataset containing keyboard
traces for 193,658 words from 7 Indic languages. Second, we curate 104,412 English-Indic
transliteration pairs from Wikidata across these languages. Using these datasets we build a
model that performs path decoding, transliteration and transliteration correction. Unlike prior
approaches, our proposed model does not make co-character independence assumptions
during decoding. The overall accuracy of our model across the 7 languages varies from 70-95%.

1 Introduction

Gesture typing (Yang et al., 2019) is a fast and convenient method for providing textual input to a touch-
based keyboard on small-sized devices like mobile phones. The conventional method of prodding
the keys to input a word requires several discrete key presses resulting in impeded performance (Zhai
and Kristensson, 2012). Besides, touch-based keyboards do not provide the rich tactile sensation
of key boundaries and key presses that mitigates erroneous typing on a regular desktop keyboard
(Kristensson, 2007). Gesture typing allows the user to input a word by drawing a single continuous trace
over the keyboard and the finger needs to be lifted only once a word is completed. It takes advantage
of muscle memory (Yang et al., 2019) which allows the user to subconsciously memorise input shapes
for common words, resulting in improved typing speed and accuracy.

The advantages of gesture typing over conventional typing methods are of particular significance in
Indic language keyboards as Indic languages have a larger character set than English (for example,the
Hindi script contains 52 alphabets as opposed to 26 in English), thus making the keyboard denser
and increasing the chances of prodding the wrong character. A solution to this is to use an English
character keyboard which receives an input sequence of English characters phonetically resembling
the Indic word and transliterates them into the Indic language word (Hellsten et al., 2017). Besides,
prior experience with using English keyboards ensures that minimal effort is elicited from the user
while switching to the new keyboard. Therefore, in this work, we propose solutions to two tasks:
(i) English-to-Indic Decoding to predict an Indic word from gesture input provided to an English
character keyboard with phonetic correspondence to the intended Indic word and (ii) Indic-to-Indic
Decoding to predict an Indic word from the gesture input provided to an Indic character keyboard.
To enable development on both these fronts, we release datasets of word traces simulated using the
minimum jerk principle (Quinn and Zhai, 2018).

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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Figure 1: (a) Gesture typing on a smartphone English script keyboard (b) A sample trace for the word
budhi that was simulated using the minimum jerk principle

In this paper, we propose to jointly use a multi-headed Transformer encoder layer (Vaswani et al.,
2017) and Bidirectional LSTM layers to encode a sequential stream of (x, y) coordinates obtained from
a trace drawn on a touch-based keyboard. We decode the intended character sequence using an LSTM
decoder to avoid any co-character independence assumptions. We use an LSTM encoder-decoder
framework with attention for transliterating the decoded sequence into the intended Indic language.
We also propose a neural network architecture for spelling correction of generated transliterations that
uses character embeddings generated using the ELMo neural network (Peters et al., 2018) to measure
proximity between words. Unlike prior work, this model requires a smaller training set and allows easy
vocabulary augmentation without model re-training. To sum up, our novel contributions include:

* A Gesture Path Decoding model that uses a multi-headed Transformer along with LSTM layers
for coordinate sequence encoding and a character-level LSTM model for character sequence
decoding.

* A Contrastive Transliteration correction model that uses position-aware character embeddings to
measure word proximities and correct spellings of transliterated words.

» Two datasets of simulated word traces for supporting work on gesture typing for Indic language
keyboards including low resource languages like Telugu and Kannada.

* The accuracies of the proposed models vary from 70 to 89% for English-to-Indic decoding and
86-95% for Indic-to-Indic decoding across the 7 languages used for the study.

2 Related Work

2.1 Gesture Recognition

Classical techniques for gesture recognition include region encoding (Teitelman, 1964), geometric
feature matching, linear machine classifiers (Rubine, 1991), Hidden Markov Models (Wilson and Bobick,
2001) and Dynamic time warping (Bautista et al., 2012). Kristensson (2007) proposes to jointly use a
shape channel and a location channel to make a prediction by comparisons based on both the shape
and location of the gesture input. Improvements in gesture typing using LSTMs have been proposed
which uses the CTC loss function for training (Alsharif et al., 2015). CTC uses dynamic programming
to efficiently compute probabilities of all frame-level alignments that predict the target sequence
and maximises their sum. Stimulated learning for training the CTC model to encode dependence on
previously predicted words has also been proposed (Heymann et al., 2019). However, these approaches
assume that the character predicted at each step is independent of other characters for a given word.

2.2 Speech Recognition

Speech recognition shares strong conceptual similarities with gesture input decoding. RNN-
transducers which use CTC-based sequence encoding along with a word-level language model have
also been used for speech recognition (He et al., 2019). The work in (Chan et al., 2016) proposes a
pyramidal recurrent network to encode the speech signal and an attention-based recurrent network
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decoder to predict the characters. Speech recognition has also been performed using a hybrid atten-
tion model (Chorowski et al., 2015) that uses both context and location-based features for character
prediction. However, large variations between the input and output lengths in gesture input decoding
make it difficult to track the alignment in attention-based models.

2.3 Spelling Correction and Language Models

Classical approaches to spelling correction include probabilistic modelling (Church and Gale, 1991;
Goodman et al., 2002), geometric pattern matching (Kristensson and Zhai, 2005), n-gram models
(Ahmed et al., 2009) and edit distance-based models(Wagner and Fischer, 1974). The work by Kim et
al. (2016) a CNN (Convolutional Neural Network) to extract character level features which are then
run through a highway network, followed by a word-level Recurrent Neural Network to predict the
next word in the sentence. The work by Ghosh and Kristensson (2017) extracts character level features
by jointly using a GRU and CNN and generates a linear transformation of the outputs of the two
networks. A decoder uses these features to predict the most probable word. However, this model
uses a small-sized vocabulary and does not use position-aware character embeddings. Augmenting
the vocabulary of most neural network approaches requires a new round of training as the decoder
predictions are based only on previously seen samples and does not rely on any proximity metrics
between the misspelt and vocabulary words.

3 Gesture Data Generation

For this work, we curated two datasets! for performing the Indic-to-Indic decoding and English-
to-Indic decoding tasks across the 7 Indic languages used in the study. The first dataset contains
Indic words obtained from the work by Goldhahn et al. (2012) along with corresponding coordinate
sequences depicting the path traced on an Indic character smartphone keyboard to input the word.
The second dataset contains Indic-English transliteration pairs scraped from Wikidata along with
corresponding coordinate sequences for the path traced on an English character keyboard. We use
the principle that human motor control tends to maximise smoothness in movement to develop a
synthetic path generation technique that models the gesture typing trajectory as a path that minimises
the total jerk (Quinn and Zhai, 2018).

For simulating the path between two characters, a minimum jerk trajectory is first plotted between
the character locations. We then add two types of noise to the path. The first type adds noise to the
starting and ending positions of the path. The (x, y) coordinates for these positions are sampled from a
2D Gaussian distribution centred at the middle of the corresponding key on the keyboard. The second
type adds noise to the path between the characters. To perform this, we first sample a coordinate pair
(x/, y") from the uniform distribution of points bounded by the x and y coordinates of the starting and
ending points of the path. Following this, we sample points on a path of minimum jerk passing through
the 3 points uniformly over time (Wada and Kawato, 2004). This process is repeated for every pair of
adjacent characters in the word to obtain a sequence of coordinates that describes the trace. Figure
1(b) shows the trace created for the word budhi using this method. Apart from the (x, y) coordinate
pair, we augment the input features for each sampled point with the x and y derivatives at the point
and a one-hot vector with value 1 at the index i corresponding to the character on which the point lies
on the keyboard.

4 Model

4.1 CTC Gesture Path Decoding

This module processes the input sequence of path coordinates to predict a sequence of English
characters (which must be further transliterated into the Indic language) for the English-to-Indic
decoding task and a sequence of Indic characters for the Indic-to-Indic decoding task. Consider an
input sequence, {x1, X2, X3, ..., X7} containing (x, y) path coordinates along with augmented features

1Our datasets and code are available at ht tps: //iitmnlp.github.io/indic-swipe/
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described in Section 3. As seen in Figure 2(a), the sequence is passed into a Transformer encoder
consisting of a multi-head self-attention sub-layer and a position-wise feed forward neural network,
followed by a 2-layer Bidirectional LSTM network (Schuster and Paliwal, 1997) to produce an encoded
representation of the sequence. The encoded vector at each timestep is then passed through a fully
connected layer with softmax activation to generate a sequence of vectors {hy, hy, hs, ..., ht}; where
h; € RICHL j is the probability of the j* " character at timestep i and |C|+1 is the number of characters
including a blank character < b >. The model is trained using the CTC loss function which maximises
the sum of probabilities of all frame-level alignments of the target sequence. Concretely, the CTC loss
function maximises the probability:

pyl)= Y p@Ex o))
Ve (y)
T
pEx =[] p@ix 2)
=1

where x is the input sequence, y is the target sequence of length T and /.. (y) is the set of all frame-level
alignments of y.

Unlike conventional CTC-based models, we do not use greedy or beam-search path decoding to
infer the character sequence directly from {h;, hy, hs, ..., ht}. Instead, if all the vectors in a contiguous
subsequence of length k (say, {h;, hm+1, Pm+2,. .., hm+k-1}) have the same most probable character
(say, c), they are averaged to form a single vector z,,;.;;+ k-1 € RICI+L,

m+k-1

Zmm+k—1 = % Z

p=m

{hplargmaxhy, j = c, ¢ # arg(< b >)} 3
j

Following this, all the averaged vectors except for those corresponding to the blank character
< b > are concatenated into a new contracted sequence. We refer to this step as Greedy aggregation.
Vectors corresponding to < b > are used only to break the preceding contiguous subsequence and
is particularly useful for modelling consecutive occurrences of the same character. This sequence is
passed into a 2-layer Bidirectional LSTM which models the co-character dependence within the word,
followed by a fully connected layer with softmax activation. The output gives the final probability
distribution over the characters and the most probable character is chosen at each timestep.
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Figure 2: (a) CTC Gesture Path Decoding Module Architecture consisting of the Transformer and LSTM
encoder layers, greedy aggregation and character decoding LSTM layers; (b) Contrastive Transliter-
ation Correction Architecture consisting of ELMO-based word encoding network, squared distance
computation (shown by *) and fully connected layers.

1002



Hindi Transliterated
characters
. o ‘ q (@

<s>a n k h i y o n<e>
0.8
0.6
0.4
0.2

Attention Heatmap

Encoder Decoder

Figure 3: (a) Transliteration Generation Architecture consisting of the GRU Encoder-Decoder frame-
work with Bahdanau attention; (b) Heatmap of attention weights obtained during transliteration of the
word Ankhiyon’ using the Transliteration Generation model.

4.2 Transliteration Generation

This model is used only in the case of English-to-Indic decoding to transliterate the English character
sequence generated by the CTC Gesture Path Decoder into the Indic language. The sequence is
passed to a unidirectional GRU encoder to generate encoded representations corresponding to each
character. A GRU decoder predicts the Indic characters corresponding to the transliterated word. At
any time during decoding, the decoder uses its last hidden state and all the encoded vectors through
Bahdanau attention to generate the next character as seen in Figure 3(a). This module is trained on the
character sequences generated by the CTC Gesture Path Decoder. We perform Beam Search Decoding
on the GRU outputs to obtain the top 3 sequence predictions. A sample heatmap of attention weights
generated by this module is shown in Figure 3(b).

4.3 Contrastive Transliteration correction

This model is used to perform spelling correction on Indic words generated by the Transliteration
Generation model in the English-to-Indic decoding task and by the CTC Gesture Path Decoder in the
Indic-to-Indic decoding task. Word embeddings like GLoVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013) generate vector representations of words that map semantic similarities to
geometrical closeness. The ELMo (Peters et al., 2018) network creates contextual word embeddings
that depend on the entire sequence of words. It treats a sentence as a sequence of words and uses CNN
and LSTM layers for feature extraction to obtain the word embeddings.

In this work, we propose a method to create vector representations of words that are indicative of
closeness in their character sequences by using the ELMo network for generating character embeddings
by processing each word as a sequence of characters. The resulting embeddings would depend on other
characters in the word and their relative positioning, thus making it suitable for spelling comparison.
As seen in Figure 2(b), the generated character embeddings of a word are summed together and
then min-max normalized to obtain an encoding for the word. This process is followed to obtain an
encoding for the misspelt word, w and for each word v in the vocabulary 7. Then, the model computes
the squared difference between the encodings of the word w and each of the words v to obtain a
distance vector, dy,, € REl where |E| is the ELMo embedding dimension.

duw,y=(hw—h)*ve V] (4)

where h,, and h, represent the word encoding for the words w and v respectively.

Distance vectors for each word pair are passed through two fully connected (dense) layers to obtain
a 1-D distance metric, e, € Z'. The word v* from the vocabulary for which distance metric, ew,v*
is the smallest is chosen as the corrected word. To accommodate words that are not part of the
vocabulary, we place an upper threshold on e, ,+ and force the model to output the prediction from
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the Transliteration Generation module if it exceeds this threshold.

v* =argminey , ®)
vel¥|

4.4 Implementation Details

English-to-Indic decoding: The transformer encoder in the CTC Gesture Path Decoder uses multi-
headed attention with 5 heads, hidden layer size of 128, dropout rate of 0.05 and ReLU activation in
the Attention and Feed-Forward layers. The hidden layer sizes of all Bidirectional LSTM layers in this
module are fixed to 256. This module is trained using the CTC loss function with a learning rate of
0.01 over 20 epochs. The Transliteration Generation module uses a single Unidirectional GRU layer
with a hidden size of 512. This module is trained over 10 epochs using the Categorical Cross-Entropy
loss function and Beam Search decoding with a beam size of 3 is performed on the GRU outputs.
The 3 predictions are passed as independent samples to the Contrastive Transliteration Correction
module for generating 3 suggestions for the final word, which may not all be unique. The Contrastive
Transliteration Correction module has hidden layers of size 64 and 1. It is trained using the Sparse
Categorical Cross-Entropy loss function. The Adam optimizer is used for training all the three modules.

Indic-to-Indic decoding: In this case, we make a few architectural changes to the model. Since the
CTC Gesture Path Decoder directly predicts an Indic character sequence, we remove the Transliteration
Generation module from the pipeline. Besides, we reduce the inference time and model complexity by
removing the two Bidirectional LSTM layers of the CTC Gesture Path Decoder. We cannot afford to do
this in English-to-Indic decoding as we require more accurate predictions to prevent compounding of
errors as it passes through the Transliteration Generation module. The model parameters for the rest of
the architecture remain the same as described in section 4.4. For both the tasks, a train-validation-test
split of 70-20-10 is used for all languages.

5 Results and Discussion

In this section, we analyse our model’s performance on both tasks across 7 different Indic languages,
namely Hindi, Bengali, Gujarati, Tamil, Telugu, Kannada and Malayalam. These languages together
account for the native languages of 75% of the Indian population. The first three languages are Indo-
Aryan languages and the last four are Dravidian languages. Therefore, the languages have distinct
lexical, syntactic and grammatical properties, which makes the task of creating a generalizable model
more challenging and worthwhile. In Table 1, we present the results of our model on the English-to-
Indic Decoding task. The final accuracy of the model is defined as the percentage of input traces that
are correctly processed by the model to generate the Indic word. When the beam size k is greater than
1, the model is said to make a correct prediction if at least one of the k predictions is accurate. We also
present the intermediate accuracies observed after each module in our architectural pipeline and the
accuracies obtained with various beam sizes.

Indic Dataset CTC Path Transliteration Transliteration
Language Size Decoding (%) | Generation Acc. (%) Correction Acc. (%)
k=1 | k=2 | k=3 | k=1 | k=2 | k=3 (Final)
Hindi 29074 98.45 59.14 | 73.12 | 77.56 | 71.53 | 83.86 89.12
Tamil 21523 98.02 53.31 | 60.98 | 65.47 | 71.10 | 80.47 86.96
Bengali 17332 98.60 23.07 | 36.01 | 43.40 | 63.02 | 73.94 81.13
Telugu 12733 96.64 21.28 | 34.81 | 38.19 | 57.39 | 67.68 78.21
Kannada 4877 96.95 22.13 | 28.83 | 37.60 | 47.75 | 64.98 72.00
Gujrati 8776 98.78 17.99 | 28.57 | 38.12 | 53.12 | 60.05 72.65
Malayalam 10097 98.21 18.83 | 27.57 | 31.61 | 48.32 | 60.41 70.00

Table 1: Results on English-to-Indic Decoding across 7 Indic languages

In Table 2, we present the final accuracy of our model on the Indic-to-Indic Decoding task, along
with the intermediate accuracy after the CTC Gesture Path Decoder module.
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Indic Language | Dataset Size | CTC Accuracy (%) | Final Accuracy (%)
Hindi 32415 68.93 86.75
Tamil 24094 68.16 95.73
Bengali 15320 75.06 88.74
Telugu 28996 74.94 94.86
Kannada 26551 66.78 89.06
Gujarati 30024 61.21 82.13
Malayalam 36258 56.98 95.53

Table 2: Results on Indic-to-Indic Decoding across 7 Indic languages

We observe in Table 1 that while the accuracy of the CTC Gesture Path Decoder is not affected by the
decrease in dataset size, the transliteration accuracy shows a decreasing trend. This is mainly because
the transliteration generation module requires a large dataset to learn phonological relationships. The
accuracies in Table 2 are not highly correlated with the dataset size due to the absence of this module
in the corresponding architecture. Another factor that influences accuracy is the word length as longer
words are less likely to be correctly decoded by the Transliteration Generation module. On the contrary,
we observed that the performance of the Transliteration Correction module is not much affected by
word lengths as the 1024-dimensional ELMo character embedding allows each character to have a
distinct influence on each dimension in the summed encoding. This allows even longer character
sequences to be compared by this module. The combined effect of word lengths on the two modules
explains a greater percentage improvement in accuracy after correction for certain languages which
have greater average word lengths in our dataset like Malayalam and Telugu (word lengths of 12.39 and
9.02 respectively) as opposed to others like Hindi and Bengali (6.55 and 6.95 respectively).

Besides,we observe that the CTC Gesture Path Decoder accuracies are higher for English-to-Indic De-
coding than Indic-to-Indic Decoding. This is because (i) the module uses two additional Bidirectional
LSTM layers that process the outputs of the Transformer encoder, resulting in greater representative
power and (ii) Indic scripts contain a larger character set than English resulting in a denser keyboard
with greater chances of error. Nevertheless, we find that the final accuracies for the Indic-to-Indic
decoding task after spelling correction using the Transliteration Correction module are high which
highlights the importance of this module. It also means that the character sequences predicted by the
CTC Gesture Path Decoder closely match the expected sequence due to which the nearest word from
the vocabulary match the expected word.

In the following sections, we analyse the performance of certain architectural variants and also
perform a detailed error analysis of each module in our architecture. Throughout the following study,
we present the results on the English-to-Indic Decoding task, with Hindi as the Indic language unless
otherwise specified.

5.1 Performance Comparison

In this section, we compare the performance of our model with alternative architectures and existing
work. In Table 3, we first observe that the CTC Gesture Path Decoder of our model achieves a higher
accuracy than that of the CTC-LSTM model (Alsharif et al., 2015) which does not use a transformer
encoder or x and y derivative values in the feature vectors. Next, we compare the accuracy of the
transliteration component of our architecture comprising the Transliteration Generation and Correc-
tion modules against the results obtained by performing transliteration using (i) a Transformer-based
Encoder-Decoder model; (ii) DeepTranslit?; (iii) an LSTM-based Seq2Seq model; (iv) an LSTM-based
Encoder-Decoder framework with Bahdanau Attention; (v) a rule-based model (Lavanya et al., 2005)
and (vi) a BILSTM-CTC model (Rosca and Breuel, 2016). Beam Search Decoding with k = 3 is performed
on the outputs of models (i)- (iv) before computing the accuracy.

2https://github.com/notAI-tech/DeepTranslit
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Transliteration is highly reliant on the sequential nature of the input and in most cases, requires
modelling of short-range and past-input dependencies. This explains why GRU and LSTM based
models outperform the transformer-based model which attempts to also learn long-range dependen-
cies on past and future inputs. Besides, the better accuracy of our Transliteration Generation module
which uses GRUs over similar LSTM-based models can be attributed to LSTMs modelling longer-term
dependencies and GRUs usually performing better on less training data. While the CTC loss function
has shown good results in gesture path decoding, the same does not hold for the transliteration task as
shown by the BiLSTM-CTC model which only gives an accuracy of 47.96%.

Gesture Path Decoding Variant Acc. (%) Transliteration Variant
CTC-LSTM (Alsharif et al., 2015) 95.23 (Correction) Acc. (%)
Our Model: CTC Gesture Path Decoder | 98.45 Average ELMo 81.11
Transliteration Variant Weighted Average ELMo 81.05
(Generation) Acc. (%) Unnormalized ELMo 76.65
Word2Vec Embeddings 68.99
Transformer 37.51 NPLM (Bengio et al., 2003) | 82.25
DeepTranslit 60.90 Cosine Similarity 78.63
Seq2Seq (LSTM) .71 Reordered Model 77.23
Bahdanau Attention (LSTM) 75.87
Rule-based (Lavanya et al., 2005) 20.85 Our Model: Transliteration
BiLSTM-CTC (Rosca and Breuel, 2016) | 47.96 Generation + Correction | 89.12

Table 3: Comparison of model performance with various architectural variants

We also present the results obtained on variants of our Contrastive Transliteration Correction module
which uses min-max normalized ELMo embeddings. For this study, we pass the outputs generated by
our proposed Transliteration Generation module after Beam Search Decoding (k = 3) to the following
variants of our Correction module. Average ELMo takes the average of the ELMo vectors corresponding
to the 3 beam search outputs and passes it as a single input. This reduces computational requirements
but brings the accuracy down to 81.11% due to mixing of information from the 3 decoded outputs.
Weighted Average ELMo performs weighted averaging of the ELMo vectors (with weights 0.5, 0.3, 0.2
for the 3 beam search outputs) but fails to show improvement in accuracy. Unnormalized ELMo does
not perform min-max normalization of the word encoding which is important to remove bias due to
variation in the word lengths. Word2Vec Embeddings uses Word2Vec word embeddings instead of
the summed ELMo character embeddings which results in the accuracy dropping to 68.99%. Word
embeddings do not encode the relative positioning of characters and are therefore, less representative
of the character sequence. NPLM uses the Neural Probabilistic Language Model (Bengio et al., 2003)
instead of ELMo to generate the character embeddings. The observed fall in accuracy to 82.25% is
because ELMo character embeddings are able to better model differences in character sequences.

Cosine Similarity ELMo is an architectural variant which chooses the word whose encoding has the
highest cosine similarity with the encoding of the candidate character sequence. Since, the cosine
similarity score is a scalar value, the dense layers in the Correction module architecture are removed
in this case. The fall in accuracy from 89.12% (for our model) to 78.63% shows that augmenting
the euclidean distance vectors using dense layers gives a better measure of the closeness between
the encodings. The same trend was observed in other languages as well. For example, this variant
reduced the accuracy from 86.96% to 80.13% for Tamil and from 70.00% to 64.23% for Malayalam. The
Reordered Model considers a reordering of our architecture that places the Contrastive Transliteration
Correction module immediately after CTC Gesture Path decoder and followed by the Transliteration
Generation module. The Correction module in this case corrects errors in the CTC output and uses a
vocabulary of correct English transliterations of Indic words. As is evident from Table 1, much of the
prediction error in our pipeline is induced by the Transliteration Generation module, due to which the
Transliteration Correction module in this altered position is much less rewarding.
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Finally, we modify the Indic-to-Indic decoding architecture to study the effect of including the two
bidirectional LSTM layers (as in English-to-Indic decoding). We observe that while the average CTC
Gesture Path Decoder accuracy across the 7 languages rises from 67.43% (for our model) to 89.5%,
the average final accuracy only rises from 90.4% to 94.5%. Besides, we observe a 64% increase in
training time and 75% increase in inference time for the modified architecture. Thus, the gains from
the additional layers are small.

5.2 Error Analysis

The speed profile of a minimum jerk trajectory has a minimum at the endpoints and reaches the
maximum value midway between the two points as seen in Figure 4(a). Therefore, when points are
sampled on the path at equal time intervals, there is less relative distance between points near the
locations of the intended characters. The CTC Gesture Path Decoder is found to make more confident
predictions in cases where the corresponding keys are farther apart on the keyboard as the variations
in relative distances between points are better emphasised. For example, the model wrongly predicts
mashhuur and kaare as mashuur and kare where consecutive characters at the same position are
missed. Besides, the fraction of words that are wrongly predicted by the model increases with the word
length as seen in Figure 4(b).
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Figure 4: (a) Speed profile of a minimum jerk trajectory; (b) Accuracy variation with length of word

The CTC Gesture Path Decoder also depends on the directional information from the x and y
derivative values at each sampled point on the path. Therefore, a few of the words with more than
two consecutive characters occurring on the same horizontal line on the keyboard were wrongly
decoded. For example, the word badhoge has the characters a, h and g on the same keyboard row and
is wrongly predicted as bahoge. We extracted all 3-grams of characters from words used in our test
set and grouped them into bins based on their empirical probability of being wrongly decoded. We
then computed the acute angle subtended by the path connecting the characters of each 3-gram and
averaged the angles within each bin. From Figure 5(a), we see that the accuracy reduces as the path
subtends a smaller angle.
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To analyse errors in transliteration, we classify the Hindi character set based on (i) the character type
into vowels, vowel signs and consonants, and (ii) the phonetic sound into palatal, velar, unvoiced, nasal
and aspirated (as seen in Table 4(a)). Figure 5(b) shows the fraction of characters within each character
type that are wrongly predicted. We observe that aspirated characters are more error-prone which is
primarily because the English source scripts do not clearly distinguish them from their unaspirated
counterparts. For example, the model wrongly predicts the aspirated character ¥ in JTeT as T resulting
in @TYT. Inaccurate predictions in nasal characters are also due to ambiguities in the English source
script. For example, an’is used to refer to both the characters T and T as seen in =9+ (bachchan) and
qIAqIa L (vaatavaran). Errors in predicting vowels are caused due to the model sometimes predicting
their respective vowel signs when they occur in between two characters in a word.

In Figure 5(c), we consider all words that differ from the predictions corresponding to them by a
single character and compute the phonetic similarity between the expected and wrongly predicted
characters. A large number of character pairs having a high phonetic similarity shows that the wrong
predictions are close to the expected words. As the Contrastive Transliteration Correction module
relies on proximities in word spellings, most of the inaccuracies are observed in cases where several
words in the vocabulary have spellings similar to the character sequence they are compared with.

Phonetic Type Character list Ablated Component Acc. (%)
Unvoiced d, 9 9, 9,3,9,3,3, % Derivative features (CTC) 90.57
Aspirated H 9, J, I, H, 3, g, T Attention (Transliteration) 75.71

Nasal T, U, 9 Transliteration Correction 77.56
Palatal T 9,9, A Dense (Transliteration 80.51
Velar G, qd, T, 9 Correction)

Table 4: (a) Phonetic grouping of Hindi characters; (b) Results of the Ablation Study

5.3 Ablation Study

In this section, we analyse our architecture by performing an ablation study as reported in Table 4(b)
on the following components to understand their relative importance: (i) Derivative features (CTC):
We remove the x and y derivative values for each sampled point from the input features to the CTC
Gesture Path Decoder which provide information about the direction and speed of motion. This results
in the path decoding accuracy falling from 98.45% to 90.57%. (ii) Attention (Transliteration): We
remove the Bahdanau attention mechanism from the Transliteration Generation module and this
results in a fall in accuracy from 77.56% to 75.71%, mainly due to long words being wrongly decoded.
(iii) Transliteration Correction Module: We remove the Contrastive Transliteration correction module
and use the outputs of the Transliteration Generation module as the final prediction which gives a
reduced accuracy of 77.56%. (iv) Dense (Transliteration Correction): We remove the dense layers in
the Contrastive Transliteration correction module and use the Euclidean distance between the word
encodings as a direct measure of their closeness. This reduces the accuracy from 89.12% to 80.51%. An
analysis on other languages revealed similar trends with accuracy falling from 86.96% to 80.51% for
Tamil and from 70.00% to 63.50% for Malayalam.

6 Conclusion and Future Work

In this work, we have developed an architecture for gesture input decoding on keyboards supporting
Indic languages and validated our models across 7 languages. We have shown that a joint Trans-
former/RNN architecture that uses the CTC loss function can decode a gesture input with high accuracy.
We have also shown that the character-level ELMo network can be used to generate spelling-aware
word encodings and perform spelling correction efficiently. Going further, we wish to extend our work
to support visually impaired users and diversify our dataset to a larger set of languages.
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